
  

 

Abstract— Microsatellite instability (MSI) is a clinically 

important characteristic of colorectal cancer. Standard 

diagnosis of MSI is performed via genetic analyses, however 

these tests are not always included in routine care. 

Histopathology whole-slide images (WSIs) are the gold-standard 

for colorectal cancer diagnosis and are routinely collected. This 

study develops a model to predict MSI directly from WSIs. 

Making use of both weakly- and self-supervised deep learning 

techniques, the proposed model shows improved performance 

over conventional deep learning models. Additionally, the 

proposed framework allows for visual interpretation of model 

decisions. These results are validated in internal and external 

testing datasets.  

I. INTRODUCTION 

Microsatellite instability (MSI) is a state of genetic 

hypermutation caused by defects in the mismatch repair 

system. It occurs in roughly 15% of all colorectal cancers [1]. 

MSI is clinically relevant in colorectal cancer as tumors 

expressing this pattern have shown the highest response rates 

to immunotherapies as well as improved overall survival [2]. 

MSI can be determined using genetic analyses [3]. However, 

these analyses are often limited to larger tertiary care centers 

and may add additional time and cost during diagnosis [4, 5]. 

Manual inspection of hematoxylin and eosin-stained 

(H&E) tissue slides remains the gold-standard in solid-tumor 

cancer diagnosis. With the adoption and validation of 

digitizing these slides as whole-slide images (WSIs) for 

manual examination [6], rich data are available for 

computational analyses beyond simple diagnosis. In recent 

years, deep learning models have been developed and applied 

to WSI analysis for a variety of tasks including mitosis 

detection, survival prediction, and predicting MSI [4, 7-10]. 

These studies have shown promising results in using deep 

learning models to objectively determine cancer 

characteristics from WSIs.  

Histology WSIs are large (upwards of 100,000 × 100,000 

pixels), so it is necessary to tile the WSI into smaller images. 

Thus, for each patient, a collection of tile instances represents 

the full WSI. MSI is a patient-level attribute, and therefore the 
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label is associated with the entire WSI. Conventionally, each 

tile will inherit the slide-level label. However, not all regions 

of the WSI are informative of MSI status. Pathologic 

indicators associated with MSI include presence of mucin, 

poor or undifferentiated histology, and presence of tumor 

infiltrating lymphocytes (TIL) [11]. Due to intra-tumor 

heterogeneity, it is unknown which tiles will contain these 

informative features without prior annotation. Therefore, 

assigning the slide-level label to each tile is imprecise and can 

introduce error into training. One of the solutions to this is 

weakly-supervised learning, where the assumption of noisy or 

imprecise labels is incorporated into model training. Previous 

studies have used weakly-supervised learning for prediction 

of gestational age from placental biopsies and overall survival 

prediction from tumor histology slides [12, 13]. 

 Due to the difficulty of curating annotations for histology 

datasets and the limited availability of labeled data, it is also 

difficult to train a model to extract meaningful representations 

of WSIs. One solution to this is to use self-supervised learning 

(SSL), where the data itself provides the supervision. In SSL, 

a model is trained to generate representative embeddings of 

the input data without the use of label information. Several 

studies have shown the benefit of using SSL to train models 

for downstream tasks [14, 15].  

To overcome the challenge of noisy labels and the 

challenge of representation learning, we propose a model that 

integrates SSL into a weakly-supervised learning framework. 

Specifically, our model uses attention-based multiple instance 

learning with an auxiliary contrastive representation loss to 

predict MSI in colorectal cancer. Code is available at 

www.github.com/leibyj/WSI_attention_learning. 

II. MATERIALS AND METHODS 

A. Deep Learning for Histopathological Analysis 

Due to the large size of histology WSIs and the restrictions 
of input dimension for deep learning models, it is necessary to 
tile the WSI into smaller images to be used as model input. In 
this study, the tumor regions of WSIs were segmented into 
non-overlapping tiles of size 224 × 224 pixels. 
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B. Multiple Instance Learning 

Multiple instance learning (MIL) is a weakly-supervised 

learning framework where instead of assigning a label to each 

instance, the instances are grouped into collections, bags, and 

each bag is assigned a label [16]. Thus, the individual label of 

each instance within a bag is unknown. This framework is 

well-suited for WSI analysis, as often the label is attributed to 

the full slide and needs to be inherited by the tiles, leading to 

potentially noisy labels. By forming bags of instances that 

inherit the label, the noise is reduced under the assumption 

that at least one instance in the bag is informative of the true 

slide-level label. 

A recently proposed method to aggregate instance-level 

data into a bag-level representation is attention-based pooling 

[17]. Under this framework, a feature embedding and a 

learnable attention weight are generated for each instance in 

a bag. The attention-weighted summation of all instance 

embeddings then forms the aggregated bag representation. 

The bag representation is finally input into a classifier. 

