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Learning-based method for k-space trajectory design in MRI

Shubham Sharma1, K.V.S. Hari1 and Geert Leus2

Abstract— Variable density sampling of the k-space in MRI is
an integral part of trajectory design. It has been observed that
data-driven trajectory design methods provide a better image
reconstruction as compared to trajectories obtained from a fixed
or a parametric density function. In this paper, a data-driven
strategy has been proposed to obtain non-Cartesian continuous
k-space sampling trajectories for MRI under the compressed
sensing framework (greedy non-Cartesian (GNC)). A stochas-
tic version of the algorithm (stochastic greedy non-Cartesian
(SGNC)) is also proposed that reduces the computation time.
We compare the proposed trajectory with a traveling salesman
problem (TSP)-based trajectory and an echo planar imaging-
like trajectory obtained by a greedy method called stochastic
greedy-Cartesian (SGC) algorithm. The training images are
taken from knee images of the fastMRI dataset. It is observed
that the proposed algorithms outperform the TSP-based and
the SGC trajectories for similar read-out times.

Index Terms— MRI, variable-density sampling, data-driven,
k-space trajectory design.

I. INTRODUCTION
Magnetic resonance imaging (MRI) is a powerful non-

invasive tool for high quality soft tissue imaging. The physics
of the MRI system results in a signal that can be directly
mapped to the frequency domain, also known as the k-space
in the MRI community. The k-space is traversed by varying
the linear magnetic gradients (ki(t) =

∫ t

0
γGi(τ)dτ , i ∈

{x, y, z}) which are limited by their magnitude (Gmax) and
slew rate (Smax) [1]. The most common k-space trajectory
used in practice is the Cartesian trajectory. In this method,
the k-space is traversed one horizontal line at a time in a
single excitation. The kx-axis is called the frequency encod-
ing direction and the ky-axis is called the phase encoding
direction. Each horizontal line is called a phase encode.

MRI is inherently limited by its data acquisition time.
Methods such as compressed sensing (CS) [2] and parallel
imaging [3] have significantly brought down the acquisition
time by utilizing redundancies in the image and the frequency
domains. In this paper, we address the problem of k-space
trajectory design in 2D under the CS framework [4], [5],
[6], [7], [8]. In recent years, in contrast to the model-based
random variable density (VD) sampling methods, data-driven
methods have been observed to provide better sampling
patterns that significantly improve the reconstruction per-
formance. These methods aim to learn and adapt sampling
patterns for specific anatomical structures and reconstruction
methods [9], [10], [11]. The Bayesian approach in [9]
optimizes Cartesian or any arbitrary trajectory, this approach
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is, however, computationally expensive. Another data-driven
approach is explored in [10] where an integer programming
problem is solved to minimize the Cramèr-Rao bound on the
reconstruction. The method in [12] provides improvement in
reconstruction using non-Cartesian trajectories with gradient
constraints imposed. However, this approach does not con-
sider a data-driven learning.

Many methods (model-based and data-driven) consider
subsampling in the phase encoding direction for a Cartesian
trajectory. However, non-Cartesian trajectories such as spiral,
radial, rosette etc. offer advantages such as being more
robust to motion-related artifacts and better utilization of
the gradient capacity [13], [14], [15]. Hence, we propose a
learning-based greedy algorithm to obtain a continuous VD
non-Cartesian trajectory for a specific anatomical structure.
The proposed algorithms differ from the greedy algorithms
in [11] and [16] as our methods are based on region-
wise distance-based rules to learn the next points along the
trajectory and the resultant trajectories utilize VD sampling
on both kx and ky axes on the k-space.

II. LEARNING-BASED VD TRAJECTORY DESIGN
The desired image X∈CN×N is assumed to come from

an unknown probability distribution P . The set of p fully
sampled training images X={X1,X2, ...,Xp}, Xi∈CN×N

are assumed to be well representative of the anatomical
structure. A set of sample points Ω on the k-space when
connected are referred to as a continuous trajectory. A
continuous trajectory is desired as the trajectory is traversed
using gradient coils and to sample individual points on the
k-space is not optimal in terms of time and utilization of
hardware constraints. The problem of finding an optimal set
of points (Ω∗) forming a feasible trajectory in the k-space,
i.e., satisfying the gradient constraints, in terms of imaging
a given anatomy can be formulated as

Ω∗ = argmax
Ω∈S

EX∼P
[
ηΩ(X, X̂)

