
  

  

Abstract—Electromyographic signals (EMGs) can provide 

information on the overall activity of the innervating motor 

neuros in any given muscle but also globally reflect the 

underlying neuromechanics of human movement (e.g., muscle 

synergies). motor unit(MU) decomposition is a technique based 

on the deconvolution of high-density EMGs (HD-EMG) in order 

to derive the activities of the corresponding motor neurons. This 

powerful yet very sensitive tool has seen some traction in human-

machine interfacing (HMI) for rehabilitation. Here, we propose 

combining the synergy-inspired channel clustering in order to 

isolate the most prominent regions of EMG activation in each 

targeted degree of freedom (DoF) and thus cater to 

decomposition’s sensitivity demands. Our assumption is that this 

will lead to a higher number of extracted MUs and consequently 

better motion estimation in HMIs. Indeed, in four subjects, we 

have shown a 69% average increase in the number of MUs when 

decomposition was done using muscle-synergy channel 

clustering. Consequently, all three of our kinematic estimators 

benefited from an increased pool of units, with the linear 

regressor showing the greatest improvement once compared to, 

the artificial neural network and the gated recurrent unit, which 

had the overall best performance. 

Clinical Relevance— The results demonstrated in this work 

provide a new perspective on the online EMG-driven HMI 

systems that can be greatly beneficial in the rehabilitation of 

motor disorders. 

I. INTRODUCTION  

Electromyographic signals (EMGs) have been widely 
adopted as control inputs for human-machine interfaces (HMI) 
due to their ease of application and rich information content. 
Commonly, such systems rely on observing EMG amplitudes 
from an agonist-antagonist muscle pair in order to control a 
desired degree of freedom (DoF) of the interface [1]. The 
extension of this approach to multiple DoF has proven to be 
challenging. Hence, to further improve the functionality of 
EMG-based HMIs, machine learning (ML) algorithms have 
been developed specifically [2]. For instance, the pattern 
recognition-based control schemes learn emerging EMG 
patterns from physiologically appropriate muscle contractions 
and then further classify them into corresponding functions 
[3]. While providing direct access to multiple DoFs, such 
classification schemes are still delivering only discrete-motion 
control and can steer one joint or motion class at a time. Thus, 
EMG-based HMIs have been shifting towards continuous 
(proportional or regression) control approaches, which rely on 
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similar features to create and provide a continuous mapping 
from the muscle space (EMGs) to the output kinematics [4], 
[5]. These methods can coordinate control of multiple 
joints/actions at a time instead of classifying them into a 
discrete number of classes. However, an increase in the 
number of actions is a reliability challenge for these systems 
[6]. 

In order to further improve the capabilities of HMIs, 

particularly in terms of precision, features based on individual 

motor unit (MU) activities have been considered [5], [7], [8]. 

These decomposed neural features from high-density EMGs 

(HD-EMG) indirectly represent the underlying physiological 

processes of EMG’s generation and identify the activities of 

the motor neurons innervating the muscle [9], [10]. Here, the 

EMG signals can be reflected as a convolutive mixture of the 

series of discharge timings (motor unit spike train, MUST) of 

the motor neurons innervating the muscle with motor unit 

action potentials (MUAP)  [9]. MUST is regarded as a source 

or neural command/drive sent to muscles by the motor neurons 

within the spinal cord [9]. The identified MUST can then, 

theoretically, be used as a feature as a myocontrol signal [11].  

Still, the reliable extraction of MUs for HMI applications 

can pose a challenge due to the high computational 

complexity and sensitivity of the decomposition approach 

[12]. To address these shortcomings, attempts have been 

made to constrain the decomposition sensor space and target 

specific muscles to extract MUs [13]. However, in order to 

venture away from heuristic, anatomy-targeted approaches, a 

concept of muscle synergies can be employed [6]. This 

minimally supervised dimensionality-reduction technique 

driven by EMG amplitudes can indicate the region of 

relevance for each specific motion by looking at the spatial 

distribution of each synergy [6]. These regions (clusters) can 

then further guide a focused decomposition effort and 

potentially provide a higher number of Mus in a reliable 

fashion. We hypothesize that units extracted in such a way 

have a beneficial impact on motion estimation accuracy and 

decrease computational paradigm.  

