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Abstract— Keratoconus is a severe eye disease that leads
to deformation of the cornea. It impacts people aged 10-25
years and is the leading cause of blindness in that demography.
Corneal topography is the gold standard for keratoconus diag-
nosis. It is a non-invasive process performed using expensive and
bulky medical devices called corneal topographers. This makes
it inaccessible to large populations, especially in the Global
South. Low-cost smartphone-based corneal topographers, such
as SmartKC, have been proposed to make keratoconus diagnosis
accessible. Similar to medical-grade topographers, SmartKC
outputs curvature heatmaps and quantitative metrics that need
to be evaluated by doctors for keratoconus diagnosis. An auto-
matic scheme for evaluation of these heatmaps and quantitative
values can play a crucial role in screening keratoconus in areas
where doctors are not available. In this work, we propose a
dual-head convolutional neural network (CNN) for classifying
keratoconus on the heatmaps generated by SmartKC. Since
SmartKC is a new device and only had a small dataset (114 sam-
ples), we developed a 2-stage transfer learning strategy—using
historical data collected from a medical-grade topographer and
a subset of SmartKC data—to satisfactorily train our network.
This, combined with our domain-specific data augmentations,
achieved a sensitivity of 91.3% and a specificity of 94.2%.

I. INTRODUCTION

Keratoconus is an eye disease that causes the cornea to
become thin, leading to a conical shape. It results in blurred
vision, irregular astigmatism, and partial/complete blindness.
Studies have shown that keratoconus is highly prevalent in
the Global South, e.g., in central India, 1 in 44 individuals
were found to suffer from keratoconus [1]. The disease
generally affects people between the ages of 10 and 25, and
may progress slowly for years. Early diagnosis is crucial to
provide timely treatment and prevent worsening of disease.
The clinical gold standard to diagnose keratoconus is using
a technique called corneal topography. This is done by a
sophisticated medical device called corneal topographer. It
measures the shape of the corneal surface and outputs cur-
vature heatmaps, helping the doctor to diagnose keratoconus.
Although highly accurate, these devices are expensive, bulky
(non-portable), and require a trained technician to operate.
Such factors limit accessibility and also make frequent mass
screening of keratoconus hard in remote areas.

In our prior work, we proposed SmartKC [2] (Figure 1), a
low-cost smartphone-based corneal topographer that gener-
ates topography heatmaps similar to a medical-grade corneal
topographer. Through a clinical study comprising of 101 eyes
(57 participants) and evaluation by four ophthalmologists,
we showed that SmartKC achieved a sensitivity of 94.1%
and specificity of 100.0%. However, SmartKC-generated
heatmaps need to be evaluated by doctors for diagnosis,
and with only 1 doctor for more than 1000 people in the
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Fig. 1. Left: SmartKC, a smartphone-based corneal topographer. Right:
Outputs generated by SmartKC (axial heatmap, tangential heatmap, sim-K
values, and automatic keratoconus diagnosis by our proposed model).

Global South [3], it is hard to obtain a doctor’s evaluation for
every keratoconus screening test. Additionally, evaluations
by doctors suffer from subjectivity. For instance, in SmartKC
evaluation, we found that for 30.7% of eyes, at least one of
the four doctors had a different diagnosis than the rest (this
number was 42.6% for Keratron device). Having an accurate
automated method to detect keratoconus that works for low-
cost topographers can help alleviate such issues and enable
mass screening to identify keratoconus patients.

Recent works have demonstrated the efficacy of using deep
neural networks for accurately detecting keratoconus using
color-coded heatmaps obtained from clinical topographers,
such as devices based on Optical Coherence Tomography [4],
Scheimpflug imaging [5, 6, 7], and placido disc reflection [8,
9]. However, such methods have been limited to medical-
grade topographers. We extend this line of work to adapt it
to heatmaps generated from the low-cost SmartKC device.

