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Abstract— Recent studies have confirmed the role of miRNA
regulation of gene expression in oncogenesis for various
cancers. In parallel, prior knowledge about relationships
between miRNA and mRNA have been accumulated from
biological experiments or statistical analyses. Improved
identification of disease-associated miRNA-mRNA pairs may
be achieved by incorporating prior knowledge into integrative
genomic analyses. In this study we focus on 39 patients with
hepatocellular carcinoma (HCC) and 25 patients with liver
cirrhosis and use a flexible Bayesian two-step integrative
method. We found 66 significant miRNA-mRNA pairs, several
of which contain molecules that have previously been identified
as potential biomarkers. These results demonstrate the utility
of the proposed approach in providing a better understanding
of relationships between different biological levels, thereby
giving insights into the biological mechanisms underlying the
diseases, while providing a better selection of biomarkers that
may serve as diagnostic, prognostic, or therapeutic biomarker
candidates.

Keywords: hepatocellular carcinoma, graphical models, in-
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I. INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common
type of liver cancer and the third cause of cancer deaths
worldwide [1]. In many cases, HCC occurs in people with
liver cirrhosis (CIRR) which complicates the detection of
symptoms during early stages. As a result, HCC is diagnosed
at advanced stages qualifying it as an aggressive cancer.The
known diagnostic markers have low sensitivity for early de-
tection [2]. The identification of novel diagnostic biomarkers
for early detection of HCC is therefore still an active research
of area.

The role of microRNAs (miRNAs) in many biological pro-
cesses such as differentiation, cell signaling, and pathways
supporting cancer stemness is crucial. A better understanding
of their implication in biological processes underlying dis-
eases may be achieved through linking miRNAs to respective
target genes. Many studies have established that miRNA-
mRNA pairs play a critical role in the activation of oncogenic
or carcinogenesis pathways as, for example, in prostate
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cancer, liver diseases or HCC. These results highlight the
great utility of miRNAs as biomarkers of diagnosis/prognosis
and disease progression. While several studies have reported
miRNA-mRNA pairs with opposite expression patterns, ex-
perimentally validated results obtained in some cancers have
also revealed dual-upregulation of miRNA-mRNA pairs.
Although those results are promising, the characterization of
relationships between miRNA and mRNA is still a challenge,
notably because each miRNA has multiple mRNA targets
and vice-versa. Innovative approaches are therefore required.
In addition, it could be important to take into account
the connections between mRNAs through miRNAs or other
factors.

The advances of high-throughput technologies along with
the development of relevant statistical and bioinformatics
methods for analyzing omic data enhance the capacity to
identify relevant molecular targets and may lighten the long
process of identification. The integrative analysis of different
sources of data has led to significant results by offering
a better understanding of complex biological mechanisms
through the discovery of new relationships between disease
and biological features from different biological levels [3]. In
addition, in various domains the integration of prior knowl-
edge into statistical models has led to promising results.

Gaining insights into the mechanistic differences between
HCC and CIRR contributes greatly to improving the de-
tection of important biological features. In this paper, we
introduce a Bayesian two-step integrative procedure extend-
ing the hierarchical integrative model (HIM) proposed by
[4], [3], and adapted by [5], for analyzing miRNA-seq and
mRNA-seq data from patients with HCC or CIRR. The
goals are to improve the knowledge about the relationships
between miRNAs and mRNAs, as well as among mRNAs
after considering the effects of miRNAs, and to identify
relevant disease-associated miRNA-mRNA pairs. In a first
step, we combine a Bayesian variable selection approach
integrating prior knowledge about the relationships between
miRNA and mRNA with a Gaussian graphical model. Then,
a second model integrating the information obtained in the
first step is used to jointly analyze miRNAs and mRNAs
and to discover miRNA-mRNA pairs discriminating HCC
and CIRR.
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II. METHODS

A. Samples

Human liver tissues from 64 adult patients recruited at
MedStar Georgetown University Hospital through a protocol
approved by the Georgetown IRB were considered in this
analysis. All subjects signed informed consent forms and
HIPAA authorization forms. Table I provides the character-
istics for the 39 HCC cases and 25 patients with CIRR whose
samples have been analyzed by various platforms to acquire
multi-omic data. 23% of HCC cases have histologically
verified adjacent CIRR tissues. Diagnostic imaging criteria
and/or histology that are well-established have been used to
diagnose the HCC cases.

