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Modality Bank: Learn multi-modality images across data centers
without sharing medical data

Qi Chang!, Hui Qu', Zhennan Yan?, Yunhe Gao'!, Lohendran Baskaran® and Dimitris Metaxas'

Abstract— Multi-modality images have been widely used
and provide comprehensive information for medical image
analysis. However, acquiring all modalities among all institutes
is costly and often impossible in clinical settings. To leverage
more comprehensive multi-modality information, we propose
privacy secured decentralized multi-modality adaptive learning
architecture named ModalityBank. Our method could learn a
set of effective domain-specific modulation parameters plugged
into a common domain-agnostic network. We demonstrate
by switching different sets of configurations, the generator
could output high-quality images for a specific modality. Our
method could also complete the missing modalities across all
data centers, thus could be used for modality completion
purposes. The downstream task trained from the synthesized
multi-modality samples could achieve higher performance than
learning from one real data center and achieve close-to-real
performance compare with all real images.

[. INTRODUCTION

It is widely known that a sufficient amount of data plays a
pivotal role in training a deep learning model [1]. However,
we still face big hurdles in terms of medical data sharing and
collaboration for several reasons. Apart from the fact that
the privacy policies such as HIPAA [2], [3] and GDPR [4],
[5] restrict the sharing of the patients’ sensitive data, the
heterogeneous nature of medical images by itself makes
it more difficult to collaborate and analyze. Due to the
different clinical acquisition protocols [6], [7] or various
practical reasons across hospitals and countries, gathering
all modalities among all institutes is a nontrivial task and
sometimes even impossible. As a result, such discrepancies
hinder the machine learning model from learning the across-
modality images [8], [9] and ultimately hurt the performance.

Multi-modality images, including MR imaging with
several acquisition parameters, non-contrast/ contrast
CT[10], [11], Ultrasound [12], and PET(positron emission
tomography)[13], can help to extract features from different
perspectives and provide comprehensive information in
medical image analysis. Nowadays many studies about
medical cross-modality translation focus on image-to-image
modality adaptation [14], [15], and aiming at improving
one single task performance like segmentation [16], [17]
or classification[18]. However, it is still challenging to
collect data and train all pairs of modality translations.
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Therefore, a generative model that can adaptively generate
multi-modality images for various downstream tasks’ is
worth exploring.

A good way of leveraging the private sensitive images
is Federated Learning [19], [20], [21], [22]. The federated
learning brings code to the patient data owners and only
shares intermediate model training updates among them.
However, different sites may have misaligned image modal-
ities, which raises a realistic challenge for Federated Learn-
ing. Some recent methods [23], [24] adopt a Decentralized
Generative Adversarial Network(AsynDGAN) to address
both sensitive data and continuous learning challenges. This
architecture trains a central generator from the distributed
discriminators across private data centers. The well-trained
generator can act as an image provider to synthesize images
for downstream tasks like segmentation or classification.
Though the AsynDGAN could learn to generate several
image modalities [25], the number of modalities is limited
by presetting the number of output channels of the generator.

Inspired by the above methods, we propose a new method
on multi-modality adaptive learning with a privacy-secured
solution, ModalityBank. The ModalityBank can not only
generate multi-modality images for some downstream tasks
but also be extended easily for more modalities. Briefly, our
contributions lie in three folds: 1) Proposed a privacy-secured
decentralized multi-modality adaptive learning architecture,
ModalityBank. It learns a common domain-agnostic network
and a set of effective domain-specific modulation parameters.
We demonstrate by switching different sets of configurations,
the generator could output high-quality images for a specific
modality. 2) ModalityBank can synthesize realistic multi-
modality images and complete the missing modalities across
data centers. 3) The downstream task trained from the
synthesized multi-modality samples could achieve higher
performance than learning from real data of a single center
and achieve close-to-ideal performance compared with using
all real images from all sites.

II. METHODS

Our proposed ModalityBank is comprised of one domain-
specific modulation parameters bank, one central genera-
tor and multiple distributed discriminators located in the
different medical centers. In the following, we present the
parameters bank, and then network architecture.

