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Abstract  Brain-Machine Interface (BMI) translates 

neural activity into control commands of the 

prosthesis so that their lost motor functions could be restored. 

The neural activities represent brain states that change 

continuously over time which brings the challenge to the online 

decoder. Reinforcement Learning (RL) has the advantage to 

construct the dynamic neural-kinematic mapping during the 

interaction. However, existing RL decoders output discrete 

actions as a classification problem and cannot provide 

continuous estimation. Previous work has combined Kalman 

Filter (KF) with RL for BMI, which achieves a continuous motor 

state estimation. However, this method adopts a neural network 

structure, which might get stuck in local optimum and cannot 

provide an efficient online update for the neural-kinematic 

mapping. In this paper, we propose a Cluster Kernel 

Reinforcement Learning-based Kalman Filter (CKRL-based 

KF) to avoid the local optimum problem for online neural-

kinematic updating. The neural patterns are projected into 

Reproducing Kernel Hilbert Space (RKHS), which builds a 

universal approximation to guarantee the global optimum. We 

compare our proposed algorithm with the existing method on rat 

data collected during a brain control three-lever discrimination 

task. Our preliminary results show that the proposed method 

has a higher trial accuracy with lower variance across data 

segments, which shows its potential to improve the performance 

for online BMI control. 

 

 
Clinical Relevance  This paper provides a more stable 

decoding method for adaptive and continuous neural decoding. 

It is promising for clinical applications in BMI. 

I. INTRODUCTION 

Brain-Machine Interface (BMI) [1], [2] is a promising tool 
for helping paralyzed people recover their lost motor functions. 

ies into 
control signals to interact with external devices. The ultimate 
goal of BMI is to let the patients purely use their brain signals 
to control the neuro-prosthesis as a substitute of their real limbs. 

continuous brain state is translated as the continuous prosthetic 
movement in real time. This continuous control is crucial for 
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(KF) is a common tool for continuous BC tasks [3] [5]. 
However, one of the major concerns is that, during the BC task 
over days, the neural patterns of the subject change due to 
neural adaptation [6]. In this case, KF with fixed parameters 
might suffer from a performance drop. Therefore, decoder 
recalibration by the recent neural data becomes necessary for 
maintaining a good performance over multiple days. But it is 
time-consuming, and patients might get tired of that.  

ReFIT-KF [7] was proposed to regularly fit the 
discrepancy between the desired ut, 
where it might over-
Reinforcement Learning (RL) [8] [11] establishes the neural-
kinematic mapping through trial-and-error. When the decoded 
action drives the neuro-prosthesis closer to the target, the 
decoder will receive a reward to reinforce this action, 
otherwise, it will get a punishment. The goal of RL is to find a 
neural-kinematic mapping to reach the target and maximize 
accumulated rewards. As the RL decoder is constantly updated 
by reward signals, the time variant neural pattern can be 
adaptively tracked during usage. However, the current RL 
decoder outputs discrete actions as a classification problem 
and cannot provide continuous control for BC tasks. In our 
previous work [12], we proposed to combine Attention Gated 
Reinforcement Learning (AGREL) with Kalman Filter (KF) to 
achieve a continuous motor state estimation. However, 
AGREL adopted a neural network structure that might get 
stuck in the local optimum, which is not efficient to update the 
neural-kinematic mapping for online BC control.   

In this paper, we propose to combine Cluster Kernel 
Reinforcement Learning (CKRL) [13] with KF. The neural 
activities are projected into Reproducing Kernel Hilbert Space 
(RKHS), then the neural features are linearly combined to 
select actions probabilistically, which guarantees the global 
optimum [14]. The chosen action is then used to update the 
motor state estimation through the state-observation model. 
The global optimal action selection from RKHS in our 
proposed algorithm is expected to have a more stable 
performance than AGREL-based KF decoder. We test the 
proposed algorithm on real data of a rat performing a brain 
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control three-lever discrimination task. And we also compare 
our algorithm with AGREL-based KF to see whether it 
achieves better continuous prosthetic control that follows the 
neural adaptation. The rest of our paper is as follows. Section 
II introduces the details of behavioral experiment design, data 
preprocessing and proposed algorithm. Section III shows 
hyperparameter selection and experiment results. Finally, the 
conclusion is given in section IV.     

II. METHOD 

In this section, the behavioral experiment design, data 
preprocessing, system model and CKRL-based KF are 
introduced. 