In this work, we propose a deep CNN with two classi-
fication heads, that takes SmartKC-generated heatmaps as
input and provides keratoconus diagnosis as output. Since
we had very few samples (114 eyes) from SmartKC [2], to
effectively train our network we propose a 2-stage transfer
learning strategy: (a) pre-training on ImageNet followed
by fine-tuning on historical data (2110 samples) collected
from Optikon Keratron, a medical-grade topographer, and
(b) further fine-tuning on 50% of the SmartKC-generated
heatmaps. This improved the performance significantly (sen-
sitivity=82.1%, specificity=85.6%), compared to the standard
fine-tuning on only SmartKC samples (sensitivity=65.2%,
specificity=76.5%). On further analysis, we found that
Keratron-generated heatmaps had fixed scaling and centering
due to the stable head- and chest-rest setup, while SmartKC
heatmaps had variations owing its handheld nature. Hence,
we applied domain-specific augmentations to simulate simi-
lar behavior in the Keratron dataset, which helped us achieve
a sensitivity of 91.3% and specificity of 94.2%.

The main contributions of our work are:
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1) a dual-head CNN-based keratoconus detection algo-
rithm for SmartKC, a smartphone-based topographer,

2) a 2-stage transfer learning strategy and domain-specific
augmentations for training with very few samples, and

3) evaluation of our method on topography heatmaps
from actual patients obtained by SmartKC and also
a medical-grade topographer (Keratron).

II. RELATED WORK

Prior research has proposed automated methods using
quantitative indices [10] (like Percentage Probability of Ker-
atoconus (PPK), Cone Location and Magnitude Index [11]),
statistical methods [12, 13], and traditional machine learning
algorithms [9, 14, 15] (like logistic regression, K-nearest
neighbour, clustering, decision trees, and random forests) to
diagnose keratoconus from corneal topography data. How-
ever, with the advent of deep learning and its high perfor-
mance on image classification tasks, deep learning based
methods are being widely explored for keratoconus diagnosis
and have been shown to be highly accurate [5, 6, 16].

Lavric and Valentin [16] propose to use a CNN-based
classifier for keratoconus detection, however they train and
test their model only on synthetic eye data. Zéboulon et
al. [6] investigate the performance of CNNs to classify
corneal topography heatmaps into normal and keratoconus.
They evaluate the model on 3000 samples from real pa-
tients obtained using Orbscan, a medical-grade topographer,
and achieve classification accuracy of 99.3%. Similarly, a
ResNet152 based classification model has been proposed [8].
They train and test their model on 354 samples, and achieve
sensitivity and specificity of above 90%. Chen et al. [5] use
corneal tomography scans, with four type of heatmaps (axial,
anterior elevation, posterior elevation, and pachymetry) per
sample, and adopt a VGG16 model to learn a keratoconus
detection classifier. They train their model on 1115 samples
and test it on 279 samples, achieving a sensitivity of 98.5%
and specificity of 90.0%.

These systems have achieved high performance for kerato-
conus detection, but have been limited to training and testing
on heatmaps generated by medical-grade topographers. In
spite of the progress made in developing low-cost portable
topographers [2, 17, 18, 19, 20, 21, 22], there has been no
work on adapting a model designed for data obtained from
medical-grade topographers that is suitable for such low-
cost alternatives. In our work, we aim to bridge this gap
by proposing a CNN-based solution that accurately detects
keratoconus from corneal topography heatmaps obtained
using both, SmartKC (a low-cost portable topographer) and
Keratron (a medical-grade topographer).

III. METHOD

Dataset: Our dataset is divided into two parts:

SmartKC-data: This an augmented version of the dataset
used in [2], collected from 64 patients, with 114 eye samples
obtained from both Keratron and SmartKC device deployed
at the Sankara Eye Hospital in Bengaluru, India. It comprises
of 68 non-keratoconus and 46 keratoconus eyes. The ground
truth data for each eye was keratoconus classification, as

Fig. 2. Proposed network architecture.