Here, we propose a minimally supervised way of region 
selection based on biological constraints to get optimal motor 
unit extraction at lower cost. We further compare three 
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continuous myoelectric control methods tasked to estimate the 
three DoF wrist kinematics from the MUST level: (1) linear 
regression (LR), (2) artificial neural network (ANN), and (3) 
gated recurrent unit (GRU) network. Finally, the performance 
of these three algorithms has been benchmarked using neural 
features extracted by clustered and non-clustered approaches. 

II. METHODS 

A. Participants 

In this study, four righthanded able-bodied subjects (all 
male, age 30 ± 3 years) with no known neurological or 
musculoskeletal disorders have been recruited. The Ethics 
Committee of Aalto University granted ethical approval for 
this study, and all participants read, understood, and signed an 
informed consent form before starting any experiment. 

B. Signal Acquisition and Experiment Setup 

Two types of data were recorded from each participant’s 
dominant arm. Three 8 × 8 electrode arrays (ELSCH064NM3, 
OT Bioelettronica, IT) were used to obtain 192 HD-EMG 
signals. The electrodes were placed so as to cover the entire 
circumference of the upper half of the forearm. The signals 
were sampled at 2048Hz, digitized with a 16 − bit analog to 
digital converter by a benchtop bio-amplifier (Quattrocento, 
OT Bioelettronica, IT), and in-hardware band-pass filtered 
using a third-order Butterworth with a cut of frequency of 3–
900Hz. In addition, joint kinematic signals were 
simultaneously recorded by three wireless inertial 
measurement units (IMUs) (Xsens Technologies BV, NL) 
placed along the posterior sides of the upper arm, lower 
forearm, and hand. These were synchronized with the HD-
EMG system and sampled at 80Hz. Each subject was 
instructed to perform three repetitions of six wrist motor tasks, 
encompassing three DOFs: wrist flexion/extension (DOF1), 
wrist radial/ulnar deviation (DOF2), and forearm 
pronation/supination (DOF3). Each motion was visually 
prompted using trapezoidal contraction profiles (trapezoidal 
cue: two seconds rest, two seconds rising and falling edges, ten 
seconds steady contraction at the comfortable level 
corresponding to the full range of the respective DoF). 

C. Muscle synergy inspired EMG clustering method 

Non-negative matrix factorization (NMF) is one of the 

common ways to extract underlying neuromechanics of human 

movement [14], [15]. It assumes that the source matrix and the 

factorized matrix are all non-negative. As shown in equation 

(1), the NMF decomposes muscle activation patterns of EMG 

signals (their root mean square (RMS) values) into a few (k) 

muscle synergies (motor modules) 𝑤𝑗𝑖  and temporal activation 

coefficient (neural or descending commands) 𝐶𝑖. Muscle 

synergies specify the relative activation level across muscles 

(the weights of each muscle). The activation coefficient 

represents how much the corresponding synergy was activated 

or used to generate force. 

𝑚𝑖(𝑡) = ∑ 𝐶𝑖(𝑡)𝑤𝑗𝑖

𝑘

𝑗=1

+ 𝑒𝑖(𝑡)            (1) 

where 𝑚 represents EMGs, 𝑖 is channel number, 𝑘 is the 
number of synergies, and e is reconstruction error. While 
extracting muscle synergies using NMF, we assumed six 

synergies for the whole EMG dataset (one for each targeted 
DoF). From each synergy, based on the amplitude of activation 
(threshold of 50% (empirically determined) of maximum 
activity in each synergy), a subset of channels (clusters) was 
selected and further used for a focused MU decomposition.   

