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Abstract— Seizures frequently occur in paediatric 

emergency and critical care, with up to 74% being sub-clinical 

seizures making detection difficult. Delays in seizure detection 

and treatment worsen the neurological outcome of critically-ill 

patients. Gold-standard seizure detections using multi-channels 

electroencephalograms (EEG) require trained clinical 

physiologists to apply scalp electrodes and highly specialised 

neurologists to interpret and identify seizures. In this study, we 

extracted phase synchrony and cross-channel coherence 

amplitude across 4 and 8 pre-selected scalp EEG signals. Binary 

classification is used to determine whether the signal segment is 

seizure or non-seizure, and the predictions were compared 

against the gold-standard seizure onset markings. The 

application of the algorithm on a cohort of forty routinely 

collected EEGs from paediatric patients showed an average 

accuracy of 77.2 % and 76.5% using 4 and 8 channels, 

respectively. 

 

Clinical Relevance— This work demonstrates the feasibility of 

seizure detection with pre-defined 4 and 8 EEG electrodes with 

an average accuracy of 77%. This means, for the first time, 

seizure detection is possible using an EEG montage that can be 

applied readily at the bedside independent of expert input. 

I. INTRODUCTION 

Seizures commonly occur in paediatric critical care, and 

up to 74% of these seizures do not have clear clinical markers, 

i.e. being sub-clinical, making their detection difficult [1], [2]. 

Seizures are a sudden surge of synchronized electrical activity 

in the brain and can cause involuntary changes in patients’ 

sensations, behaviour, and even loss of consciousness. The 

duration of the seizure can extend from a few seconds to an 

hour or more. Prolonged seizures are also known as status 

epilepticus and defined as seizures lasting 15 minutes or 

more. Studies have shown that undetected and delayed 

treatment of the seizures in patients requiring Intensive Care 

Unit (ICU) leads to poor neurological outcome [3]. 

Electroencephalogram (EEG) signals capture the changes 

in brain electrical activity. Epileptiform EEG patterns, such 

as sharp spikes and waves, can classify the seizures and are 

currently used as the gold-standard seizure detection [1], [4]. 

However, EEG-based analysis is highly laborious and costly 
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as it involves visual analysis of recorded EEG signals from 

multiple scalp electrodes. Highly trained physiologists and 

neurologists are required for placement of the electrodes and 

interpreting the signals, respectively [5].  

Possible solutions for accelerating the above-mentioned 

process and reducing the cost of required staff can be 1) to 

select a limited number of EEG channels instead of using all 

(usually 20 channels or more), and 2) to use an automated 

seizure detection algorithm.  

As clinical studies have shown [6], [7], trained bedside 

critical care staff were able to accurately mark seizures with 

reduced number of EEG channels. Seizure detection with 

reduced number of channels (from above 20 to less than 8) 

will require less time for applying them on patients’ scalps 

[8], and increases the feasibility of accurate placement of 

EEG electrodes by intensive care clinical staff without 

specialist neurophysiological training [5], [9]. 

In the realm of engineering, limiting the number of 

channels can reduce the computational time and complexity 

of seizure detection algorithms. However, with fewer EEG 

channels there will be fewer data points and thereby a 

compromised accuracy. Therefore, developing an algorithm 

that could accurately detect seizures with limited channels is 

of great clinical interest as it can facilitate EEG acquisition 

and prompt seizure detection at the bedside with minimal 

delays [10], [11].  

EEG signals capture the electrical activities of groups of 

neurons. These electrical activities can oscillate in multiple 

frequency bands, such as delta (0.5 - 4 Hz), theta (4 - 8 Hz), 

alpha (8-12 Hz), beta (12- 25), and gamma (above 25 Hz) 

[12]. During a seizure, the synchrony between these 

oscillations from neurons in different regions of the brain 

increases. Thus the synchrony of the signals can be used as an 

indicator of seizure [13]–[16]. In order to quantify the amount 

of synchrony between two sites, phase-locking value or phase 

synchrony can be used.  

This study aims to develop an algorithm that can detect 

seizures accurately in paediatric EEG data with limited pre-

selected EEG signals as few as 8 and 4 channels. As the scope 

of this study is to develop an algorithm to be used in critical 

care, we focus on certain pre-selected channels and consider 
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the changes because of seizures on EEG regardless of their 

underlying pathology. The reader is referred to [9], [17] for 

patient-specific channel reduction methods. The 8-channel 

montage is based on a commercially available circumferential 

headgear [18], and the 4-channel arrangement is already in 

use in paediatric critical care [19]. Our algorithm combines 

two features extracted from the pairs of signals and uses 

machine learning to classify of two groups: seizure and non-

seizure. We have achieved an average of 77 per cent accuracy 

using 4 EEG signals.  