A. Domain-specific modulation parameters bank

The generation of multi-modality data can be formulated
as a style modulation task. Inspired from the style-transfer
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Fig. 1. The overall structure of ModalityBank. It contains three parts: sets of parameters I';,B;,b; for modality 7, a central generator G, multiple distributed
discriminators D1, Da, - - - , Dy in each medical entity. G takes a task-specific input (segmentation masks in our experiments) and outputs multi-modality
synthetic images by different adaptive parameters. Each discriminator learns to differentiate between the real images of current medical entity and synthetic
images from G. The well-trained G is then used as an image provider to train a task-specific model (segmentation in our experiments).

literature which alter the statistics of the features by firstly
normalizing it with it’s own mean and variance then perform-
ing affine transformation using the style image’s mean and
variance [26], we propose to use a modified adaptive filter
modulation (mAdaFM)[27] to modulate the statistics of the
weight in convolutional kernels to synthesis multi-modality
images, even with severe style difference.

To be precise, we introduce the reparameterizations
of domain-specific modulation parameters bank as &
{Fh Bl, b1, FQ, BQ, bQ, cee 7Fn7 Bn, bn}, 1---n indicates n
types of modality images. The original convolutional layers:

y = fCOn’U(x;W7 bconv) (1)
could be present as:
yi = fconv(x; Wi7 Bi)ai € [L n]
. -M . 2)
Wz:FIGWT'i_BM bi:bi+bconv

where M, S € RCut*Cin denote the mean and standard
deviation of the weight in the convolutional kernel, respec-
tively. The I', B € R%ut*Cin and beogn, € REout represent
learnable modality-specific parameters. The generator was
first pre-trained on one initial modality and then the W and
b of each convolutional/deconvolutional layer are fixed. The
learnable parameters I';, B;, b; are style parameters assigned
to each modality ¢, and is trained to transform the fixed
convolutional kernel to W, b to synthesis images for the
target modality.

The process of multi-modality synthesis is shown in Fig.
[1} the pretrained generator is freezed, and the learnable style
parameters (v, 3, becony) in mAdaFM are used to modulate
the Conv/Deconv layers. Therefore, we only need to store
one generator along with a small set of style paramters for
the synthesis of multi-modality images.

B. Network architecture

Our proposed ModalityBank is comprised of one domain-
specific modulation parameters bank described in section [[T]
[Al one central generator and multiple distributed discrim-
inators located in different medical entities. An overview
of the proposed architecture is shown in Figure [} The
central generator, denoted as Generator, takes task-specific
inputs (e.g. segmentation masks in our use case) and gen-
erates synthetic images to fool the discriminators. Let k
denote the number of medical data centers that are involved
in the learning framework. Our architecture ensures that
Discriminatory, deployed in the k-th medical entity only
has the access to its local dataset, while not sharing any real
image data outside the entity. During the learning process,
Only synthetic images, masks, and losses are transferred
between the central generator and the discriminators. Such
design naturally complies with privacy regularization and
keeps the patients’ sensitive data safe.

After training, the generator can be used as an image
provider to generate training samples for some down-stream
tasks. Assuming the distribution of synthetic images is same
or similar to that of the real images, we can generate one



unified large dataset which approximately equals to the union
of all the datasets in medical entities. In this way, all private
image data from each entity are utilized without sharing. In
order to evaluate the synthetic images, we use the generated
samples in segmentation tasks to illustrate the effectiveness
of proposed ModalityBank.

III. EXPERIMENTS

In this section, we apply ModalityBank on a real MRI
dataset, BraTS18, and evaluate it in two different settings.
In the first setting, we use three heterogeneous data centers
with three different modalities. Secondly, we explore the
ModalityBank’s adaptability to complete the missing modal-
ity across data centers. With different settings among the data
centers and modalities, we could evaluate the performance
of ModalityBank towards a real-world scenario. We pre-
trained the network based on the images from the different
dataset(BraTS18 LGG). Without loss of generality, we adopt
image segmentation as the down-stream task described in this

paper.

A. Dataset

The BraTS2018 dataset comes from the Multimodal Brain
Tumor Segmentation Challenge 2018 [28], [29]. All images
are acquired from the three different sources: (1) The Center
for Biomedical Image Computing and Analytics (CBICA)
(2) The Cancer Imaging Archive (TCIA) data center (3)
Data from other sites (Other). Each case has four types of
MRI scan modalities (T1, Tlc, T2 and FLAIR) and three
types of tumor sub-region labels. All modalities have been
aligned to a common space and resampled to Imm isotropic
resolution [30]. The 210 HGG cases in the challenge training
set are split into train (170 cases) and test (40 cases) sets in
our study since we have no access to the test data.