diagnosed by a senior ophthalmologist at the hospital. This
data was collected during Jun-Aug’21.
Keratron-data: Since 114 samples is small for training a deep
learning model, we retrospectively downloaded anonymized
data from the Keratron device database for all the patients
who took the corneal topography examination at the hospital
from April’08 to May’10. The dataset consists of 2110
samples (1637 non-keratoconus and 473 keratoconus). Each
sample comprises of three images (axial heatmap, tangential
heatmap, and placido ring), and three quantitative metrics
(sim-K1, sim-K2, and PPK). The ground truth class (ker-
atoconus vs non-keratoconus) was obtained based on the
PPK-based classification1. All the details of our study were
approved by the hospital’s Institutional Review Board.
Data Preprocessing: All heatmaps are cropped and resized
to a fixed resolution of 512 × 512. The heatmaps are then
standardized by performing Z-normalization on each channel
of the RGB image (X̃ = (X −µ)/σ, where the mean µ and
standard deviation σ are computed for the entire dataset).
Network Architecture: Figure 2 illustrates the architecture
of the proposed CNN. The network is organized into two
branches—one each for axial and tangential heatmaps—
with a shared convolutional backbone, followed by two
distinct feed-forward classifiers, one for each branch. The
shared backbone comprises of the convolutional layers from
a ResNet34 model. The classifiers consist of two 128-d fully
connected (FC) layers with ReLU activations. The last layer
of each classifier applies softmax activation to model class
probabilities. Dropout is added to each FC layer to prevent
overfitting. The network is jointly trained via a weighted
binary cross-entropy2 loss to minimize the loss for the two-
class (keratoconus vs non-keratoconus) classification task.
Training Procedure: We followed a 2-stage transfer learn-
ing strategy to train our network. In stage-1, the network
backbone is initialized with weights from a ResNet34 net-
work pre-trained on ImageNet [23], and then fine-tuned
on the Keratron-data with a 90:10 train:validation split.
This achieved good performance on the Keratron heatmaps,
however failed on the SmartKC heatmaps (see Tables I, II).
On deeper analysis of the data, we noticed that as SmartKC
is a portable hand-held device, the heatmaps generated by it

1PPK< 20% is non-keratoconus, 20% ≤PPK< 45% is suspect kerato-
conus, and 45% ≤ PPK is keratoconus, as per Keratron user-manual.

2where the weights are inversely proportional to the number of samples
in each class, to address class imbalance.



Eval. Data Model Se Sp Acc

SmartKC-data
(57 samples)

SVM 80.4% 100.0% 92.1%
Dual-head CNN† 65.2% 76.5% 71.9%
Dual-head CNN* 91.3% 94.2% 93.1%

Keratron-data
(114 samples)

PPK 89.4% 94.2% 92.2%
SVM 78.3% 95.5% 88.6%

Dual-head CNN‡ 94.7% 93.4% 93.9%

TABLE I
Sensitivity (Se), Specificity (Sp), Accuracy (Acc) of the proposed method.
†: fine-tuned only on SmartKC-data. *: fine-tuned on Keratron-data
(stage-1) and 50% of SmartKC-data (stage-2). ‡: fine-tuned only on

Keratron-data (stage-1).

had variations in terms of zoom level, translation, and aspect
ratio. In comparison, the heatmaps obtained from Keratron
had minimal variations as they are captured using a stable
head- and chin-rest setup. To handle this difference in im-
age characteristics, we added data augmentations (described
below) and a stage-2 fine-tuning. In stage-2, we fine-tuned
the network on a subset (50%, 57 samples) of the SmartKC-
data to ensure that the network learns these variations. This
helped further improve the performance (see Table II).
Data Augmentation: As the Keratron-data is relatively small
(2110 samples) for training a deep neural network, we
added domain-specific data augmentations like horizontal-
flip, rotation (0o−10o), scaling (0.6x−1.4x) and translation
(1−10%). Besides improving generalization of the network,
this also helped in making the network robust to variations
in the SmartKC captured images. Additionally, we also
employ mixup data augmentations [24]. To combine two
randomly selected samples xi, xj along with their labels
yi, yj in the training data, a new sample x̃ and its label
ỹ is generated as follows using the mixup scheme: x̃ =
λxi + (1 − λ)xj , ỹ = λyi + (1 − λ)yj , where yi, yj are
one-hot encoded class labels of the feature vectors xi, xj ,
and λ ∈ [0, 1] is a random number generated according to a
Beta distribution [24]. Mixup also helps with addressing the
data imbalance problem typical in medical datasets.