C. Contrastive Representation Learning 

Contrastive learning is a form of SSL in which a model is 

trained to map data to informative embeddings by 

maximizing the similarity between certain embeddings and 

minimizing the similarity between others [18]. A recent 

framework was proposed that defines a simple model for 

contrastive learning of image representations [19]. It relies on 

extensive data augmentation to generate two correlated views 

(a positive pair) of a given datapoint. For each positive pair of 

samples (𝑖, 𝑗) and their vector embeddings (𝑧𝑖 , 𝑧𝑗), the loss 

function is defined as: 

 ℓi,j = −log
exp(sim(𝑧𝑖,𝑧𝑗)/τ)

∑ 𝕝[𝑘≠𝑖]
2𝑁
𝑘=1 exp(sim(𝑧𝑖,𝑧𝑘)/τ)

 , 

where 𝕝[𝑘 ≠ 𝑖] ∈ {0,1} is an indicator function that evaluates 

to 1 iff 𝑘 ≠ 𝑖, and τ is a temperature parameter. 𝑠𝑖𝑚(∙, ∙) 

represents a similarity function, i.e. cosine similarity.  

D. Proposed Model 

Our model employed both MIL and contrastive 
representation learning. The model input consists of a bag of 
tiles, 𝒕 = (𝑡𝑖, … , 𝑡𝑏), for a bag size 𝑏. The proposed 
architecture consists of a feature extraction network, an 
attention sub-network, a weighted aggregation function, and a 
classifier (Fig. 1). Th e feature extraction network is the 
VGG19 architecture with parameters pretrained on ImageNet 
[20, 21]. The fully connected layers were removed and 
replaced with a single layer that encodes the feature map, 𝑓𝑖. 
An intermediate convolutional output is additionally used as 
input into the attention sub-network [12, 17]. This network 
consists of an average pooling layer, followed by two fully 
connected layers with rectified linear unit (ReLU) activation 
functions and outputs a single linear node, the attention score 
𝑎𝑖. All tiles in a bag generate feature maps 𝒇 = (𝑓𝑖, … , 𝑓𝑏) and 
attentions 𝒂 = (𝑎𝑖 , … , 𝑎𝑏). To generate the bag-level 
representation, the feature maps and attentions are pooled into 

an aggregate feature map, 𝑓̅ =
𝑎𝑇𝑓

∑ 𝑎
. The aggregate feature map 

is finally input into a classifier network consisting of two fully 
connected layers with ReLU activations. The output is a single 

node using the sigmoid activation function representing the 
probability, �̂�, of the bag being labeled as MSI. The bag-level 
loss function is the binary cross-entropy loss: 

 ℒ𝑏𝑐𝑒 = −
1

𝑁
∑ 𝑦𝑖log�̂� + (1 − 𝑦𝑖)log (1 − �̂�)𝑁

𝑖=1 . (2) 

 A recently proposed method adapts the contrastive 
representation learning loss function (1) to an MIL framework 
[14, 19]. Instead of performing data augmentation to generate 

positives pair embeddings of data, (𝑓𝑖, 𝑓�̅�) is treated as positive 

pair where 𝑓𝑖 is an instance-level feature map, and 𝑓�̅� is the 

associated bag-level aggregate feature map. Here, the instance 
feature maps of tiles within a bag and the associated aggregate 
feature map act as a pseudo-augmentation. N is the total 
number of tile instances and B is the number of bags in a 
minibatch. The resulting contrastive loss function is: 

 ℒcon = −
1

𝑁
∑ log

exp(sim(𝑓𝑖,�̅�𝑗)/τ)

∑ 𝕝[𝑘≠𝑗]
𝐵
𝑘=1 exp(sim(𝑓𝑖,�̅�𝑘)/τ)

𝑁
𝑖,𝑗=1  .   

Our model training combined the cross-entropy (2) and the 
MIL contrastive loss (3), with τ = 0.5, into a single loss 
function. The model was trained end-to-end via stochastic 
gradient descent, with a bag size of eight and a batch size of 
twelve. 

E. Datasets and Experimental Design 

This study used datasets from The Cancer Genome Atlas 

Program (TCGA) and Pathology AI Platform (PAIP) [22, 23]. 

The WSIs from the TCGA colorectal cancer cohort were 

previously split into training and testing datasets (70% and 

30%), and tiles were extracted and preprocessed to size 

224×224 from the tumor region of each WSI [4]. The TCGA 

training dataset consists of 39 and 221 MSI and microsatellite 

stable (MSS) patients, respectively. The TCGA testing dataset 

consists of 26 MSI and 74 MSS patients. The PAIP dataset 

consists of 12 MSI and 35 MSI patients, and the tumor region 

of each WSI was also segmented into non-overlapping tiles of  

size 224×224. There were 700 tiles extracted from each WSI 

on average. 

To evaluate the performance of our proposed model, we 

performed five-fold cross-validation within the TCGA 

training dataset. The hold-out fold was used to determine 

early stopping. Each model was then used to predict MSI 

status in the TCGA testing dataset. Patient level probabilities 

were calculated as the median probability of all bags created 

from the patient WSI. 

Additionally, we retrained the model using the entire 

TCGA training dataset for the optimal number of epochs as 

determined by the cross-validation experiment. This model 

was then used to predict MSI status in the TCGA testing 

dataset as well as the external PAIP validation dataset. 

