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Abstract— This paper evaluates a range of deep learning
frameworks for detecting respiratory anomalies from input
audio. Audio recordings of respiratory cycles collected from
patients are transformed into time-frequency spectrograms
to serve as front-end two-dimensional features. Cropped
spectrogram segments are then used to train a range of
back-end deep learning networks to classify respiratory cycles
into predefined medically-relevant categories. A set of those
trained high-performance deep learning frameworks are then
fused to obtain the best score. Our experiments on the ICBHI
benchmark dataset achieve the highest ICBHI score to date of
57.3%. This is derived from a late fusion of inception based
and transfer learning based deep learning frameworks, easily
outperforming other state-of-the-art systems.

Clinical relevance— Respiratory disease, wheeze, crackle,
inception, convolutional neural network, transfer learning.

I. INTRODUCTION

Automated respiratory sound analysis (ARSA) has re-
cently attracted much research attention, encouraged by
advances in robust machine and deep learning technologies,
which can be leveraged into this important application area.
Systems proposed by authors generally comprise two main
steps, referred to as front-end feature extraction and back-
end modelling. In machine learning based systems, hand-
crafted features such as Mel-frequency cepstral coefficients
(MFCC) [1], [2], or a combination of several time domain
features (e.g. variance, range, sum of simple moving average)
and frequency domain features (e.g. spectrum mean) [3]
are extracted during the front-end feature extraction. These
features are then fed into conventional machine learning
models, such as Hidden Markov Models [2], Support Vector
Machines [3], or Decision Trees [1] for specific tasks of
classification or regression. Meanwhile, deep learning based
systems make use of raw inputs such as waveforms or
spectrograms, with a trained feature extractor. Spectrograms,
in which both temporal and spectral feature elements are well
represented, have been explored by a wide range of deep and
convolutional neural networks (CNNs) [4], [5], [6], [7] and
recurrent neural networks (RNNs) [8]. Comparing between
machine learning approaches with hand-crafted features,
and deep learning systems with trained feature extractors,
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the latter are widely reported as being more effective for
respiratory classification tasks [4], [6], [7].

We therefore evaluate a wide range of deep leaning
frameworks with spectrogram inputs, trained for the specific
task of audio respiratory cycles classification, and then their
fusion at three levels. We conduct extensive experiments us-
ing the 2017 ICBHI (International Conference on Biomedical
Health Informatics) dataset [9], which is one of the largest
benchmark respiratory sound datasets and widely used in
comparative studies. Our main contributions are (1) We eval-
uate whether benchmark and complex deep neural network
architectures (e.g. ResNet50, Xception, InceptionV3, etc.)
are more effective than inception based and low footprint
models, and (2) We evaluate whether applying transfer
learning techniques on the downstream task of respiratory
cycle classification can achieve competitive performance
over direct training approaches.

II. ICBHI DATASET AND TASKS DEFINED

The ICBHI dataset [9] is comprised of 920 separate audio
recordings collected from 128 patients over 5.5 hours. Each
audio recording contains one or different types of respiratory
cycles, labeled as Crackle, Wheeze, Both Crackle & Wheeze,
or Normal. The labels, determined by respiratory experts,
have fine resolution onset and offset times. The dataset
is considered relatively well-labeled, and since recordings
are made by a variety of instruments, and are sometimes
acoustically noisy, it is reflective of real-world conditions.
Given this ICBHI dataset, the current paper aims to classify
the four different types of respiratory cycles mentioned – and
that is also the main task of the ICBHI challenge itself [9].
To evaluate, we adhere to the ICBHI challenge settings,
splitting audio recordings into Train and Test subsets with
a ratio of 60/40 without overlapping patient in both subsets
(please note that some published systems randomly separate
the ICBHI recordings into training and test subsets regardless
of the source patient, so on those systems, recordings from
the same patient can occur in both training and test sets [4],
[5]. By contrast, we ensure no patient overlap between
sets). Using reported onset and offset times, we then extract
respiratory cycles from entire recordings, to obtain four
categories of respiratory cycles on each subset. Regarding
the evaluation metrics, we use Sensitivity (Sen.), Specitivity
(Spec.), and ICBHI score (ICB.) which is the mean of the
Sen. and Spec. scores. These scores are the same as those
required by the ICBHI challenge [10] and [11], [12].
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Fig. 1. High-level architecture of three proposed deep learning frameworks.

TABLE I
THE GENERAL INCEPTION BASED NETWORK ARCHITECTURES.