B. miRNA-seq and mRNA-seq data

RNA samples extracted from the 64 liver tissues were
analyzed by Illumina Hiseq 4000 using 150 bp paired-end
(PE150) for RNA-seq expression profiling and by Illumina
NextSeq 550 platform using 2x150 bp paired-end (PE150)
for miRNA-seq expression profiling. More details are avail-
able in [6]. RNA-seq and mi-RNA-seq data were Gaussian-
ized before applying the subsequent analyses. We used the
function huge.npn from the R package huge [7] which
consists of applying a nonparanormal transformation that
estimates the Gaussian copula by marginally transforming
the variables using smooth functions.

In this paper we focused on a subset of 106 mRNAs
from the mRNA-seq data that are selected in previous
comparisons using the same dataset and are known to have
some association with liver disease [8], [5], [6], [9]. Student
t-tests with multiple testing adjustment were used to identify
miRNAs with significant changes in their levels between
HCC and CIRR. Using a p-value cut-off of 0.05 after false
discovery rate correction, a total of 261 miRNAs out of the
2195 miRNAs from the miRNA-seq data were selected.

In order to integrate prior knowledge into statistical mod-
els, scores measuring the belief in the association between
mRNAs and miRNAs were computed with Ingenuity Path-
way Analysis (IPA) Target filter analysis tool [10], which
extracts experimentally verified and predicted associations
between mRNA-miRNA pairs from multiple sources such
as TargetScan Human or TarBase [11], [12]. Four values
corresponding to different levels of confidence were con-
sidered based on IPA calls: 1 for experimentally observed
associations, 0.75 for high predicted links, 0.5 for moderate
predicted links, and 0 for associations that have not been
experimentally observed or predicted.

C. Bayesian two-step integrative procedure

The proposed integrative model consists of two submodels
(Fig. 1): a mechanistic submodel that relates miRNA and
mRNA and a clinical submodel that relates the phenotypic
outcome to mRNA and miRNA expression levels.

TABLE I
CHARACTERISTICS OF PATIENT-DERIVED SAMPLES

HCC CIRR p-value(N=39) (N=25)
Age Mean(SD) 62.02 (11.46) 50.05 (12.1) 0.0013

Gender Male 77% 72% 0.7683

Race

EA 41% 64%
AA 33% 32%

Asian 26% 0%
other 0% 4%

a) Mechanistic submodel: Bayesian variable selection
using spike-and-slab prior [13], which places a discrete
mixture distribution on the regression coefficients, is used
to identify miRNAs associated to each mRNA. Similarly
to [14], prior knowledge was integrated into the model by
including scores in the variable prior inclusion probabilities.
miRNAs with posterior inclusion probability greater than 0.2
were selected. The expression level of an mRNA can thus
be decomposed into two parts: the fitted values correspond
to the part of the mRNA accounted for by miRNAs and the
residuals corresponding to the remaining part explained by
other unmeasured factors.

In order to study the relationships between mRNAs after
adjusting for miRNAs, an undirected graph based on residu-
als is estimated by using a Gaussian graphical model (GGM)
[15]. GGM has been widely used to estimate partial corre-
lations, which correspond to correlations between variables
corrected for all other variables under investigation. Thus,
contrary to Pearson correlations which translate marginal re-
lationships between variables, partial correlations help distin-
guish direct from indirect relationships between variables. An
attractive aspect of partial correlations is their visualization
via an undirected graph, where nodes are the variables and
edges the dependencies between them. The absence of edges
correspond to a conditional independence of two variables
given the remaining variables. A lasso graphical algorithm
[16] was used to estimate sparse undirected graph via the R
package huge. The optimal regularization parameter was
selected by using the stability approach to regularization
selection (stars). A graph structure for gene expressions
adjusted for miRNAs effects was therefore estimated, the
corresponding graph is a covariate-adjusted Gaussian graph
or conditional Gaussian graph [17]. We will refer to it as the
adjusted graph. Note that the estimated partial correlation
between two genes are now corrected for all other genes
being analyzed and all miRNAs.