IV. EXPERIMENTS AND RESULTS

Implementation Details: We train our network on a Tesla
v100 GPU on a Microsoft Azure VM. We used the SGD
optimizer with momentum of 0.9 and a batch size of 32,
with a weighted random sampler to sample mini-batches
uniformly from each class. For the stage-1 fine-tuning on
Keratron-data, the network is trained for 200 epochs using a
fixed learning rate of 1e-3 (took 73.5 minutes). For the stage-
2 fine-tuning on SmartKC-data, we start with a 1e-4 learning
rate with linear decay for 100 epochs (took 3.5 minutes). The
inference time for a single image was 0.3 seconds. Note:
During both stages of training, ResNet34 blocks 1-3 of the
backbone were kept frozen.
Results: We evaluate the performance of our network on
the task of keratoconus detection on heatmaps from the
SmartKC-data. In stage-2, the network is fine-tuned on 50%
of SmartKC-data and evaluated on the remaining 50%; we
perform this evaluation on 5 random splits, and report the
average values over the 5 runs. We report sensitivity (Se =
Pk/Nk), specificity (Sp = Pn/Nn), and accuracy (Acc =

Fig. 3. t-sne plots (a) before training, and (b) after training, depicts a
good separation of the learned features for keratoconus vs non-keratoconus
test samples. (Note: This is shown for the fully-connected features for axial
heatmaps; the tangential heatmap features show a similar separation.)

Pk+Pn

Nk+Nn
) values (Table I), where Pi, Ni are the number of

correctly classified samples and total number of samples
in class i ∈ {keratoconus, non-keratoconus}, respectively.
The final output of the dual-head CNN model is computed
as the worst case possibility from the axial and tangential
branch, i.e., if either of the branches predict the heatmap as
keratoconus, we consider the final label as keratoconus.

Our network, comprising of dual-head CNN and 2-stage
transfer learning, achieved an accuracy of 93.1% (Se=91.3%,
Sp=94.2%) on the SmartKC-data (Table I). The 2-stage trans-
fer learning showed significant improvement compared to
traditional transfer learning of training only on the SmartKC-
data, which achieved an accuracy of 71.9% (Se=65.2%,
Sp=76.5%). Analogous to the SmartKC-data, we also had ac-
cess to the heatmaps generated by Keratron for the same set
of 64 patients. Our network achieved an accuracy of 93.9%
(Se=94.7%, Sp=93.4%) when evaluated on these Keratron
heatmaps (without the stage-2 of fine-tuning). In compari-
son, the Keratron-generated PPK-value based classification
achieved an accuracy of 92.2% (Se=89.4%, Sp=94.2%).
Additionally, we train an SVM on sim-K quantitative values,
where the input vector comprises of [sim-k1, sim-k2, (sim-
k1 – sim-k2), (sim-k1 + sim-k2)/2]. This classifier achieved
a high specificity (100.0%) but performed poorly in terms
of sensitivity (80.4%) (Table I). This further shows the
superiority of the proposed network.

Our proposed network is successful in learning discrimina-
tive features for the detection of keratoconus, as visible from
the t-sne visualizations [25] ( Figure 3) of the learned rep-
resentations from the second fully-connected layer (FC2 in
Figure 2) before and after training it for the axial heatmaps.
(Note: the tangential heatmaps show a similar separation).

Furthermore, we analyze the effect of data augmentations
and fine-tuning, by conducting an ablation analyses. Since
the traditional transfer learning model performed poorly
(Se=65.2%, Sp=76.5%) due to the small size of SmartKC-
data, for the ablation experiments, we consider the model
after stage-1 fine-tuning on Keratron-data as our base model.

Data Augmentations Ablation: Table II demonstrates the
utility of adding domain-specific data augmentations. With-
out adding any augmentations, the network performed poorly
with an accuracy of 42.1% (Se=88.8%, Sp=10.5%). Adding
mixup or domain-specific (rotation, translation, scaling) aug-
mentations increased the accuracy to 59.9% and 56.9%,
respectively. On combining both types of augmentations, the
accuracy further improves to 74.7% (Se=89.1%, Sp=65.0%).



Fine-tuning Augmentations Se Sp Acc.

Stage-1 None 88.8% 10.5% 42.1%
Stage-1 Mixup 84.7% 43.1% 59.9%
Stage-1 Dom. Spec. 82.1% 39.9% 56.9%
Stage-1 Dom. Spec. + Mixup 89.1% 65.0% 74.7%

Stage-1,2 None 82.1% 85.6% 84.1%
Stage-1,2 Dom. Spec. + Mixup 91.3% 94.2% 93.1%

TABLE II
Ablations for fine-tuning, and domain-specific and mixup data

augmentations. Evaluation is performed on the SmartKC test split..

Fig. 4. Effect of % data used for stage-2 fine-tuning on the SmartKC-data.