Single Inception Layer Double Inception Layers
BN

Inc(ch1) - ReLU Inc(ch1) - ReLU - Inc(ch1) - ReLU
BN - MP - Dr(10%) - BN

Inc(ch2) - ReLU Inc(ch2) - ReLU - Inc(ch2) - ReLU
BN - MP - Dr(15%) - BN

Inc(ch3) - ReLU Inc(ch3) - ReLU - Inc(ch3) - ReLU
BN - MP - Dr(20%) - BN

Inc(ch4) - ReLU Inc(ch4) - ReLU - Inc(ch4) - ReLU
BN - GMP - Dr(25%)

FC(fc1) - ReLU - Dr(30%)
FC(fc2) - ReLU - Dr(30%)

FC(4) - Softmax

III. DEEP LEARNING FRAMEWORKS PROPOSED

To classify four types of respiratory cycles from the ICBHI
dataset, we firstly propose a high-level architecture of three
main deep learning frameworks as shown in Fig. 1, which
contain the following:

I The upper stream in Fig. 1 shows how we directly
train small-footprint inception based network archi-
tectures from augmented spectrograms.

II Benchmark and large footprint deep learning
network architectures of VGG16, VGG19,
MobileNetV1, MobileNetV2, ResNet50,
DenseNet201, InceptionV3, Xception are directly
trained and evaluated as shown in the middle
stream of Fig. 1.

III The lower stream in Fig. 1 shows how we reuse
pre-trained models, which were trained with the
large-scale AudioSet to extract embedding features.
These are used in turn to train a multilayer percep-
tron (MLP) network for the final classification.

In general and as mentioned previously, these three deep
learning frameworks each comprise two main steps of front-
end spectrogram-derived feature extraction, followed by a
back-end classification model.

A. The front-end spectrogram feature extraction

The input to the proposed deep learning frameworks
shown in Fig. 1 are 10 second recorded segments of res-
piratory cycles. During training, since cycles naturally have
a range of durations, we duplicate shorter cycles or trun-
cate longer cycles to provide equal-dimension audio input
segments. For the first two deep learning frameworks (I)
and (II), we extract Wavelet-based spectrograms, which had
proven effective in our previous work [7], and reuse the
same optimal extraction settings from [7]. We then generate
Wavelet spectrograms of dimension 124×154 from each 10
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Fig. 2. The single inception layer architecture.
TABLE II

SETTING FOR INCEPTION BASED NETWORK ARCHITECTURES.
Networks Inc-01 Inc-02 Inc-03 Inc-04 Inc-05 Inc-06

Single/Double Single Double Single Double Single Double
ch1 32 32 64 64 128 128
ch2 64 64 128 128 256 256
ch3 128 128 256 256 512 512
ch4 256 256 512 512 1024 1024
fc1 512 512 1024 1024 2048 2048
fc2 512 512 1024 1024 2048 2048

second respiratory cycle segment. For the deep learning
framework (III), we extract log-Mel spectrograms since we
employ pre-trained models from [13] which require a log-
Mel spectrogram input. By using the same settings, we gener-
ate log-Mel spectrograms of dimension 128×1000 from each
10 second respiratory cycle segment. To improve the back-
end classifier performance, two data augmentation methods
are employed for all frameworks. Specifically, spectrum [14]
and mixup [15] augmentation are applied on both log-Mel
and Wavelet-based spectrogram inputs before feeding into
the back-end deep learning models for classifier training.

B. The back-end deep learning classifier networks

(I) The low-footprint inception based network architec-
tures: Since good results were achieved using an inception
based network in our previous work [7], we further evaluate
different types of inception based network architectures in
this paper. In particular, two high-level architectures with sin-
gle or double inception layers are explored, as defined in Ta-
ble I. These architectures comprise of several different layer
types. The inception layer (Inc(output channel number)) is
shown in Fig. 2, and also includes batch normalization (BN),
rectified linear units (ReLU), max pooling (MP), global max
pooling (GMP), dropout (Dr(percentage)), fully connected
(FC(output node number)) and Softmax layer types. By using
the two architectures and setting adjusting parameters such
as channel numbers of inception layers and output node
numbers of fully connected layers, we create six inception
based deep neural network variants as shown in Table II,
referred to as Inc-01 to Inc-06, respectively.