In our experiments, we evaluate our method to learn the
distribution of all HGG cases across different data centers.
In the GAN synthesis phase, all three labels are utilized to
generate fake images. For segmentation, we focus on the
whole tumor region (union of all three labels). The image
dataset used in each experiment share one or multiple modal-
ities. Without loss of generality, we picked T1+T2+FLAIR,
T1c+T2+FLAIR modalities respectively for the following
two experiments.

B. Experiment on multi-modal datasets

In this experiment, we show that our ModalityBank can
learn the distributions and generate realistic multi-modality
medical images across heterogeneous data centers. Specif-
ically, the generator can generate realistic three channels
(T1, T2, Flair) multi-modality images by learning from three
heterogeneous data sources.

The training data is split into 3 subsets based on the
different sources of the data described in [28]: (1) Real-
CBICA, 88 cases collected from CBICA. (2) Real-TCIA,
102 cases collected from TCIA. (3) Real-Other, 20 cases
collected not from CBICA nor TCIA.

The brain tumor segmentation results on the test set are
shown in Table [l The model trained using all real images
(Real-All) is the ideal case scenario that we can access all
data. It is our baseline and achieves the best performance.
Compared with the ideal baseline, the performance of the
models trained only using data in each medical entity (Real-
CBICA, Real-TCIA, Real-Other) degrades a lot. We use the
FedML.ai library [31] for FedML-All experiment to train the
segmentation model. It can make use of real images from all
three subsets thus its performance is lightly lower than Real-
All

AsynDGAN and our ModalityBank all produce synthetic
images to train the segmentation model but differ in the way
of training the GAN. Our ModalityBank and AsynDGAN
both train the GAN in a distributed setting that is close to the
real-world scenario. ModalityBank outperforms AsynDGAN
because the domain-specific modulation parameters bank can
better handle different modalities. Our method can learn the
information of all subsets during training, although the gener-
ator doesn’t ”see” the real images. Therefore, it outperforms
all models learn using a single subset. Some examples of
synthetic images from our method and corresponding real
images are shown in Fig. 2] Worth noticing that the number
of one modality configuration parameters is 2.5M while the
number of all frozen source parameters is 21M. With smaller
trainable parameters, the ModalityBank could learn and store
the modalities configuration more efficiently.

C. Experiment on missing-modality datasets

In this section, we show that our ModalityBank can
learn the misaligned modality distribution and generate the
complete multi-modality images. Specifically, the generator
could generate realistic three channel(T1c, T2, Flair) multi-
modality images while the real datasets don’t provide one of
the three modalities.

The training data is split into 3 subsets based on the
different sources of the data described in [28] and skip one of
the modality described below:(1) Real-CBICA(n/a:T2) skip
T2 modality. (2) Real-TCIA(n/a:Flair) skip Flair modality (3)
Real-Other(n/a:T1c) skip T1c modality.

The brain tumor segmentation results about modality
completion are shown in Table Overall, segmentation
performance dropped when the segmentation network only
learns from the real data center with missing modality
while completed multi-modality images generated by Modal-
ityBank could help the segmentation network to achieve
much higher results. Our method has the best performance
compared with the real images from one data center and the
federated learning method. Though FedML-All could learn
the real distribution across all data centers, the architecture
couldn’t adapt to the discrepancy of missing modalities,
therefore it has the worse performance.

By providing the missing modality images for each of
the datasets, the completed dataset would also outperform
the counterpart of the real dataset. We also notice that T2
and Flair may contribute more to the whole tumor segmen-
tation task since learning from the smallest subset Real-
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multi-modality images of ModalityBank. (¢)-(g) Real multi-modality images.
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The examples of multi-modality synthetic brain tumor images from the ModalityBank. (a) The input of the ModalityBank. (b)-(d) Synthetic

TABLE I
BRAIN TUMOR SEGMENTATION RESULTS OVER THREE HETEROGENEOUS AND MULTI-MODAL (T1+T2+FLAIR) SUBSETS.

