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Abstract— Speech decoding from brain activity can enable
development of brain-computer interfaces (BCIs) to restore
naturalistic communication in paralyzed patients. Previous
work has focused on development of decoding models from
isolated speech data with a clean background and multiple
repetitions of the material. In this study, we describe a novel
approach to speech decoding that relies on a generative
adversarial neural network (GAN) to reconstruct speech from
brain data recorded during a naturalistic speech listening task
(watching a movie). We compared the GAN-based approach,
where reconstruction was done from the compressed latent
representation of sound decoded from the brain, with several
baseline models that reconstructed sound spectrogram directly.
We show that the novel approach provides more accurate
reconstructions compared to the baselines. These results
underscore the potential of GAN models for speech decoding
in naturalistic noisy environments and further advancing of
BCIs for naturalistic communication.

Clinical relevance— This study presents a novel speech
decoding paradigm that combines advances in deep learning,
speech synthesis and neural engineering, and has the potential
to advance the field of BCI for severely paralyzed individuals.

I. INTRODUCTION

The ability to speak and understand speech is remarkable
and unique to the human species. Various accounts of how
speech processing occurs in the brain exist, yet it remains dif-
ficult to relate continuous naturalistic speech to its underlying
brain activity. Interest in speech decoding from the brain
continues to grow due to the demand for brain-computer
interface (BCI) technology to restore communication in
severely paralyzed people. The BCI field is already making
considerable progress, yet we believe it could benefit further
from use of more advanced machine learning techniques to
improve neural speech decoding.

In this paper we propose and validate a new speech decod-
ing scheme based on generative adversarial neural networks
(GANs). We used a publicly available dataset of spoken
speech to train a GAN. Then, using an intracranial brain
dataset we trained a decoder network to predict latent vectors,
which were given as input to the GAN generator. The GAN
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generator was used to reconstruct speech spectrograms that
were synthesized into speech using an external vocoder. We
show that the proposed framework achieves best prediction
accuracy, and the reconstructed speech is more natural-
sounding than the tested baselines.

II. RELATED WORK

Speech decoding from the brain activity started with
decoding of a few classes of isolated words and phonemes
[1]–[3]. However, to make BCI communication more spon-
taneous and realistic, attempts to decode continuous speech
signals have been made. Some studies used intracranial brain
data to decode and concatenate individual phonemes for
reconstruction of continuous speech [4], [5]. Others decoded
vocoder parameters, such as pitch, envelope and aperiodicity
to create intelligible speech reconstructions [6]. Another
approach relied on brain decoding of speech spectrogram
directly [7], [8]. Yet another used kinematic features as an
intermediary between brain and speech spectrogram features
[9]. Finally, many of these features have been combined to
achieve high-accuracy reconstructions [10], [11].

The work done so far is remarkable, yet good performance
is typically observed on data where participants spoke or
listened to clean isolated sentences. It has been shown that
many repetitions of the same speech content and averaging
of the brain activity over fragments is necessary to achieve
better decoding scores [11].

More robust brain decoding that can tackle continuous
speech in noisy realistic environments is needed. In the
field of vision, most recent work has shown promise of
GANs in photo-realistic reconstruction of images from the
brain activity [12]–[14]. Instead of decoding complex high-
dimensional data such as natural images directly from the
brain, pretrained GANs were used to generate this output
from a compressed latent vector of only 100 − 300 values.
This latent vector can be decoded from the brain activity.
We rely on this previous promising work from vision as
inspiration for building a GAN-based speech decoder and
evaluate it against other methods.

III. METHODS

A. Intracranial Dataset

Intracranial data (9 subjects in total) were collected us-
ing grids – electrocorticography (ECoG, 7 subjects) and
depth electrodes – stereoelectroencephalography (sEEG, 2
subjects) in patients with medication-resistant epilepsy while
they watched a full-length Dutch feature film (Minoes,
2001) [15]. The study was approved by the Medical Ethical
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Committee of the University Medical Center Utrecht in
accordance with the Declaration of Helsinki (2013). All
patients gave written informed consent to participate. Most
ECoG subjects had left hemisphere coverage with electrodes
in perisylvian regions, i.e. temporal and frontal cortices
(Figure 1). Most sEEG electrodes were implanted in the left
hemisphere and sampled from Heschl’s gyrus, hippocampus,
insula and frontal regions. In total, 687 electrodes (449
ECoG and 238 sEEG) were analyzed. Data preprocessing
was done per subject and included noisy channel rejection,
notch filtering of line noise (50 Hz) and its harmonics,
common average referencing and high-frequency component
extraction (65–200 Hz) using Gabor wavelet decomposition
in 1 Hz frequency bins. The high-frequency data were
averaged over extracted frequencies and downsampled to 172
Hz. Based on the previous work [16], for training decoding
models data were concatenated across all subjects.