b) Clinical submodel: The linear predictor of the probit
model is modeled in terms of the mRNA expression profiles
and the miRNA effects on disease status. The former may
be decomposed into two parts corresponding to modulation
via miRNAs (GmiRNA) and via other factors than miRNAs
(GmiRNA). The associated model is given by (1):

probitP(Y = 1) = GmiRNA+GmiRNA+mRNA+miRNA (1)

where mRNA corresponds to the set of mRNAs that had
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Fig. 1. Bayesian two-step integrative procedure

no related miRNA in the mechanistic submodel and miRNA
corresponds to the set of miRNAs not found to be associated
with any of the mRNAs in the mechanistic submodel. To
simultaneously select relevant variables and account for
the adjusted graph, a spike-and-slab approach integrating
the dependence structure between mRNAs estimated in the
mechanistic submodel is applied [18]. In addition to selecting
variables associated to the outcome this approach encourages
choosing variables that have dependence structure. Variables
with posterior inclusion probability greater than 0.1 were
selected. As a result mRNAs, miRNAs, and miRNA-mRNA
pairs associated with HCC status were identified.

III. RESULTS

A. Mechanistic submodel

The mechanistic submodel relating each of the 106 mR-
NAs to the 261 miRNAs using a spike-and-slab variable
selection method integrating prior knowledge about their
relationships identified 371 miRNA-mRNA pairs. A subset
of 166 miRNAs were related to at least one mRNA. Of
the selected pairs, there were 22 experimentally verified
pairs. For example, CAT was found to be associated with
9 miRNAs, 4 of which (hsa-miR-101-5p, hsa-miR-421, hsa-
miR-4327, hsa-miR-4686) are known to target that mRNA.

Relationships between genes before adjusting for miRNAs
were also investigated by estimating an undirected graph with
a lasso graphical model. We refer to this as the unadjusted
graph. The resulting graph contained 497 edges. ADAMTS13,
ECM1, and PTH1R were identified as the most connected
genes with 29 related edges. The adjusted graph estimated by
considering mRNA expressions adjusted for miRNA effects
contained 101 edges, 86 of which are in common with
the unadjusted graph (see Table II). Thus, the majority of
gene-gene interactions were not maintained after accounting
for the miRNA regulation of these genes. The results are
in line with those observed in previous studies: the edge
number is reduced when accounting for potential confounder
covariates. As an example, we focus on 5 genes that are
connected in the unadjusted graph (left panel of Fig. 2)
and conditionality independent in the adjusted graph (middle
panel of Fig. 2). We also display the adjusted graph with
the associated miRNAs (right panel of Fig. 2) for a better
understanding. The direct relationship observed between

SMPD3 and WDR66 in the unadjusted graph is mainly due
to the regulation by a common miRNA (hsa-miR-200a-5p)
modulating the expressions of both genes. Similarly, the edge
that was present between LILRB5 and PIGU in the unad-
justed graph disappears in the adjusted graph. Accounting for
miRNA effects helps to clarify genes that are co-regulated
by miRNA versus genes that are interacting through other
mechanisms. Unchanged connections across the unadjusted
and adjusted graphs evidence dependence due to biological
factors other than miRNAs. For example, TERT and STAB2
remain connected in both graphs (left panel of Fig. 3). The
adjusted graph with the associated miRNAs is shown in the
right panel of Fig. 3.

The same approaches (spike-and slab prior integrating
prior knowledge and estimation of unadjusted and adjusted
graphs) were applied separately on HCC cases and patients
with cirrhosis. The results are reported in Table II. We
observe that the number of connections in the unadjusted
graphs, when considering the two groups independently, is
reduced in particular for CIRR group. A denser graph in
HCC cases may indicate that the considered subset of genes
is mostly connected in HCC.

