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Abstract— Craniosynostosis is a condition associated with
the premature fusion of skull sutures affecting infants. 3D
photogrammetric scans are a promising alternative to computed
tomography scans in cases of single suture or nonsyndromic
synostosis for diagnostic imaging, but oftentimes diagnosis is
not automated and relies on additional cephalometric measure-
ments and the experience of the surgeon.

We propose an alternative representation of the infant’s
head shape created from 3D photogrammetric surface scans
as 2D distance maps. Those 2D distance maps rely on ray
casting to extract distances from a center point to the head
surface, arranging them into a 2D image grid. We use the
distance map for an original convolutional neural network
(CNN)-based classification approach, which is evaluated on a
publicly available synthetic dataset for benchmarking and also
tested on clinical data.

Qualitative differences of different head shapes can be ob-
served in the distance maps. The CNN-based classifier achieves
accuracies of 100 % on the publicly available synthetic dataset
and 98.86 % on the clinical test set.

Our distance map approach demonstrates the diagnostic
value of 3D photogrammetry and the possibility of automatic,
CNN-based diagnosis. Future steps include the improvement of
the mapping method and testing the CNN on more pathologies.

Clinical relevance— The gold standard for the diagnosis of
craniosynostosis is computed tomography imaging. Yet, this
exposes infants to ionizing radiation which should be avoided
due to an increased risk of developing intracranial neoplasms
or leukemia. This contribution proposes a mapping method
to obtain 2D images from 3D head surface scans, enabling a
radiation-free, CNN-based diagnosis of craniosynostosis.

I. INTRODUCTION

Craniosynostosis is a condition caused by the prema-
ture fusion of one or more skull sutures in infants and
has an estimated prevalence of four cases per 10,000 live
births [1]. Craniosynostosis is linked to elevated intracranial
pressure [2] which can reduce neuropsychological develop-
ment. The premature closure of a suture limits the head
growth perpendicular to the suture and causes compensatory
parallel growth leading to characteristic head shapes. During
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diagnosis, physicians perform visual examination, palpa-
tion, cephalometric measurements, and medical imaging e.g.,
computed tomography (CT). CT is the gold standard imaging
method for craniosynostosis diagnosis, but exposes the in-
fants to ionizing radiation. 3D photogrammetric surface scans
provide an inexpensive, radiation-free, and fast diagnostic
tool that might even be used for screening in general medical
practice or pediatric care.

Researchers studied head deformities in terms of shape
characteristics and asymmetry both on CT data [3] and
surface scans [4]. Other studies determined the relationship
between the two domains [5]. Multiple contributions intro-
duced approaches to classify craniosynostosis on CT data [3]
and surface scans [6], [7] and obtained accuracies between
95.7 % and 99.5 %, each on different in-house datasets.

In this contribution we introduce a method to create
a 2D distance map for each scan enabling an automatic
classification for common types of craniosynostosis using
a CNN. We expand on ideas from a mapping approach
concerned with head asymmetry [4] and combine it with ray
casting which is also popular for classification [6]. Compared
to competing classification methods, our approach uses a 2D
image representation as an intermediate step for a CNN.
Our model is the first to be tested on a publicly available
synthetic dataset for benchmarking, enabling comparisons
between different classifiers.

II. MATERIALS AND METHODS

The workflow for the distance map creation and clas-
sification is shown in Fig. 1. We apply ray casting to
extract distances from a center point and arrange them in a
two-dimensional grid, used as an input image for a CNN.
We continue with a description of the three parts of the
schematic.

A. Dataset

We use a synthetic dataset of craniosynostosis patients
created using a statistical shape model developed in our
group in a previous work [7], which is publicly available
on Zenodo [8]. The dataset contains four classes of head
shapes with 100 instances each. We give an overview of
the head shapes in Fig. 2. Three out of four classes show
different types of craniosynostosis (coronal, metopic, and
sagittal synostosis) while the fourth class functions as the
control class constructed from non-synostotic infants.