b

 

Film

speech
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noise
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Fig. 1. a. Experimental setup. b. Total brain coverage with ECoG (in black)
and sEEG (in red) electrodes.

B. Speech GAN Model
We used SpecGAN architecture from [17] and retrained it

on an audio dataset that combined a spoken Dutch corpus
IFA [18] (ca. 5.5 hours) and a subset of FSD50K [19]
that contained broad sound categories (ca. 3 hours). The
model was trained using original parameters, except that
we increased the size of latent vectors from 100 to 300.
From latent vectors the model generated .9-second log-mel
spectrograms (nfft = 1024, hop size = 256) with 80 mel
frequency bins. SpecGAN was trained for 3000 epochs on a
single GPU (GeForce RTX 2080 Ti) using PyTorch [20].

C. Neural Decoders
All neural decoders were based on ResNet-18 [21] (Fig-

ure 2). The GAN-based neural decoder, termed GAN-Z, was
trained on brain input to predict latent vectors that were
then input to the generator of SpecGAN to produce a log-
spectrogram for the target audio. During training a weighted
combination of feature and pixel losses was minimized:
L = λpLp + λf

∑L
l=1 L

(l)
f , where Lp and Lf are the

mean squared error pixel and feature loss, respectively. After
some experiments we set λp to 500 and λf to 1. Lp was
computed on the generated and target spectrogram values.
SpecGAN’s discriminator was used as a feature extractor for
both generated and target spectrograms and l = {1, 2, ..., L}
are its convolutional layers.

a Neural decoders

b

c

Vanilla

GAN-D

GAN-Z

Fig. 2. Architectures of the three neural decoders. a. Vanilla decoder. b.
GAN-D decoder. c. GAN-Z decoder.

We considered two baseline neural decoding models. The
first model, termed Vanilla, was trained on input brain
data to predict log-mel spectrograms of the corresponding
audio directly by minimizing Lp. Second model, GAN-D,
was its modification, trained to minimized the combined
pixel-feature loss L. All models were trained using Adam
optimizer (α = 5 × 10−5, β1 = 0.9, β2 = 0.999) and early
stopping on 80% of data; remaining data were split between
validation and test sets. All results are reported for test data.
No cross-validation has been performed.

D. Speech synthesis

In order to synthesize sound from the reconstructed
log-spectrograms we used a pretrained Parallel Wave-
GAN model (https://github.com/kan-bayashi/
ParallelWaveGAN) [22].

E. Evaluation

Several metrics were used to evaluate the performance of
the neural decoders: Pearson correlation, voice activity detec-
tion (VAD) match and pitch match between reconstructions
and target audio fragments. Webrtcvad library (https://
github.com/wiseman/py-webrtcvad was used to
calculate VAD per each 30-second audio window. Parcel-
mouth [23] and Praat [24] were used to extract pitch. Per
model, p-values for median values of each metric were
calculated based on 1000 shuffles of reconstructed-target
pairs. Pairwise model comparisons for each metric were
made using Wilcoxon signed-rank tests.
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F. Analysis of the GAN Latent Space

To explore the GAN latent space, a linear support vector
machine (SVM) classifier with default parameters (as im-
plemented in scikit-learn [25]) was used to fit a hyperplane
separating the latent space into subspaces corresponding to
speech and non-speech sounds [26]. For this, 2000 audio
fragments were created using the GAN generator and passed
through the VAD algorithm. All fragments with >80%
speech frames were labeled ’voice’, all fragments with <20%
speech frames were labeled ’non-voice’.