A. Behavioral Experiment Design  

The brain control three-lever discrimination task, as shown 
in Fig. 1, was conducted at the Hong Kong University of 
Science and Technology (HKUST). All steps of the animal-
related experiments were supported by the Animal Ethics 
Committee of the HKUST with protocol number #2017038. 
For the training procedure with the subject, a male Sprague 
Dawley (SD) rat was trained to perform a brain control three-
lever discrimination task. At the beginning of each trial, an 
audio cue would be presented to the rat. The audio frequency 
was either 1.5 kHz, 10 kHz or 4 kHz. Within the trial-out time 
(10 s), the rat needed to discriminate the audio frequencies, 
adapted neural activity through a Kalman decoder to control a 
cursor position move from the rest area to a target circle and 
remain within the area for 300 ms. As shown in Fig. 1, the 
starting position of the cursor was within the black dotted 
circle. The target circle corresponded to audio frequencies 
respectively (1.5 kHz: low trial, red circle; 4 kHz: middle trial, 
green circle; 10 kHz: high trial, blue circle).  If the rat 
successfully reaches the target area and holds for 0.3 s, it will 
get the water reward. Otherwise, this trial is failed. The inter-
trial time was randomly chosen from 4 s to 6 s. The next trial 
would start when the rat controls the cursor back to the rest 
circle and stays for 1.5 s.    

 

Figure 1. The illustration of the three-lever discrimination brain control task 

B. Data Preprocessing 

Two 16-channel electrode arrays were implanted in the 
Primary Motor Cortex (M1), an area associated with the 
movement of the rat's right forepaw, and medial Prefrontal 
Cortex (mPFC) on the left hemisphere of the brain. A multi-
channel acquisition processor (Plexon Inc, Dallas, Texas) was 
used to record the extracellular potential which was filtered at 
500 Hz with a 4-pole Butterworth high pass filter. Action 
potential was then detected using a threshold of -
standard deviation of the noise baseline). The spike firing 
counts were further binned with a non-overlapping 100 ms 
time window. Spike counts with the previous 500 ms time 
sliding windows were used for the further decoding process.  

The behavior events, including the audio cue, trial success, 
were recorded by behavioral chamber (Lafayette Instrument, 
USA) and synchronized with neural firing spikes at 10 Hz. In 
this paper, we used the data from the reaching period as one 
trial, which was from the start of the audio cue to entering the 
target circle. Multiple segments of data from one SD rat were 
collected for analysis here, including 86 low trials, 94 middle 
trials, and 18 high trials. The original BC trajectories were 
reconstructed by three picked actions. We randomly shuffled 
all trials 20 times for testing the proposed algorithm. For each 
trial shuffling, 70% of trials were picked as the training dataset 
and 30% as testing.  

C. CKRL-based KF 

Our CKRL-based KF borrowed the idea from the classic 
Kalman Filter, which includes a state model that describes the 
relationship from the previous state to the current state as 
follows 

where system state  at the time step  is a 4 by 1 vector 

, composed by two-dimensional position 

( ) and velocity ( ) of the computer cursor.  is the 

state transition matrix.  is the Gaussian noise term with zero-
mean and covariance matrix .  

The advantage of CKRL-based KF is that it guarantees the 
global optimum when searching the nonlinear neural-
kinematics mapping. The overall structure of CKRL-based KF 
is shown in Fig. 2, which is a state-observation model. Other 
than the state model in (1), CKRL provides an estimation from 
observation at the time step . Our observation is the neural 
firing spikes, denoted as a vector , 

.  is the number of total dimensions of the neural 
pattern ( ).  is the number of total channels . 

 is the number of embedded historical spikes .  
means reward signal that is used to update the parameters of 
CKRL. The input of CKRL is embedded neural spikes. The 
output of CKRL corresponds to the probability of three pre-
defined directions. The picked directions were derived from 
the histogram of the velocity from original brain control 
trajectories which were 18, 73 and 294 degrees respectively. 
The final action was determined probabilistically by the 
softmax policy. The structure of CKRL refers to [13], and the 
observation model is shown below 

                        (2) 

where  is an identity matrix.  stands for the noise term 
generated from a Gaussian distribution with zero mean and 
covariance matrix .  denotes the state that is 
generated by CKRL, where the selected action from neural 
input  is used to modify the state.  

The overall workflow of the CKRL-based KF is as follows. 
Firstly, the system model gives a prior estimate of the system 
state as follows 

 

 



  

where  means the posterior estimate of state error 

covariance at the time step  and  is the prior 

estimate at the time step . 

 
Figure 2. The structure of CKRL-based Kalman Filter 

Then the output of CKRL is used to update the prior state 
given current neural activities  as follows 

where  represents the Kalman gain.  and  are the 

posterior estimate of the system state and its error covariance 
matrix respectively. If the picked action is the same as the pre-
defined ground truth, the , otherwise . Reward 
signals are used to update the parameters of CKRL to follow 
the changing neural patterns during usage. The parameter 
update of CKRL could be found in [13]. 

III. RESULT 

A. Hyperparameter Selection 

For CKRL-based KF, kernel width  is a critical 
hyperparameter. If  is too small, it would lead to overfitting 
since every new input would be orthogonal to the existing 
neural patterns in Reproducing Kernel Hibert Space (RKHS). 
On the contrary, if  is too large, the model would become 
indistinguishable to any neural input. We used a rule of thumb 

in [15] to decide a basic value .  is the 
standard deviation of the pair-wise Euclidean distance among 
the neural activities ( ).  is the neural input 
dimension ( ), and  is the total number of samples 
( ). Then, we search the range from  to .  