III. RESULTS 

To evaluate our proposed model, we compared it to two 

baseline models—VGG19 and ResNet18 [24], both with 

parameters pretrained on ImageNet and finetuned during 

training. These models were trained under a fully supervised 

learning framework. Additionally, we compared our model 

with and without the use of the contrastive loss function. 
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A.  Model Performance 

Five-fold cross-validation was performed in the TCGA 

training dataset, and the resulting models were used to predict 

MSI in the TCGA testing dataset, shown in Table I. The 

proposed model outperforms both baseline models in terms of 

area under the receiver operating characteristic curve (AUC) 

and the area under the precision-recall curve (AUPRC). We 

found that the addition of the contrastive loss function further 

improved AUC. 

The final model was trained using the entire TCGA 

training dataset for the optimal number of epochs determined 

in cross-validation. The performance was evaluated in the 

internal TCGA testing set and the external PAIP dataset 

shown in Table II. We also see improvements in both 

performance metrics with the addition of attention-based 

aggregation. In the external dataset, we see that the inclusion 

of the contrastive loss leads to the top performing model.  

B. Interpretability 

With our proposed model we can visually interpret the 
informative tumor regions associated with outcome by 
analyzing the learned attention scores for each tile. For a well- 
predicted MSI patient, Fig. 2 shows an overlay of the tile 
attention score heatmap with the original WSI. The tiles with 
the highest attention scores from well-predicted MSI patients 
show previously known histologic features associated with 
MSI, including presence of mucin and stromal TIL (Fig. 2). 

IV. DISCUSSION 

We proposed a method integrating self-supervised learning 

into a multiple instance learning framework for prediction of 

microsatellite instability from histology WSIs.  

TABLE I.  FIVE-FOLD CROSS-VALIDATION PERFORMANCE 

 

 

 

 

 

 

 

 

 

 

 

TABLE II.  INTERNAL AND EXTERNAL DATASET PERFORMANCE 

 

We trained and evaluated our model using WSIs from the 

TCGA and PAIP colorectal cancer datasets. We compared our 

model to conventional fully supervised learning models. 

We found that MIL outperformed fully supervised 

learning in both the internal and external datasets. By using 

an attention-weighted aggregation scheme, our model 

overcame intra-tumor heterogeneity by inherently learning 

which regions of the tumor were most informative of the 

outcome. Additionally, through learning attention scores, we 

can visually interpret model decisions. We found that the top-

ranking tiles for MSI patients consisted of mucin and stromal 

TIL, which have previously been shown to be associated with 

MSI [11].  Thus, our model was able to effectively focus 

attention on important regions without the use of prior 

annotation. This is important in developing models for 

histopathological analysis as curating fine-grained 

annotations for WSIs is labor-intensive.  

To learn meaningful embeddings of the data, we included 

a contrastive representation loss function in model training. 

SSL is especially crucial in biomedical image analysis, as it 

does not rely on labelled or annotated data, which is often 

limited. Additionally, many image models are pretrained 

using ImageNet, which does not include data resembling 

biomedical images [21]. Therefore, this type of self-

supervised technique allowed for our model to learn improved 

representations of the data, and ultimately improve overall 

performance. We combined the contrastive representation and 

the weakly-supervised loss functions to jointly learn 

Model AUC AUPRC 

VGG19 Baseline 0.822 (0.02) 0.624 (0.05) 

ResNet18 Baseline 0.828 (0.01) 0.689 (0.01) 

VGG19 + Attention 0.861 (0.01) 0.729 (0.02) 

VGG19 + Attention + Contrastive  0.864 (0.01) 0.690 (0.04) 

Data Model AUC AUPRC 

TCGA 

 
VGG19 Baseline 0.824 0.638 

ResNet18 Baseline 0.825 0.684 

VGG19 + Attention 0.821 0.707 

VGG19 + Attention + Contrastive  0.876 0.671 

PAIP 
 

VGG19 Baseline 0.770 0.512 

ResNet18 Baseline 0.686 0.434 

VGG19 + Attention 0.795 0.629 

VGG19 + Attention + Contrastive  0.876 0.793 

 
Figure 1. Proposed model overview. The tumor regions of WSIs are segmented into tiles and placed into bags as model input. The model consists of a 

feature extraction network, an attention sub-network, attention-weighted aggregation 𝑓̅, and a classifier network. 

 

t = (t1,…,tb)

Whole-slide image Tumor mask

Attention sub-network

f = (f1,...,fb)

convolutional

max pooling

fully connected
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Feature extraction network

a = (a1,...,ab)

f
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informative embeddings and predict outcomes in an end-to-

end manner. 

Deep learning models for histopathological analysis show 

great promise for improving the objectivity of information we 

can gather from WSIs. These types of models can serve as 

useful tools in clinical settings by assisting pathologists in 

histopathological assessments. Robustness and 

interpretability will be critical in future research to develop 

translational models. Thus, further studies are warranted to 

validate our model in additional independent cohorts.  
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Figure 2. Heatmap showing tile attention scores for a well-predicted 
MSI patient, darker colors show higher attentions assigned to those 

regions. Example top ranked tiles showing features associated with MSI. 
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