We also observed than the sizes of the adjusted graphs are
smaller than that of the unadjusted graphs in each disease
group. To compare the graphs between the two groups we
performed a differential network analysis via the R package
iDINGO [19]. Partial correlations were computed by using a
Gaussian graphical model based on the raw gene expressions
and the gene expressions adjusted for miRNAs effects. Fig. 4
presents the partial correlations in HCC versus CIRR. Pairs
with a p-value less than 0.05 and with absolute values of
the differential scores and partial correlations greater than
3 and 0.1, respectively, are labeled on the plots. While
most pairs of genes have similar partial correlations for the
unadjusted graphs, partial correlations for HCC and CIRR
are more contrasted for the adjusted graphs. Among the
selected mRNA-miRNA pairs in both groups, 29 are in
common. Of those, 8 are also identified when analyzing
the two groups. For example the pair BCL9 - hsa-miR-378d
is identified in all three analyses. We emphasize that the
results obtained for each group analyzed separately need
to be considered with caution since the small sample size
may lead to a lack of statistical power and to computational
instability.

TABLE II
NUMBER OF EDGES IN THE ESTIMATED UNADJUSTED AND ADJUSTED

GRAPHS.

Undajusted graph Adjusted graph Common edges
HCC +CIRR 497 101 86

HCC 247 171 74
CIRR 92 59 4
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Fig. 2. Unadjusted graph (left), adjusted graph (middle), and adjusted
graph with associated miRNAs (right)

Fig. 3. Adjusted graph (left) and adjusted graph with associated miRNAs
(right)

B. Clinical submodel

The clinical submodel selected 21 mRNAs, 5 miRNAs
and 66 miRNA-mRNA pairs. Among them, 17 genes have
expression levels that are modulated by miRNAs leading
to 66 miRNA-mRNA pairs, and 4 have expression levels
modulated by biological features other than their associ-
ated miRNAs. 5 miRNAs (hsa-miR-150-3p, hsa-miR-193-
3p, hsa-miR-3192-3p, hsa-miR-365a-3p, hsa-miR-548ao-3p)
are found to be directly associated to HCC (see Table A1 in
the Appendix). Three of the 66 disease associated miRNA-
mRNA pairs that are experimentally verified are shown in
Table A1 in bold face (ADRA2B - hsa-miR-6889-5p, CFP -
hsa-493-3p, SLC39A14 - hsa-296-5p). There are also a few
molecules identified in the selected pairs that are involved
in experimentally verified pairs. For example miRNA hsa-
miR-7-5p, which is found to be related to ABCG5 in our
model, is also targeting TLR4. These two genes belong to the
LXR/RXR pathway. Fig. 5 presents boxplots of expression
levels across disease status associated to the three experi-
mentally verified pairs. While ADRA2B and hsa-miR-6889-
5p have opposite expression patterns, dual-downregulation is
observed for CFP and hsa-493-3p, and SLC39A14 and hsa-
296-5p.

A pathway analysis of the miRNAs and mRNAs selected
from the clinical submodel was performed using the IPA tool.
Fig. 6 represents the top 10 pathways using the molecules
selected in the clinical submodel. The overlapping canonical
pathways are shown as a network where each pathway is
a single node colored proportionally to the p-value, where
brighter red represents a more significantly enriched pathway.
As shown in Fig. 6, LXR/RXR activation pathway, Hepatic
Fibrosis/Hepatic Stellate Cell Activation, Role of MAPK
Signaling, and INOS Signaling pathways are found to be
significantly enriched in our analysis. Accumulating evidence
demonstrated that LXR is a potential prognostic marker and

Fig. 4. Partial correlations for HCC versus CIRR based on unadjusted
graphs (on left) and adjusted graphs (on right)

Fig. 5. Boxplots of miRNA and mRNA expressions across disease status
for three experimentally verified pairs.

exerted significant anti-tumor effect in HCC. Our previous
studies have also reported these pathways to be significantly
enriched in HCC [9], [20].