The result is shown in Fig. 3. The x-axis represents the 
kernel width and the y-axis is averaged accuracy. Red and blue 
solid lines are training and testing results respectively. When 
the kernel width is less than 30, there is a huge accuracy gap 
between training and testing which indicates the overfitting 
problem. We pick the kernel width of 32 in which the model 
has the best testing performance with an accuracy of 66.5%.  

Other hyperparameters of CKRL-based KF are also chosen 
based on testing accuracy, including learning rate , 
cluster threshold , and quantization threshold 

. For AGREL-based KF, its hyperparameters are also 
selected optimally with the number of hidden neurons  
and learning rate . The state transition matrix , 
state model error covariance  and observation system error 
covariance  are estimated based on the least squares method 

from the training data. The step size is 0.25 which is derived 
from the distance between target and rest region over the 
number of averaged steps. 

  

Figure 3. The averaged convergence performance using different kernel width 

B. Experiment Results 

We run CKRL-based KF, AGREL-based KF on the 
collected neural data. Fig. 4 depicts a typical reconstructed 
trajectory of a low trial decoded from CKRL-based KF (red), 
AGREL-based KF (blue). We also add baseline (green) for 
comparison, which means the decoder selects an action 
randomly in every time step. The x-axis and y-axis construct a 
2D positional plane in which x ranges from -1 to 2 and y is 
from -2 to 2. The dotted circle means the rest region, and the 
red solid circle is the target. The algorithms need to decode the 
cursor position from t aiming at 
reaching the target from the rest region. In this example, it 
takes four steps (red stars) for our proposed algorithm to finish 
this task, and every step is approaching the target. The 
trajectory decoded by AGREL-based KF takes 5 steps (blue 
circle) to reach the target because it does not go straight to the 
target, which is not efficient. The baseline decoder even fails 
in this trial due to the random action selection.  

  

Figure 4. The reconstructed trajectory comparison decoded by CKRL-based 
KF, AGREL-based KF and baseline. 

Fig. 5(a) demonstrates the training performance 
comparison. The x-axis represents the training time in which 
one epoch includes 138 training trials. The y-axis stands for 
training accuracy, which is the ratio of the number of 
successful trials over the number of trials within one epoch. 
The red, blue, and green solid curve correspond to the mean 



  

performance value across 20 data shuffles of CKRL-based KF, 
AGREL-based KF and baseline respectively. The shadow 
means the standard deviation of the accuracy. Our proposed 
algorithm has a higher mean accuracy with low variance, 
converging at , compared with 

 and  derived from AGREL-based KF 
and baseline respectively. This is because the proposed 
CKRL-based KF projects neural spikes into RHKS, which 
guarantees to find the global optimum for neural-kinematic 
mapping given every dataset reshuffle. While AGREL adopts 
a neural network structure, it gets stuck in the local optimum 
in some of the data reshuffle, which causes a large variance. 
Fig. 5(b) demonstrates the box plot in the testing dataset. It 
shows that our proposed algorithm has higher median accuracy 
and narrower length between the first and third quartile values, 
indicating our proposed algorithm is more suitable for multi-
step continuous brain control tasks. 

(a) 

 

(b) 

 

Figure 5. The result performance comparison between CKRL-based KF and 
AGREL-based KF. (a) The learning curve in training dataset. (b) The 
statistical performance in testing dataset. 

IV. CONCLUSION 

BMI aims to help disabled people restore their lost motor 
functions by translating their neural activities into control 
commands of the prosthesis. In Brain Control (BC) of BMI, 
the continuous control is critical for the decoder in clinical 
applications, like controlling a cursor or a robotic arm. Kalman 
Filter (KF) is widely used in continuous BC decoding, which 
establishes a fixed mapping from neural patterns to kinematics, 
while it cannot maintain good performance over multiple days 
due to the neural adaptation. RL-based algorithms could track 
the time variant neural patterns but cannot achieve smooth 
control since they output discrete actions as a classification 
problem. A good way is to combine the state transition 
equation from KF with RL, which obtains a continuous state 
prediction while maintaining the adaptive ability e.g., 
Attention-Gated Reinforcement Learning-based Kalman Filter 
(AGREL-based KF). However, AGREL-based KF uses a 
neural network structure which might fall into the local 
optimum, hence leading to an unstable performance due to 

different initializations. In this paper, we proposed a Cluster 
Kernel Reinforcement Learning-based Kalman Filter (CKRL-
based KF) that projects the neural activities into RHKS, which 
guarantees a global optimum since the neural patterns are 
linearly separable in RKHS. We further compare our proposed 
algorithm with AGREL-based KF on a rat three-lever 
discrimination brain control task. The results show that our 
proposed algorithm has higher mean accuracy (+2%) with 
lower variance (-50%) compared with AGREL-based KF. It 
indicates that the proposed algorithm could improve the 
performance for continuous and stable brain control in clinical 
BMI applications. 
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