II. MATERIALS AND METHODS 

A. Data  

Forty (40) fully anonymised routinely collected EEG from 

the Royal Hospital for Children and Young People in 

Edinburgh were used in this study. The scalp EEG electrodes 

were applied using the 10-20 international electrode 

placement system. All of the recordings were annotated as 

part of routine clinical reporting, and the seizures were 

marked by a neurologist. Since the data had been collected in 

the clinical setting of an electrically noisy environment, it 

included real-life artefacts. Table 1 presents a summary of the 

recordings used in the study.  
TABLE 1. INFORMATION OF THE RECORDINGS USED IN THE STUDY. 

No. 

recordings 
Age range 

Total 

duration 

No. 

seizures 

Seizure 

duration 

40 
12 days - 12 

years old 
38.5 hrs 236 2.7 hrs 

B. Pre-processing  

All the recordings are pre-processed in MATLAB 2021b. 

For each recording, 8 EEG channels (T3, T4, T5, T6, O1, O2, 

F7, F8) and 4 channels (C3, C4, P3, P4) are extracted. The 

location of electrodes in 4 and 8 channels montage is shown 

in Figure 1. 

 
Figure 1. Electrode placement in A) 4-channel arrangement used in the 

Paediatric critical care, and B) 8-channels montage in sub-hairline 

commercial headgears. 

We first apply the surface Laplacian filter to minimise the 

effect of volume conduction and avoid the possible influence 

of the common reference electrode on synchronisation [20], 

[21]. We then apply a 6th order high-pass Butterworth filter 

with cutoff frequency of 1 Hz to eliminate the slow 

frequencies. Finally, by using a least-square finite impulse 

response filter to select the delta range (1- 5 Hz in this study) 

of the signals for analysis. 

C. Feature Extraction 

We combine two separate features for seizure detection as 

below. 

1) Phase synchrony (PS) 

Phase synchrony is the phase-locking between the signals 

of two electrodes at a certain time [16]. For quantifying the 

phase synchrony, the R index or the mean phase coherence is 

calculated for all possible pairwise signal combinations [15]. 

We used the analytical method of Hilbert Transform to extract 

the instantaneous phases of two signals and estimated the 

phase difference for two signals across time. The index was 

calculated for a 1-second running window [22].  

After calculating the phase synchrony between pairs of 

signals in the delta band, a connectivity matrix is obtained 

with the average value of each 1 s window of the synchrony 

index. We binarised the connectivity matrix using a 

predefined threshold, resulting in a 0 entry if the synchrony 

index is lower than the threshold or 1 otherwise. Two EEG 

channels are defined as connected if the corresponding binary 

entry is 1[22]. 

In the next step, we defined a complexity measure that 

considers the number of connected pairs of signals at each 

instance. Based on the binomial coefficient, there is a 

maximum of 28 pairwise combinations for 8 channels and 6 

pairwise combinations for 4 channels of EEG signal. The 

complexity matrix has two arrays which are the number of 

synchronised pairs of signals and the connectivity. For a 

detailed description of the analytical procedure, the reader is 

referred to [15], [22]. 

2) Cross-channel coherence amplitude (CA)  

Since the seizures cause a dramatic increase in the 

amplitude of the signals [23], we use a pairwise amplitude 

coherence as the second feature for seizure detection [4]. The 

cross-channel coherence amplitude estimates the degree of 

synchronisation between the activity measures of two signals 

[24]. The CA is calculated using the EEGLAB toolbox in 

MATLAB, using 3 wavelet cycles and a window size of ~4 

seconds. Similar to PS, CA is calculated for a combination of 

pairs of signals which is 28 possible combinations for 8-

channels montage and 6 combinations for 4-channels. The 

maximum value of the coherence amplitude is selected for 

each combination and saved in a matrix. In the next step, the 

mean value of the coherence is calculated, and a threshold is 

selected for the connectivity decision. Using an automated 

patient-specific threshold would take into account the 

possibility of abnormal alterations in signals in the non-

seizure period. The maximum value of CA for each 

combination is compared with the threshold and if (CA> 

Threshold), the algorithm replaces the value with 1. In the 

final step, similar to PS, a complexity array is defined that 

considers the sum of the connectivity of all pairs at each time 

point. This array is used as a feature in the classification step. 

D.  Classifier and performance evaluation 

In order to classify the signals into non-seizure and seizure 

classes, we use a boosted-tree classifier [25] for each patient. 

Boosted tree classifiers have high prediction performance and 

do not need feature scaling. The adaptive boosting for binary 

classification is used as we define two classes seizure (0) and 

non-seizure (1). 

To avoid the potential over-fitting due to class imbalance, 

we under-sample the non-seizure data only for the training 



 

 

 

data. The classifier’s predictions were compared against the 

gold-standard annotation provided by the neurologist using a 

5-fold cross-validation method. Accuracy, sensitivity, 

specificity, and false negative rate (FNR) are computed by 

comparing the classifiers’ predictions against the ground truth 

provided by the annotations in the dataset.  