Fig. 7 shows the molecule interaction network generated
using the miRNAs and mRNAs from the clinical model. The
molecules in this network are mainly involved in cancer,
organismal injury and abnormalities, reproductive system
disease, and gastro intestinal diseases. We also note a few
overlaps with the miRNA-mRNA relationships identified
with our analysis. For example, miR-146a-5p and LBP pair
overlaps in our model and the network generated by IPA.
Down regulation of miR-146a-5p and its targets in HCC have
been reported to play a tumor-suppressive role [21].

IV. DISCUSSION

With regards to the mechanistic model, the integration
of prior knowledge identified 22 experimentally verified
miRNA-mRNA pairs. The proposed approach was also able
to identify 349 novel miRNA-mRNA pairs, some of which
were revealed to be associated with the disease status in the
clinical submodel. The integration of prior knowledge into
the analysis helps complement the information in the data
and can reinforce the existing evidence as well as lead to
new discoveries.
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Fig. 6. Top 10 pathways represented by the molecules selected from the
clinical model. The connections show that one or more molecule is common
across multiple pathways. The darker red color shows that the pathways has
higher significance

Fig. 7. Network generated using the miRNAs and mRNAs selected from
the clinical model using IPA. Green molecules are downregulated and red
molecules are upregulated.

Through the estimation of adjusted and unadjusted graphs
we pointed out that, although a direct application of GGM
on gene expressions data provided some insights into gene
regulation at the expression level, adjusting for the effects of
miRNAs on mRNA expressions improved the understand-
ing of relationships between genes. The results revealed
some genes with unchanged connections in the adjusted
and unadjusted graphs indicating genes that are dependent
conditionally to other genes and all miRNAs. On the other
hand, some connections disappeared once the effects of
miRNAs are accounted for, underlying a dependence most
likely due to miRNAs. As a result a finer understanding of
dependence sources between genes was achieved.

The clinical submodel selected 21 mRNAs, 5 miRNAs,
and 66 miRNA-mRNA pairs associated to disease status.
As shown in the network and pathway analyses, the ap-
proach helped us to narrow down to the most important
mRNAs and miRNAs as well as miRNA-mRNA pairs that

are more relevant to study HCC. The identified molecules are
involved in pathways known to play an important role in the
pathogenesis of HCC, including the LXR/FXR Activation,
iNOS Signaling, and Hepatic Fibrosis / Hepatic Stellate Cell
Activation Pathways. These results underlined the potential
of integrating the proposed approach in selecting markers
associated with HCC in a larger study containing more
samples and molecules.

V. CONCLUSIONS

The identification of relevant biomarkers of HCC is es-
sential to obtain a better diagnosis in early stages and
improve understanding of complex biological mechanisms
underlying HCC. In this paper, we proposed a Bayesian
two-step integrative procedure extending the initial approach
developed by [4], [3]. The extension lies in the integra-
tion of knowledge from various sources at the different
stages of the modeling. Here, the mechanistic submodel
used prior knowledge from an external database, through
IPA target filter analysis in this case. The clinical submodel
integrated as prior knowledge the connections estimated by
the graphical lasso in the mechanistic submodel. In addition
to helping statistical models lessen the challenge of ill-posed
problems, these types of prior knowledge integration into
the analysis provide a better understanding of relationships
between biological features (between miRNAs and mRNAs,
as well as between mRNAs in our application). They also
help identify biologically relevant biomarkers for the pheno-
type under investigation. The findings, of course, need to
be experimentally validated to confirm their potentials as
diagnostic or prognostic biomarkers.

The methods implemented in this study led to the identi-
fication of key miRNA-mRNA pairs and pathways that are
potentially associated with HCC. The results highlight the
biological relevance of studying molecular interactions and
the need for integrating prior knowledge when analyzing data
from mRNA-seq and miRNA-seq. Additional studies focused
on comprehensive and integrative analysis of larger datasets
are necessary to explore the interactions.
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