IV. RESULTS

A. SpecGAN Generated High-quality Naturalistic Speech

SpecGAN performance has been previously validated [17],
however, since we retrained the model on a new dataset,
we repeated basic checks to evaluate the generated speech.
Some examples are shown in Figure 3. After synthesis we
observed that several generated fragments contained intelli-
gible speech, and many sounded like speech but were not
intelligible. For quantitative evaluation we used pretrained
DeepSpeech2 [27] LSTM layer features to compute Fréchet
Inception Distance (FID) between GAN-generated and real
audio distributions: FID1 = 1.23 for LSTM hidden states
and FID2 = 30.22 for LSTM cell states (25k samples).
For reference, we computed the same scores between real
audio fragments and real audio fragments, preprocessed and
resynthesized with Parallel WaveGAN: FID1 = 1.4 and
FID2 = 57.23, respectively, and the FID scores using
SpecGAN-generated audio only after 10 epochs of training:
FID1 = 10.28 and FID2 = 264.19, respectively.

GAN-generated spectrograms

G
en

er
at

ed
Re

al

Fig. 3. Examples of real and GAN-generated spectrograms

B. Decoding GAN Latent Vectors Produced Best Speech
Reconstructions

Next, we compared sound reconstructions obtained with
Vanilla, GAN-D and GAN-Z neural decoders. We aimed to
evaluate model predictions not only based on low-level but
also higher-level sound properties, and paid particular atten-
tion to the perceptual quality of the reconstructed speech.

First, we compared sound reconstructions based on low-
level sound features by computing correlations between pre-
dicted and target mel-frequency values. All models showed
significantly high correlations compared to baseline surro-
gate distributions: rvanilla = .64 ± .07, rGAND = .62 ±
.07, rGANZ = .49 ± .09 (Figure 4). The Vanilla model
showed significantly better correlations compared to other
models: ZV anilla−GANZ = 10.01, p = 6.84 × 10−24 and
ZV anilla−GAND = 3.28, p = 5.18 × 10−4 as assessed
with Wilcoxon signed-rank tests. In general, decoders that
were trained to predict mel-frequency values directly (Vanilla
and GAN-D) achieved higher Pearson correlation between
reconstructed and target spectrograms.

Mel correlation Pitch correlation

*** ******

VAD match

Fig. 4. Evaluation of neural decoder performance with log-mel feature
correlation, VAD match and pitch match between reconstructed and target
spectrograms. Boxes outline the 25th and 75th percentiles, caps show 5th
and 95th percentiles, individual points show 150 test audio fragments. A
solid line within each box is the median.

Next, we examined higher-level sound features: VAD
and pitch, and evaluated the match between predictions
and targets for both. Accurate detection of both features is
directly related to correct onsets and offsets of speech, and
correct reconstruction of periodic signal reflects the decoder’s
ability to generate realistic sounding speech. We found that
contrary to the low-level features, the GAN-Z model was
most accurate here, and the Vanilla model was significantly
less accurate (Figure 4): ZGANZ−V anilla = 5.49, p =
1.99× 10−8, as assessed with a Wilcoxon signed-rank test.
Pitch match between reconstructions and target audio was
strong for GAN-D and GAN-Z models (compared to the
surrogate baseline). For Vanilla reconstructions pitch was
hard to detect (Figure 5), which lead to zero values in many
cases and significantly worse pitch match compared to GAN-
D and GAN-Z: ZGANZ−V anilla = 4.01, p = 3.1×10−5 and
ZGAND−V anilla = 4.37, p = 6.2 × 10−6 as assessed with
Wilcoxon signed-rank tests.

Apart from the quantitative measures discussed above, it
also became clear from visual inspection of the predicted
and target spectrograms that the GAN-Z model better cap-
tured the high-level structure of speech, including formants
(Figure 5). The difference between the models became even
more apparent when we listened to the sound reconstructions.
The first two models did not generate naturalistic speech
but only unintelligible noise. Our main goal here was to
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Speech reconstructions from brain data

Fig. 5. Examples of sound reconstructions. Sound intensity is shown in
white and pitch is shown in red.

reconstruct realistic, speech-like sound, and only the GAN-Z
model achieved notable results. It successfully reconstructed
formant structure of target sounds and its reconstructions
sounded most like real speech. These results highlight the
difference in sound quality between models trained to fit low-
level features and models trained to approximate compressed
latent vectors for non-trivial speech generation. This claim
can be strengthened further by comparing judgements of
reconstruction quality in human volunteers, which constitutes
one of the main directions of our future work with these data.