D. Neural Feature Extraction 

Multi-channel EMG signals can be approached as a 

convolution between the discharge timings of motor units (a 

series of delta functions) and the action potentials of muscle 

units (with finite duration) [9], [10]: 

𝑥𝑖(𝑘) = ∑ ∑ ℎ𝑖𝑗(𝑙)𝑆𝑗(𝑘 − 𝑙) + 𝑛𝑖(𝑡) 

𝑛

𝑗=1

; 𝑖 = 1: 𝑚  

𝐿−1

𝑙=0

    (2) 

where 𝑥𝑖(𝑘) is the discrete-time representation of the 𝑖𝑡ℎ EMG 

channels,  with k spanning from 0 to 𝐷𝑅 (recording duration in 

samples), and 𝑖, ranging from 1 to 𝑚. 𝑛 and 𝑚 are the number 

of active motor units and channels (observations), 

respectively, and 𝐿 is the duration of the action potentials. ℎ𝑖𝑗 

is the action potential of the 𝑗𝑡ℎ motor unit (MUAP) as 

recorded at channel 𝑖. 𝑆𝑗  is the spike train of the 𝑗𝑡ℎ motor unit 

(MUST), and 𝑛𝑖(𝑡) is the additive noise at channel 𝑖. In all 

decomposition algorithms, the goal is to reconstruct MUSTs, 

while the only accessible measurement is EMG signals. This 

study used offline and pseudo-online methods for neural 

feature extraction through blind source separation (BSS) 

EMGs decomposition [7]–[10], [16]. The offline phase 

performs the computationally demanding tasks of BSS. It 

retrieves system parameters such as the mean value of each 

observation (μ), the whitening matrix (W), a bank of matched 

filters, signal cluster centroid (𝑠𝑐𝑐) and noise cluster centroids 

(𝑛𝑐𝑐) of peaks required by the online step to extract MUSTs 

activities in real-time [7]. To simulate a real-time application, 

the data was processed in windows, where the length of the 

sliding window was set to 160 𝑚𝑠 with no overlap [5], [8]. 

E. User intention estimation 

To evaluate the performance of the decomposed neural 

features using clustered and non-clustered methods, we 

compared three regression methods for estimating their 

kinematic intentions: linear regressor (LR), artificial neural 

network (ANN), and gated recurrent unit (GRU) network [17]. 

These estimators were trained in the calibration phase by 

extracted neural features using clustered and non-clustered 

approaches. In the testing/evaluation phase, the neural 

features were extracted using a pseudo-online decomposition 

algorithm to estimate kinematic output (three DoF, six 

motions).  Moreover, a 3-fold cross-validation was applied to 

the dataset to test the estimator’s ability to predict new 

(testing) data which was not used during estimator training [4]. 

The success of each regression model in the estimation of 

intended kinematics was quantified using a 𝑅2  score [4]. 

𝑅2 = 1 − 
∑ ∑ (𝑥𝑑,𝑖

𝑟𝑒𝑎𝑙−𝑥𝑑,𝑖
𝑒𝑠𝑡)

2
𝑁
𝑖=1

𝐷
𝑑=1

∑ ∑ (𝑥𝑑,𝑖
𝑟𝑒𝑎𝑙−𝑥𝑑,𝑖

𝑟𝑒𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅
 )

2
𝑁
𝑖=1

𝐷
𝑑=1

         (3)  
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where D is the number of DoFs involved (D = 3 in this study), 

N is the sample size. 𝑥𝑑,𝑖
𝑟𝑒𝑎𝑙and  𝑥𝑑,𝑖

𝑟𝑒𝑎𝑙̅̅ ̅̅ ̅̅  are the actual value of the 

target and its mean value.  𝑥𝑑,𝑖
𝑒𝑠𝑡 is the estimated value of the 

target obtained by the regression algorithms. Moreover, a 

moving average filter was used to smooth the estimation 

outputs.     