(II) The benchmark and complex neural network archi-
tectures: We next evaluate different benchmark neural net-
work architectures, namely VGG16, VGG19, MobileNetV1,
MobileNetV2, ResNet50, DenseNet201, InceptionV3, and
Xception, which are available in the Keras library [16]
and are popularly applied in different research domains.
Compared with the inception based network architectures
used in framework (I), these benchmark neural networks have
a larger footprint and a more complex architecture consisting
of trunks of convolutional layers.
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TABLE III
PERFORMANCE COMPARISON OF PROPOSED DEEP LEARNING FRAMEWORKS.

Inception based Scores Benchmark Scores Transfer learning Scores
Frameworks (Spec./Sen./ICB.) Frameworks (Spec./Sen./ICB.) Frameworks (Spec./Sen./ICB.)
Inc-01 56.3/40.5/48.4 VGG16 70.1/28.6/49.3 VGG14 82.1/28.1/55.1
Inc-02 69.7/31.9/50.8 VGG19 69.7/28.4/49.1 DaiNet19 76.4/26.9/51.7
Inc-03 81.7/28.4/55.1 MobileNetV1 75.5/14.3/44.9 MobileNetV1 64.4/40.3/52.3
Inc-04 84.0/24.8/54.4 MobileNetV2 74.7/16.1/45.4 MobileNetV2 76.0/32.7/54.4
Inc-05 80.5/26.3/53.4 ResNet50 88.0/15.2/51.6 LeeNet24 70.7/30.9/52.8
Inc-06 74.8/30.0/52.4 DenseNet201 71.7/30.3/51.1 Res1DNet30 74.9/26.7/50.8

InceptionV3 70.9/32.2/51.6 ResNet38 71.6/32.2/51.9
Xception 75.7/22.1/48.9 Wavegram-CNN 69.0/38.1/53.5

TABLE IV
THE MLP ARCHITECTURE USED FOR TRAINING EMBEDDING FEATURES.

Setting layers Output
FC(4096) - ReLU - Dr(10%) 4096
FC(4096) - ReLU - Dr(10%) 4096
FC(1024) - ReLU - Dr(10%) 1024
FC(4) - Softmax 4

(III) The transfer learning based network architectures: As
transfer learning techniques have proven effective for down-
stream tasks with a limitation of training data and smaller
categories classified [13], we leverage pre-trained networks
which were trained with the large-scale AudioSet dataset
from [13]: LeeNet24, DaiNet19, VGG14, MobileNetV1, Mo-
bileNetV2, Res1DNet30, ResNet38, Wavegram-CNN. We
then modify these networks to match the downstream task of
classifying the four respiratory cycles of the ICBHI dataset.

In particular, we retain trainable parameters from the first
layer to the global pooling layer of the pre-trained networks.
We then replace layers after the global pooling layer by
new fully connected layers to create a new network (i.e.
the trainable parameters in new fully connected layers are
initialized with random values of mean 0 and variance 0.1).
In the other words, we use a multilayer perceptron (MLP) as
shown in Table IV. This contains FC, ReLU, Dr, and Softmax
layers and is trained using embedding features extracted from
the pre-trained models. Hence, the embedding features are
the feature map of the final global pooling layer in the pre-
trained network.

IV. EXPERIMENTS AND RESULTS

A. Experimental setting for back-end classifiers

Due to use of the spectrum [14] and mixup [15] data aug-
mentation methods, labels are no longer in one-hot encoding
format. Therefore, we use a Kullback-Leibler divergence
(KL) loss shown in Eq. (1) below.

LossKL(Θ) =

N∑
n=1

yn log

{
yn

ŷn

}
+
λ

2
||Θ||22 (1)

where Θ are trainable parameters, constant λ is set initially
to 0.0001, batch size N is set to 100, yi and ŷi denote
expected and predicted results. While we construct deep
learning networks proposed in frameworks (I) and (II) with
Tensorflow, we use Pytorch for extracting embedding fea-
tures and training MLP in the framework (III), since the pre-
trained networks used were built in a Pytorch environment.
We use the Adam method for optimization and train for 100
epochs.

TABLE V
PERFORMANCE COMPARISON OF FUSION STRATEGIES OF INCEPTION

BASED AND TRANSFER LEARNING BASED FRAMEWORKS.
Fusion strategies Spec. Sen. ICB.
Pre-trained VGG14 82.1 28.1 55.1
Inc-03 81.7 28.4 55.1
The early fusion 79.9 30.9 55.4
The middle fusion 87.3 25.1 56.2
The late fusion 85.6 29.0 57.3