III. Results 

In this study, we use two features for each time instance 

for seizure detection. Both features capture the number of 

connections between the pairs of channels. Figure 2 depicts a 

single EEG signal with a duration of 8 minutes and three 

seizures. Seizures are highlighted using black boxes. The 

middle graph shows the changes in the phase synchrony 

during the recording. The arrows highlight the occurrence of 

seizure where the synchrony increases with seizure onset. In 

the bottom graph of Figure 2, which is the cross-channel 

coherence amplitude, there are peaks in the maximum CA 

values. As shown, the delta band is used for the analysis.  

 
Figure 2.  Features of the EEG signals shown in the top row, middle) pairwise 

synchrony, and bottom) Cross-channel coherence amplitude. Black boxes 

and arrows indicate the occurrence of a seizure. 

First, we used only PS and then CA separately for 

classifying the events. The average accuracy for all 40 

subjects, for both methods, were approximately 66.2±5 % 

using 4-channels and 67.2±3% using 8 EEG signals. By 

combining the two features, the average accuracy increased to 

77.2 % and 76.5% for 4-channels and 8-channels, 

respectively. Figure 3 shows the average performance of the 

classifier when using PS(A) and CA (B). 

 
Figure 3. The average 

performance of the classifier 

for seizure detection using 4 

and 8-channel montages. The 

bars show the standard 

deviation across 40 samples. 

 

 

 

The performance of the classifier using both features is 

shown in Figure 4. 

 
Figure 4. The average performance of the classifier for seizure detection 

using 4 and 8-channel montages two features. The bars show the standard 

deviation across 40 samples. The performance of the classifier improved by 

15%, combining the two features PS and CA. 

Using two features improved the accuracy for both 8 and 

4-channels seizure detection. In addition, there was a 

reduction in the average false discovery rate in both EEG 

montages, as shown in Table 2.  

 
TABLE II. THE AVERAGE FALSE DISCOVERY RATE (FDR) IN ALL 

RECORDINGS USING ONE (ONLY PS OR CA) AND BOTH (PS + CA) 

Features Number of EEG channels 

Eight Four 

PS 0.35 0.35 

CA 0.34 0.29 

PS+CA 0.22 0.21 

 

IV. DISCUSSION 

In this study, we introduce a novel approach for seizure 

detection which uses two separate low-density EEG montages 

in 40 clinical EEG recordings. Our aim is to demonstrate the 

feasibility of seizure detection using pre-selected montages 

that are fast to apply on patients in a critical care units rather 

patient-specific reduction of EEG channels as proposed in 

previous studies [9], [26]. Moreover, the seizure detection 

algorithm needs to provide the calculation with minimum 

delays and in order of few seconds, which makes the complex 

and computational-expensive techniques unattainable [4]. 

PS has shown to be a reliable marker for seizure detection 

[27], as the neural groups become more synchronized during 

a seizure. Our results, shown in Fig. 2, depict an increase in 

connectivity index as the seizure starts. Similar trend is 

reported in [21], [27]. However, using only the PS limited the 

accuracy and precision of seizure detection to below 65%. 

Considering the few numbers of EEG signals used for the 

analysis, this outcome is somewhat expected. While using 

CA, on its own, did not improve the accuracy, using CA in 

combination with PS improved the classification outcome. 

The average accuracy for seizure detection in the 40 

recordings has enhanced by 12% and reached approximately 

75%. CA captures the correlation between the spectral 

amplitude of pairs of signals which increase during a seizure. 

Although 8 channels of EEG signal provide more data 

points for the analysis, we observed higher accuracy and 

lower FNR in seizure detection using only 4-channels (Fig. 

3). The FDR did not differ between two montages. One 



 

 

 

possible explanation for the lower accuracy in 8-channels 

montage is the location of the channels that record more 

circumferential brainwaves compared to 4 channels (Fig. 1). 

In addition, EEG used in this study originated from infants 

and children and the results might indicate that in children, 

seizures mostly originate in central and temporal areas of the 

brain. Further research is required to confirm this observation 

and determine the optimal electrode positionings for patients 

of different ages. 

A reliable computer-aided detection algorithms in clinical 

environment need to have high accuracy and low false alarm 

rate in analysis of noisy data. Although our algorithm was 

trained on heavily noisy data and achieved average 77% 

accuracy, the FDR needs to be improved. Therefore, future 

work will focus on reducing the FDR. Further improvements 

will include a better re-referencing method (instead of 

Laplacian) and optimisation of the thresholding methods. 

V. Conclusion 

To the authors’ knowledge, this work is the first to 

demonstrate the feasibility of seizure detection with a limited 

pre-selected EEG electrodes. Using two feature extraction 

methods has improved the results for both 4 channels and 8 

channels seizure detection.  
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