]
(1)

where S is the set of feasible trajectories, X̂ is the re-
constructed image and ηΩ(X, X̂) is a performance metric,
for instance, peak signal-to-noise ratio (PSNR) or structural
similarity index (SSIM). This is empirically solved using

Ω∗ = argmax
Ω∈S

1

p

p∑
i=1

ηΩ(Xi, X̂i) (2)

with p training images. Note that in addition to the sample
points Ω, the reconstruction method highly influences the
quality of the reconstructed image [17]. Problem (2) is
a combinatorial problem and an approximate solution can
be found using greedy algorithms. For instance, in [11],
S is taken as the set of all eligible phase encodes, i.e.,
horizontal lines along the kx direction. We propose a greedy
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(a) Initialization

(b) Iteration-1

(c) Iteration-2
Fig. 1: Demo of greedy non-Cartesian (GNC) algorithm.
A 32 × 32 k-space grid (Ωgrid) is divided into r = 3
regions. (a) Initialization step with 6× 6 center points (Ωc)
in Ωsel, the remaining points (Ωrem) and the chosen Ωl. (b)
describes the first iteration. Ωl is in R1. Next, identify Ωring

and update Ωrem. Update Ωl that results in the best mean
reconstruction performance among all Ωring. (c) describes
the second iteration.

approach inspired by the method in [11]. The proposed
method provides region-wise distance-based rules to add
sample points that provide the best average performance
on the training images to construct continuous trajectories
for 2D sampling of the k-space. Such region-wise distance-
based rules facilitate a variable density sampling under the
non-Cartesian sampling scheme. This is done by finding a
continuous trajectory Ω ∈ C, where C is the set of con-
tinuous trajectories (not necessarily satisfying the gradient
constraints). This infeasible trajectory is later made feasible
using the method in [18]. The proposed greedy algorithm is
discussed below.
A. Greedy Non-Cartesian (GNC) Algorithm

The algorithm aims to obtain a continuous path by adding
one sample point at a time to the already selected set of
points on the Cartesian grid. The sample point in the vicinity
of the last sampled point (and not previously sampled)
that results in the best mean reconstruction performance
on the training images is included in the trajectory. The
proposed algorithm utilizes the prior knowledge that the k-
space center needs to be sampled more densely as compared
to the boundary region. For this, we divide the 2D k-space
sampled at the Cartesian grid (Ωgrid), extending from −kmax

to kmax along the kx and ky axes, into r circular regions

centered at the center of the k-space, denoted by the set
R = {R1, R2, ...Rr}. Each of these regions describes a
set of grid points with 2D frequencies denoted as Ωj =
[kxj

kyj
]T ∈ Ωgrid. The regions are used to define a set

of rules to set a step size for the next optimal point to be
selected. These rules help achieve a VD sampling such that a
region that is closer to the center of the k-space is set to have
a smaller step size to densely sample that region. Similarly,
a region farther from the center will have a bigger step size
to sparsely sample that region.

Algorithm 1 describes the proposed greedy method. The
set of points selected from the Cartesian grid Ωgrid is denoted
as Ωsel. The center of the k-space with grid points Ωc con-
sisting of the center nc×nc points are sampled first. The last
selected point Ωl can be initialized as any outermost point
of Ωsel. Points in the ring given by two concentric circles
(Ωl as the center) with radius of the inner circle being din
and the radius of the outer circle being dout are considered.
Each of the nearby points inside the ring, denoted by Ωring,
are used to find the average reconstruction performance using
the reconstruction method R(Ω,X) when included with Ωsel.
The one point that gives the best reconstruction performance
on the training images is included in the set Ωsel. All the
points inside the outer circle at distances less than dout from
Ωl are removed from further consideration. This is repeated
till no points remain in the grid.

Bigger steps are taken as we move away from the center,
i.e., din1 < din2 < ... < dinr and dout1 < dout2 < ... <
doutr . It is assumed that inclusion of a grid point will not
decrease the reconstruction performance. It is to be noted that
even though the points are taken from a Cartesian grid, these
trajectories are called non-Cartesian. This is done, firstly, to
emphasize that these do not traverse the k-space in horizontal
lines as is done in a Cartesian trajectory. Secondly, the final
feasible trajectory will introduce new non-Cartesian sample
points along the trajectory, making this a non-Cartesian
trajectory.