Method Dice(%) T Sens(%) T Spec(%)1 HD95|
Real-All 87.9+8.5 85.6+13.5 99.8+0.3 10.51£5.93
FedML-All 87.3+8.4 85.22+14.9 99.8+0.2 12.6+0.2
Real-CBICA 78.9+£19.6 75.7+23.1 99.7+0.2 16.45+9.89
Real-TCIA 77.2+12.1 82.1£16.1 99.3+0.4 12.68+4.95
Real-Other 80.4+12.9 80.7+£19.4 99.5+0.3 23.33%£14.0
AsynDGAN 82.0+17.6 81.9+22.0 99.5+0.6 13.93£10.0
ModalityBank  85.2+10.9 82.4+17.1 99.7+0.2 14.66+£9.92
TABLE 11

BRAIN TUMOR SEGMENTATION RESULTS OVER THREE DATASETS WITH MISSING MODALITY (T1C/T2/FLAIR)

Method Dice(%) T  Sens(%) T  Spec(%) T HD95 |

Real-CBICA(n/a:T2) 78.0+23.4  74.5%£25.9 99.7+£0.2 15.47+14.2
Real-TCIA(n/a:Flair) 76.7£153  72.8+420.8 99.5+0.8 15.64+8.75
Real-Other(n/a:T1c) 80.9+14.1  79.3£18.8 99.6+0.2 16.74+9.41
FedML-All 82.9+8.7 90.2+13.1 99.2+0.7 21.88+11.52
ModalityBank 85.8£10.9  83.8+£16.6 99.7+0.2 14.71+£7.99
Completed-CBICA (syn:T2) 83.0£14.6  79.9+19.0 99.7+0.2 15.64+9.93
Completed-TCIA (syn:Flair)  85.5+£104  83.3x14.3 99.7+0.1 15.0248.35
Completed-Other (syn:T1c) 80.9+15.3 80.6+19.1 99.6+0.2 16.93£11.8

Other(n/a:T1c) achieves higher performance compared with
learning from the other subsets with missing T2 or Flair. As a
result, there is no significant difference between Completed-
Other (syn:T1c) and Real-Other(n/a:T1c) by introducing the
synthetic T1c images.

We show some examples of synthetic images and corre-
sponding real images in Fig. 3] In this figure, the 3 sections
are corresponding to three data centers, respectively. The col-
umn of the real image labeled as NA (not available) indicates
the missing modality in that center during the training of

ModalityBank. The first observation is that our method can
still learn to generate multiple modalities when centers have
missing modality. We also notice that the synthetic images
may not have the same global context as the real images,
for example, the generated brains may have different shapes
of ventricles. This is due to the lack of information about
other tissues outside the tumor region in the input of the G.
On one hand, this variation is good for privacy preservation.
On the other hand, for missing modality completion, the
synthetic modality may have a different context from the
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Fig. 3. The examples of synthetic brain tumor images by the ModalityBank after learning from multiple missing-modality datasets. ‘NA’ column indicates

the missing modality during training.

real modalities. However, this limitation seems not critical
to our segmentation task, since the results in Table [lI| show
clear improvement after the missing modality completion.

D. Ablation Study

In our ablation study, our network is pretrained from
different datasets: a. BraTS18 LGG (lower grade glioma)
dataset with Tlc modality. b. BraTS18 HGG (high grade
glioma) dataset with Tlc modality. c.M&Ms (Multi-Centre,
Multi-Vendor & Multi-Disease) Cardiac Image Segmentation
Challenge dataset.

The results clearly show the ModalityBank can achieve a
better performance with flexible types of pre-trained model.
The pre-trained model extract useful features rather than the
prior knowledge which can be used in the target domain.

IV. CONCLUSION AND FUTURE WORK

In this work, we proposed a privacy secured decentral-
ized multi-modality adaptive learning architecture named
ModalityBank. By applying multiple domain-specific mod-
ulation parameters, our method demonstrated improving

TABLE III
ABLATION STUDY FOR DIFFERENT PRE-TRAINED MODEL

Method Dice(%) 1T Sens(%) T Spec(%) T HD95 |
Real-CBICA 78.04£23.4  74.5£25.9 99.7+0.2  15.47+14.2
Real-TCIA 77.2+12.1 82.1+16.1 99.3x04  12.68+4.95
Real-Other 80.4+12.9 80.7£19.4  99.5+0.3  23.33x14.0
ModalityBank Pre-trained on

BraTS18 LGG 85.2+10.9 82.4+17.1 99.7#0.2  14.66+£9.92
BraTS18 HGG 84.4+14.9 81.2#17.9 99.8+0.2 13.95+13.07
M&Ms 84.0£12.0 80.7£17.0 99.7+0.2  18.32+12.4

multi-modality image quality and higher performance of the
downstream task. In addition, we showed that ModalityBank
is an efficient way to complete missing modalities and
thus unifies the medical images from different data centers
with various modalities. It’s also worth to mention that we
choose the different sets of modalities in two experiments to
demonstrate the generality of the proposed method. In future,
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