For the creation of the synthetic samples we refer to [7].
Regarding the clinical data, we considered the original 367
patients with the same classes from which the synthetic
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Fig. 1. Workflow of the distance map creation and subsequent classification.

control coronal metopic sagittal

Fig. 2. Head shapes of the four classes in the dataset. Top row: front view,
bottom row: top view.

dataset was created. We used a standardized protocol, which
had been examined and approved by the Ethics Committee
Medical Faculty of the University of Heidelberg (Ethics
number S-237/2009). The study was carried out according to
the Declaration of Helsinki and written informed consent was
obtained from parents. The age distribution and the number
of subject of each class are presented in Fig. 3. All subjects
diagnosed with craniosynostosis underwent surgical cranial
remodeling of the skull. In contrast, the control class consists
of children without head deformities and children diagnosed
with non-synostotic, positional plagiocephaly.

All clinical scans had been annotated with cephalometric
landmarks by clinical experts. For our contribution, we used
the sellion ps located on the nose as well as the otobasion
superius left and right (posl and posr) located on the ears. The
synthetic instances were derived from the statistical shape
model [8] and are in dense correspondence, meaning that the
point identifiers share the same anatomic meaning. Thus, we
determined the landmark positions on the mean shape and
used the same identifiers across all instances.

B. Distance Map Creation

The ray casting requires a coordinate system shared across
all scans. First, we defined the center point pc as the
midpoint between left and right otobasion superius:

pc =
1

2
(posl + posr) (1)

Fig. 3. Age distributions of the clinical dataset. Parentheses indicate the
number of samples per class.

Second, we define the three axis directions ux, uy, and uz,
where ux is the direction from the center point to the sellion:

ux = ps − pc (2)

uy is the part from the center to the left otobasion superius
orthogonal to ux:

uy = (pobl − pc)− ux
ux · (pobl − pc)

||ux||
(3)

uz is constructed to be orthogonal to the two previous
directions:

uz = ux × uy (4)

The direction vectors [ux,uy,uz]
T are then normalized to

obtain an orthonormal basis [ex, ey, ez]
T:[

ex, ey, ez
]T

=
[

ux

||ux|| ,
uy

||uy|| ,
uz

||uz||

]T
(5)

Third, we defined the ray directions similar to the
horizontal coordinate system. The two angles φ and θ are
comparable to azimuth and altitude and their relation to
the coordinate axes are visualized in Fig. 4. The final ray
directions were determined by uniformly sampling the two
angles φ and θ in the intervals 0 ≤ φ < 2π and 0 ≤ θ < π/2.
By using a spherical coordinate transformation, the direction
d of each ray is given by the following equation:

d =
[
cosφ cos θ, sinφ cos θ, sin θ

]T
(6)
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Fig. 4. Visualization of the angle definitions. Red: coordinate axes, black:
cast ray, yellow: visualized ray in bottom plane, φ: azimuth, θ: altitude.

As many pre-trained CNNs use an input image size of
224 × 224 pixels, we divided each angle interval in 224
equidistant steps. This number is an arbitrary choice which
facilitates the later use of the distance maps for CNNs. For
each ray, we computed the intersection with the triangular
surface mesh. For the intersected faces, we used barycentric
coordinates to determine the exact hit point and computed
the distance to the center points. The distances were stored
in a 2D array, visualized in Fig. 5.

Fig. 5. Left: Visualization of 20 × 20 hit points with equidistant φ and θ.
Right: 224 × 224 ray distances arranged in a 2D distance map.

Before converting the ray distances to an image they were
normalized. We computed mean µ and standard deviation
σ across all distances in each dataset. All distances were
linearly transformed from the interval [µ − 3σ, µ + 3σ]
to the standard grayscale image intensity range [0, 255].
This rescaling in the image domain can be geometrically
interpreted as an isotropic rescaling of all scans by the same
scaling factor, leaving geometric relations between parts of
the head intact.

C. CNN Classification

We chose a pre-trained ResNet18 model over other models
such as VGG11 or GoogleNet as it is a very popular
model which has comparatively few trainable parameters.
We replaced the final layer to match the number of classes
and performed two experiments: first on synthetic data and

second on clinical data. Both CNNs were trained using the
same hyperparameters which we present in Table I.

• Synthetic dataset:
The training setup for the first CNN using the publicly
available synthetic dataset [8] enables benchmarking
across different groups. We used stratified 10-fold cross-
validation.