Figure 1 illustrates the different sets on the k-space
Cartesian grid for better visualization. This example consists
of 3 regions. The initialization step with a 6×6 center region
and two iterations that select two optimal points are shown.
B. Stochastic Greedy Non-Cartesian (SGNC) Algorithm

The large size of the training data and the search in 2D
space make the GNC algorithm computationally very expen-
sive. Similar to the stochastic version of the GC algorithm
in [16], referred to as the stochastic GC (SGC) algorithm
here, a stochastic version of the GNC algorithm is proposed.
This is referred to as the stochastic greedy non-Cartesian
(SGNC) algorithm.

The SGNC algorithm chooses a path (of a set of points)
from multiple random paths instead of just one point starting
from the last selected point Ωl. In this method, first a subset
Ω′ring ⊂ Ωring is randomly chosen with |Ω′ring| = npath.
Here, Ωring is chosen as described in the GNC algorithm.
At each Ω ∈ Ω′ring, a random path with np points is
generated by randomly choosing one nearby point from the
previously selected point in accordance with the distance
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Algorithm 1: Greedy non-Cartesian (GNC) algo.
Input: X , Ωgrid, Ωc, R, din, dout

Result: GNC Trajectory ΩGNC = Ωsel.
// Initialization (Refer Fig. 1(a))

1 Ωsel ← Ωc

2 Ωl ← an outermost point in Ωsel

3 Ωrem ← Ωgrid \ Ωsel

// Repeat until no grid points remaining (Refer
Fig. 1(b),(c))

4 while Ωrem ̸= ∅ do
5 ind← i if Ωl ∈ Ri // Region of the last selected

point
6 Ωring ← {Ωi ∈ Ωrem : dinind

≤ dist(Ωl,Ωi) ≤ doutind
}

// For all points inside the ring
7 for Ωi ∈ Ωring do
8 Ωsel′ = Ωsel ∪ Ωi

9 X̂j ← R(Ωsel′ ,Xj), ∀Xj ∈ X
10 ηΩi

← 1
p

∑p
j=1 ηΩ

sel′
(Xj , X̂j)

11 end
12 Ωl ← argmaxΩi

ηΩi
13 Ωsel ← Ωsel ∪ Ωl

14 Ωdel ← {Ωi ∈ Ωrem : dist(Ωl,Ωi) ≤ doutind
}

15 Ωrem ← Ωrem \ Ωdel

16 end

rules described in the GNC algorithm. This reduces the
computational load manifold. Also note that although the
GNC and SGNC algorithms result in a set of points on the k-
space, the sequence in which these points are selected results
in piecewise continuous paths that form the GNC and SGNC
trajectories, respectively.

The proposed algorithms can also be used for Cartesian
sampling by dividing the k-space into rectangular regions
above and below the ky = 0 line instead of circular
regions. A few center horizontal lines can be sampled during
initialization and any one of the extreme phase encodes could
be used as Ωl. Similar region-wise distance-based rules can
be used to remove some phase encodes from consideration
and to add some other phase encodes for consideration.

III. NUMERICAL EXPERIMENTS

A. Simulation Setup
We consider the fastMRI knee database [19]. The single-

coil training dataset comprises of 973 volumes with 34742
slices of knee images. We considered the center 12 slices
of each volume to learn the trajectory. We compare the
performance of the proposed greedy algorithms with a non-
Cartesian trajectory based on the traveling salesman problem
(TSP) [20] with points randomly sampled from the density
function ∝ 1

|k|2 and the SGC trajectory. Four-shot trajectories
are used for a more practical implementation. For the TSP,
GNC and SGNC trajectories the k-space is divided into four
quadrants and each quadrant is traversed in one excitation.
The phase encodes obtained from the SGC algorithm are
used to obtain a 4-shot trajectory by connecting the selected
phase encoding directions like that of an EPI trajectory [21].
This is referred to as EPI-like SGC trajectory. The trajecto-
ries considered are made feasible using the method in [18]
with Gmax = 40 mT/m and Smax of 150 mT/m/s and
hence the corresponding trajectories could be implemented
in a scanner. The number of sample points in the feasible
trajectories (denoted, m) are much higher than the original
ones (denoted, n). The read-out time T is calculated as

TABLE I: Mean performance on 500 randomly selected
images and 100 best performing images in terms of PSNR
(out of 500) from the test dataset of knee fastMRI database.