Fine-tuning Ablation: Despite the improvements in per-
formance after adding data augmentations, the performance
of the network is not satisfactory. Fine-tuning on a sub-
set of SmartKC-data (stage-2) drastically improved per-
formance, with the network achieving an accuracy of
84.1% (Se=82.1%, Sp=85.6%) (Table II) even without any
data augmentations. When combined with data augmenta-
tions, the network accuracy improved to 93.1% (Se=91.3%,
Sp=94.2%). The amount of SmartKC-data used for fine-
tuning impacts performance (Figure 4). Increasing the data
for stage-2 fine-tuning from 10% to 50% improves accuracy
by 3.1%, thus hinting that more data can further improve
the performance of our network. We found the sensitivity
to increase uniformly with more data, however the accuracy
decreased slightly on increasing stage-2 fine-tuning data from
40% to 50% (Figure 4). This can be attributed to our usage of
a weighted loss function, which penalizes the network more
for misclassifying keratoconus samples, and also owing to
the fact that the number of non-keratoconus samples (68) is
much larger than keratoconus samples (46).

V. CONCLUSION

In this work, we demonstrated the efficacy of a deep
neural network to detect keratoconus using the curvature
heatmaps generated by SmartKC, a low-cost smartphone-
based corneal topographer. We propose a dual-head CNN
(one each for the axial heatmap and the tangential heatmap),
and develop a 2-stage transfer learning strategy to train our
network on a small-sized dataset (114 samples). We achieve
results that are at par with doctors [2], indicating that our
proposed system can be used for diagnosis of keratoconus in
practice. Although this work focuses on classifying corneal
topography heatmaps, the proposed 2-stage transfer learning
strategy can be applied generally to similar scarce data
settings. In future, to improve the performance of the network
and increase robustness of our system, we plan to collect
more data for training the network. Finally, we aim to deploy
the SmartKC system with the proposed novel CNN-based
keratoconus classifier to aid in mass screening of keratoconus

in schools, villages, and remote locations. This can help in
early diagnosis of keratoconus and timely treatments, thus
playing a crucial role in preventing needless blindness.
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[15] Pierre Zéboulon, Guillaume Debellemanière, and Damien Gatinel.
“Unsupervised learning for large-scale corneal topography cluster-
ing”. In: Scientific Reports 10 (Oct. 2020).

[16] Alexandru Lavric and Popa Valentin. “KeratoDetect: Keratoconus
Detection Algorithm Using Convolutional Neural Networks”. In:
Computational Intelligence and Neuroscience (Jan. 2019), pp. 1–9.

[17] Manuel Campos Garcia et al. “Design of a null-screen for a compact
corneal topographer”. In: Modeling Aspects in Optical Metrology VII.
SPIE, June 2019.

[18] Behnam Askarian et al. “An affordable and easy-to-use diagnostic
method for keratoconus detection using a smartphone”. In: Medical
Imaging 2018: Computer-Aided Diagnosis. Ed. by Kensaku Mori
and Nicholas Petrick. SPIE, Feb. 2018.

[19] F. I. Pinheiro et al. “Design And Development Of An Ultraportable
Corneal Topographer For Smartphones As A Low Cost New Tool
For Preventing Blindness Caused By Keratoconus”. In: International
Journal of Latest Research in Science and Technology 4 (3 2015).

[20] B. Askarian et al. “Novel Keratoconus Detection Method Using
Smartphone”. In: 2019 IEEE Healthcare Innovations and Point of
Care Technologies, (HI-POCT). 2019, pp. 60–62.

[21] LVPEI. Students Screened for Keratoconus. 2018. URL: https:
//bit.ly/3E3zeiZ.

[22] AndreBeling da Rosa. “An accessible approach for corneal topogra-
phy”. In: 2013.

[23] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition
Challenge”. In: International Journal of Computer Vision (IJCV)
115.3 (2015), pp. 211–252.

[24] Hongyi Zhang et al. “mixup: Beyond Empirical Risk Minimization”.
In: ArXiv abs/1710.09412 (2018).

[25] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data
using t-SNE”. In: Journal of Machine Learning Research 9.86
(2008), pp. 2579–2605.

https://bit.ly/3KRfTnT
https://bit.ly/3E3zeiZ
https://bit.ly/3E3zeiZ

	I Introduction
	II Related Work
	III Method
	IV Experiments and Results
	V Conclusion