• Clinical dataset:
The second CNN was trained on the clinical dataset,
also using a stratified 10-fold cross-validation for train-
ing and test data, so the same train-test class imbalance
was shared among folds. To prevent cross-over, no
synthetic data was used.

TABLE I
CNN HYPERPARAMETERS FOR SYNTHETIC AND CLINICAL DATA.

Training approach Fine-tuning of pre-trained ResNet18
Optimizer Adam
Learning rate α = 10−3

Weight decay γ = 10−1 each 10 steps
Number of epochs n = 100

III. RESULTS

A. Distance maps

We compare the resulting distance maps qualitatively. As
an example, we present the distance maps for the mean
shapes in Fig. 6 as the most representative cases. Differences
between the classes are mildly visible. The sagittal and the
metopic mean shape show two dark areas on the left and
right side of the image, separated by a brighter area in the
middle. In contrast, the control and coronal model show one
larger, dark region. The two ears are clearly visible for all
four cases as brighter curved shapes at the bottom of the
image. All images have a top-to-bottom color gradient from
bright to dark gray.

B. Classification

For the synthetic data, the accuracy of training and test
set was 100 %. Regarding the clinical data, the final classi-
fication result on the test set was 98.4 %. We show the full
confusion matrix including per-class sensitivities and per-
class specificities in Table II.

TABLE II
CONFUSION MATRIX FOR THE CLINICAL DATASET.

True class Predicted class Sensitivity Specificity

Control Coronal Metopic Sagittal

Control 177 1 0 0 0.994 0.979
Coronal 2 20 0 0 0.909 0.997
Metopic 0 0 55 1 0.982 1.000
Sagittal 2 0 0 109 0.982 0.996

Total accuracy 0.984
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Fig. 6. Distance maps of the mean shapes of each class. For the image axes, we refer to Fig. 5. A brighter color indicates a larger distance from the
center point. Intensity translated to real-world distances d = 25.80mm + npixel · 0.53mm.

IV. DISCUSSION

The 2D distance maps show mild differences between
the different pathological classes, implying that they enable
a quantification of head shape. As such they are currently
difficult to interpret and might be extended by other metrics
such as asymmetry [4] or curvature. Additionally, the color
gradient in the resulting images indicates that the distances
for rays with θ ≈ π/2 lead to larger distances than rays with
θ ≈ 0. As a consequence, the intensity range is not used
to its full capacity yet. By moving the center point closer
to the tip of the head (in positive direction of the y-axis),
the extracted distances would have a smaller range, making
better use of the 255 intensity values.

Our approach uses isotropic scaling for a equal rescaling
of all head geometries. This requires a large intensity range
leading to poor contrast in a single image. To improve detail,
each distance map could be rescaled individually to [0, 255].
This has the disadvantage of disregarding the encoded infor-
mation about the real-world size of the head and assumes
that size is not a relevant classification parameter.

While using the two independent angles φ and θ as the two
image coordinates enables the image to be easily used as an
input for CNNs, this approach comes with the disadvantage
that the hit points on the tip of the head are close to each
other. For θ = π/2, the same hit point is sampled multiple
times regardless of φ. However, our main motivation to
choose this approach was that the spatial relationship of
the geometry is retained. The filter kernels of the CNN
effectively take neighboring regions of the head into account.
Retaining the spatial relationship is generally considered one
of the main advantages of CNNs. However, dense neural
networks also proofed to be capable of distinguishing head
shapes [6], despite ignoring the spatial relationships of the
rays.

Regarding the classification, the datasets were relatively
small and no data augmentation was performed. Both a
larger dataset and data augmentation would very likely be
beneficial to the robustness of the classifier. A comparison
of different CNNs using the same the distance maps should
be considered as well as a comparisons with competing
classification methods on the same dataset.

One limitation of our current approach is the highly
non-interpretable usage of the ResNet18. Image-based or
morphology-based classifiers should be tested alternatively.

V. CONCLUSIONS
We introduced a method to create distance maps enabling

a visualization of the head shapes in a 2D image. We showed
that a CNN was capable of classifying different head shapes
on both synthetic and clinical data. This demonstrates that
3D photogrammetric scans have diagnostic value and might
aid physicians to assess and diagnose head deformities such
as craniosynostosis. Future work will focus on improving
the algorithm, adding more pathologies, and comparing the
approach to competing methods.
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