B. Performance comparison among deep learning frame-
works proposed

From the experimental results shown in Table III, it can
be seen that generally the low-footprint inception based
frameworks and the transfer learning based frameworks
are competitive and outperform the benchmark frameworks.
Table III records the best ICBHI score of 55.1% from the Inc-
03 framework, matched by the transfer learning framework
using a pre-trained VGG14. The best performance obtained
from the pre-trained VGG14 makes sense as this network
outperforms the other network architectures for classifying
sound events in the AudioSet dataset. Notably, while we use
the same network architecture of MobileNetV1 and Mobi-
netV2 for both benchmark and transfer learning framework,
we see that the latter significantly outperforms the former.
From these results we can conclude that (1) applying the
transfer learning technique on the downstream task of clas-
sifying respiratory cycles is effective; and (2) low-footprint
Inception based networks, focusing on minimal variation
of time and frequency, are effective for respiratory sounds
– outperforming the larger and more complex benchmark
architectures.

C. Early, middle, and late fusion of inception based and
transfer learning based frameworks

As the deep learning frameworks basing on Inc-03 and
transfer learning with the pre-trained VGG14 achieve the
best scores, we then evaluate whether a fusion of results
from these frameworks can help to further improve the task
performance. In particular, we propose three fusion strategies
to compare. In the first and second fusion strategies, referred
to as the early and middle fusion, we concatenate the
embedding feature extracted from the pre-trained VGG14
(e.g. the feature map of the global pooling of the pre-trained
VGG14) with the embedding feature extracted from Inc-
03 to generate a new combined feature. We then train the
new combined feature with an MLP network architecture, as
shown in Table IV. While the feature map of the max global
pooling (MGP) of Inc-03 is considered as the embedding
feature in the first fusion strategy, the feature map of the
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TABLE VI
COMPARISON AGAINST STATE-OF-THE-ART SYSTEMS.

Method Spec. Sen. ICBHI Score
HMM [18] 38.0 41.0 39.0
DT [9] 75.0 12.0 43.0
1D-CNN [17] 36.0 51.0 43.0
SVM [19] 78.0 20.0 47.0
Autoencoder [20] 69.0 30.0 49.0
ResNet [21] 63.2 41.3 52.3
Inception [7] 73.2 32.2 53.2
CNN-RNN [11] 81.0 28.0 54.0
ResNet50 [22] 72.3 40.1 56.2
Our best system 85.6 29.0 57.3

second fully connected layer of Inc-03 (e.g. FC(fc2)) is used
by the second fusion strategy. In the third fusion strategy,
referred to as the late fusion, we use a product fusion of the
predicted probabilities obtained from these inception based
and transfer learning based frameworks. The product fusion
result pf−prod = (p̄1, p̄2, ..., p̄C) is obtained by:

p̄c =
1

S

S∏
s=1

p̄sc for 1 ≤ s ≤ S, (2)

where p̄s = (p̄s1, p̄s2, ..., p̄sC) is the predicted probability
of a single framework, C is the category number and the
sth out of S individual frameworks evaluated. The predicted
label ŷ is determined by:

ŷ = argmax(p̄1, p̄2, ..., p̄C) (3)

Results are compared in Table V, which shows that all
three fusion strategies can enhance performance, improving
ICBHI score by 0.3, 1.1, 2.2 for early, middle and late fusion
respectively. This indicates that embedding features extracted
from the Inception based Inc-03 framework and from the
transfer learning framework with the pre-trained VGG14,
contain distinct and somewhat complimentary features to
describe respiratory cycles.

D. Performance comparison to the state of the art

To compare against the state of the art, we only select
published systems which follow the recommended setting
of the ICBHI challenge [10] with a train/set ratio of 60/40
and no overlapping patient subjects between the two subsets.
These experimental results are shown in Table VI. It can
be seen that the final proposed system using a late fusion
of inception based and transfer learning frameworks outper-
forms the state of the art, recording the best score of 57.3%.
However, the best Sen. score from [17] reports 51.0, which
shows the ICBHI dataset challenging and requires further
research for enhancing the performance.

V. CONCLUSION

This paper has presented an exploration of various deep
learning models for detecting respiratory anomalies from
auditory recordings. We consider three frameworks of deep
learning for this task, encompassing a very wide range
of different networks and architectures, and consider their
fusion, obtained at three different levels. We conduced ex-
tensive experiments using the ICBHI dataset (operating with
ICBHI challenge settings), to compare between networks and
settings. Eventually, we found that our best proposed model

uses a late product-based fusion of Inception-derived and
transfer learning frameworks. The resulting ICBHI score eas-
ily outperforms state-of-the-art published systems, including
many benchmark frameworks, thus validating this application
of deep learning for the detection of respiratory anomalies.
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