Trajectory Read-out
time

500 test images Best 100 test images
SSIM PSNR SSIM PSNR

EPI-like SGC 39.06 ms 0.5608 25.31 dB 0.6854 28.65 dB
TSP 40.45 ms 0.5436 27.51 dB 0.7372 32.09 dB

SGNC 40.88 ms 0.5550 27.94 dB 0.7505 32.76 dB

T = m/fs, where fs = 250 kHz is the sampling frequency.
NESTA [22] is used to reconstruct images while learning the
trajectory for all the greedy algorithms as it provides a really
fast reconstruction when the points lie on the grid. PSNR is
used as the metric ηΩ to compare the performance during
learning. The k-space data is obtained from the 2D DFT of
the complex training images. Also note that since the points
on the feasible trajectories do not necessarily lie on the grid,
we use the non-uniform fast Fourier transform (NUFFT) for
the reconstruction of an image X using

X̂=argmin
X

∥NUFFT(X)−Y∥22+λ∥X∥TV (3)

where Y is the k-space data, λ is the weighting parameter
and ∥ · ∥TV is the total variation norm.

For the GNC and SGNC algorithms, the k-space is divided
into 6 regions given by f = {0, kmax

6 , kmax

4 , kmax

3 , kmax

2 ,
3kmax

4 }. dini
and douti are taken as {0, 2, 5, 14, 35, 90} and

{2, 3, 4, 6, 9, 14}, respectively for i ∈ {1, ..., 6}. These are
corresponding to ndel = {0, 1, 2, 4, 7, 12}. These distances
result in a trajectory that takes ∼40 ms read-out time per
shot. A feasible TSP trajectory with similar read-out time per
shot is obtained with 3200 points sampled from the density
function ∝ 1

|k|2 . For the EPI-like SGC trajectory, 50% phase
encodes provide a similar read-out time.
B. Results and Discussion

Multiple trajectories were learned using the SGNC al-
gorithm with the distance rules as discussed previously by
varying the number of random paths (npath), the number of
images for training (ntr) and the number of points on each
path (np). Their reconstruction performance was compared
for five randomly chosen test images. It was observed that
there was no significant difference in the performance by
having a higher npath or by using a large ntr. The used and
recommended values for the SGNC algorithm are npath = 3,
ntr = 1 and np = 5. The chosen trajectories are shown at
the top row in Fig. 2.

Table I gives the mean reconstruction performance of the
EPI-like SGC, TSP-based and SGNC trajectories for 500
randomly chosen knee images from the fastMRI single-coil
test database. Many of these images are noisy and hence
the average reconstruction performance is quite poor. The
table also shows the mean of the best 100 out of the 500
test images for each trajectory. It was observed that more
than 90 out of the 100 best performing test images showed
common results for the three trajectories considered here. It
is observed that the non-Cartesian trajectories (TSP-based
and SGNC) provide better reconstruction performance in
terms of PSNR compared to the EPI-like SGC trajectories.
The SGNC trajectory results in a mean PSNR of 27.94 dB.
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Fig. 2: The top row shows the four-shot feasible SGC, TSP
and SGNC trajectories (each shot represented with a different
colour). Original and reconstructed images using the three
trajectories are shown.

This is significantly better than the mean PSNR of 25.31 dB
for the EPI-like trajectory. The performance of the SGNC
trajectory is comparable to the TSP-based trajectories which
result in a mean PSNR of 27.51 dB.

Three test images (from the best 100 test images that
were common for all methods) reconstructed using the
EPI-like SGC, TSP and SGNC trajectories are shown in
Fig. 2. Although the improvement with SGNC trajectories
isn’t as significant in terms of SSIM and PSNR, it can be
seen in the figure that the reconstructed images from the
SGNC trajectories are noticeably better. Simulations were
performed to test the robustness of the three trajectories for
off-resonance effects and gradient imperfection. The SGNC
trajectory is observed to be less sensitive to these system
imperfections (not illustrated here).

The reconstruction method used in this work is CS recon-
struction with total variation (TV) sparsity. More recently,
deep learning-based reconstruction methods are gaining pop-
ularity and can also be utilized by using a pre-trained
reconstruction network. The trajectory and the corresponding
reconstruction performances would be different when differ-
ent reconstruction methods are utilized.

IV. CONCLUSION
In this paper, the problem of designing non-Cartesian

k-space trajectories is considered. A data-driven greedy
approach (GNC algorithm) is used to learn the best k-
space sample points on the 2D Cartesian grid for a set of
training images. The trajectory is built point-by-point in the
proposed method. A faster algorithm (SGNC algorithm) is
used to build the trajectory multiple points at a time by
constructing multiple random paths and choosing the one that

provides the best reconstruction performance on average for
the training image. This results in trajectories that provide
an improvement in the test images as compared to the EPI-
like trajectories learned using the SGC algorithm and the
TSP-based trajectories from a fixed density function.
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