C. Latent Space Encoded High-level Sound Structure that
Could Be Decoded from the Brain

We saw that GAN-based model resulted in best, most
naturalistic speech reconstructions. It is not trivial to un-
derstand what makes this model best. We made a first
attempt to explore the latent space and relate high-level
sound properties of that space to the brain input. Inspired
by ideas in vision, we chose a binary semantic feature
‘presence / absence of voice’ (‘voice’) and looked for its
encoding in the latent space [26]. We trained a linear SVM
classifier to fit a hyperplane separating the latent space into
subspaces corresponding to speech and non-speech sounds
(test classification accuracy reached 97%). Similar to studies
in vision, we visualized a gradient of sound spectrograms
generated from the latent spaces by manipulating the strength
of the ’voice’ feature (Figure 6a).

Next, we used the input optimization technique [28] to
obtain a brain activity map that corresponded to the voiced
part of the gradient. The map showed highest activity values
in Heschl’s gyrus and surrounding superior temporal cor-
tex typically involved in auditory processing (Figure 6b).
Additionally, we fitted a linear regression on the real brain
input in the test dataset to predict the strength of the ‘voice’
feature associated with each reconstructed sound. The map
of the regression weights over electrodes showed a similar
profile as above. Altogether, these results show that high-

-29.22 -8.12 -3.21

-1.92 0.59 3.17

8.05 10.98 29.22

0 5
Activation

‘Voice’ gradient ba Brain activity 
for ‘voice’

LH

Fig. 6. a. ’Voice’ gradient in the latent space, ’voice’ score is reported per
image on top right. b. Brain activity (pooled across all subjects) associated
with high ’voice’ scores, averaged over a batch of 128 examples.

level features, such as ‘voice’, which can be seen as a proxy
for speech, is encoded in the latent space. The ‘voice’ score
can be accurately decoded from the brain auditory cortex,
particularly from the Heschl’s gyrus.

V. DISCUSSION

In this study we employed a generative adversarial neu-
ral network (GAN) to perform reconstruction of perceived
speech from intracranial human data. We compared three
neural decoding architectures: a non-GAN baseline, and two
GAN-based decoders: one that only used the GAN discrim-
inator and another that used the full GAN. Our evaluation
metrics showed that GAN-based decoders may have been
inferior in reconstruction of low-level audio features, but
came out superior at reconstructing higher-level properties,
such as speech timing, speaker pitch and speech formants.
Moreover, GAN latent space exhibited interpretable audio
features that mapped onto the brain activity.

The results of this work have several important impli-
cations. First, they indicate that use of high-level features
(such as GAN discriminator layer activations) may lead
to more natural-sounding speech reconstructions. This is
in agreement with previous research on vision reporting
that higher-level features of object recognition models are
predictive of brain activity throughout top-down processing
cortical regions [16], [29]. Moreover, studies on reconstruc-
tion of visual input show that adding high-level semantic
information to decoders leads to better performance [30].

Second, this work illustrates the potential of generative
models to boost neural decoding, particular in noisy natu-
ralistic contexts. The big advantage of generative models is
that they can be trained on vast speech corpora and learn
complex features that define the space of all possible speech
sounds. This information can be leveraged to constrain audio
reconstruction from the brain, filter out irrelevant noise and
provide powerful priors for more natural-sounding speech.

The present work has a number of limitations. First, we
used data from passive watching of a feature film, and there-
fore validated our neural decoders on a speech perception
task. We expect, however, that the presented methodology
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is task-independent and will generalize to speech production
data, which is directly relevant for BCI. Another limitation
is lack of hyperparameter decoder optimization due to the
small size of the dataset. Moreover, the present claims about
superior perceptual quality of decoded speech require support
from behavioral experiments. We are currently addressing
these issues in our follow-up work on reconstruction of
spoken speech from brain activity.

VI. CONCLUSIONS

The present study is among the first attempts to lever-
age advances in automatic sound generation with GANs
for reconstructing naturalistic continuous speech from brain
recordings. We showed that the GAN-based model achieved
the best decoding accuracy in terms of recovering high-level
sound properties and perceptual quality of sound. This was
in contrast to models that were trained to decode speech
spectrograms directly. These results demonstrate the potential
of GAN-based models to advance the BCI field and make
continuous speech decoding from the brain in naturalistic
environments more plausible.
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