 

III. RESULTS 

Figure 1. shows the spatial distribution of each muscle 
synergy extracted using NMF for subject 1. From each synergy 
(𝑊𝑖 ), a subset of channels (clusters) was selected based on the 
activation amplitude and further used for a focused MU 
decomposition.  

TABLE I shows the average number of extracted MUs in 

the clustered and non-clustered conditions for all subjects. 

Data were averaged across all participants for each motion 

and rounded to the nearest integer. An average of 51 and 86 

MUs were extracted for all motions through the non-clustered 

and clustered method, respectively. Among six motions, wrist 

extension and ulnar deviation yielded a higher number of 

extracted MUs than the other motions, regardless of the 

clustering method. Figure 2. shows subject 2 performance for 

one-fold of data.  Figure 3. shows the pseudo-online 

myoelectric control performance of LR, ANN, and GRU 

network trained with clustered and non-clustered neural 

features. The LR method consistently has 10% higher average 

performance when operating on clustered neural features. 

Figure 2. Myoelectric control assessment of subject 2. The top panel shows the extracted neural features using two repetitions of each motion by 

clustered and non-clustered methods. The bottom panel shows the performance of three regression methods using one repetition of each motion. 

Orange, pink, and blue colors represent estimated kinematics outputs using LR, ANN, and GRU with respect to the target cue shown in black color. 

While the 𝑅2 score using the non-clustered method are 62%, 65%, and 96% using LR, ANN, and GRU, respectively, the clustered method values 

are 73%, 77%, and 97% using the same regressors. 

Figure 1. The spatial distribution of the six synergies extracted using 

NMF from Subject 1. Each map depicts RMS values across the three HD-

EMG recording matrices (8 x 24 channels). From here, clusters of 
activities have been identified by considering the threshold of 50% of 

maximum activity in each synergy. Then each cluster has further been 

used for focused EMG decomposition. 
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TABLE I.  THE NUMBER OF EXTRACTED MOTOR UNITS 

IV. DISCUSSION  

For the purpose of optimal motor unit decomposition, we 

proposed a minimally supervised way of EMG channel 

clustering based on muscle-synergy-inspired constraints. The 

average number of extracted MUs across all four subjects 

increased from 51 to 86 during the blind-source-separation 

decomposition using the clustering approach for all motions. 

A possible explanation for this increase may be that the 

amplitude-driven spatial constraints help with the 

convergence to the more reliable sources [18] that are in turn 

having a higher likelihood of getting identified as MUs by the 

decomposition algorithm.  Furthermore, in both clustered and 

non-clustered approaches, it was observed that across three 

DoFs, the decomposition algorithm yielded a larger number 

of MUs during wrist extension and ulnar deviation motions. 

This finding is in line with the earlier results [19], and it is 

presumably due to the strong involvement of surface muscles 

in these motions, which allow for an easier decomposition.  

In conclusion, as was to be expected, the results indicate that 

a higher number of MUs present during the regressor training 

allows for a more reliable estimation. This holds true 

regardless of the applied algorithm; however, the linear 

method seems to benefit more from the clustering approach in 

relative terms. Moreover, the estimation performance of the 

deep networks (GRU) outperforms that of the LR and ANN, 

which all indicates that the model's complexity tends to yield 

higher performance while requiring less computational cost 

enabled by clustering method [4]. In the future, the aim is to 

expand the subject pool and perform similar comparisons in a 

fully real-time scenario. 
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DOF Task 
Number of Motor Units 

Non-Clustered Clustered 

1 

Flexion 17 ± 7 40 ± 20 

Extension 35 ± 7 57 ± 22 

2 

Radial Deviation 14 ± 10 26 ± 17 

Ulnar Deviation 28 ± 16 55 ± 11 

3 

Supination 17 ± 12 30 ± 18 

Pronation 20 ± 16 42 ± 26 

Total Number of MUs 51 ± 11 86 ± 25 Figure 3. The overall  𝑅2score for LR, ANN, and GRU regression methods 

trained with neural features extracted by non-clustered and clustered methods. 
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