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Multi-agent Feature Selection for Integrative Multi-omics Analysis

Sina Tabakhi, Student Member, IEEE, and Haiping Lu, Senior Member, IEEE

Abstract— Multi-omics data integration is key for cancer
prediction as it captures different aspects of molecular
mechanisms. Nevertheless, the high-dimensionality of multi-
omics data with a relatively small number of patients presents
a challenge for the cancer prediction tasks. While feature
selection techniques have been widely used to tackle the curse
of dimensionality of multi-omics data, most existing methods
have been applied to each type of omics data separately.
In this paper, we propose a multi-agent architecture for
feature selection, called MAgentOmics, to consider all
omics data together. MAgentOmics extends the ant colony
optimization algorithm to multi-omics data, which iteratively
builds candidate solutions and evaluates them. Moreover, a
new fitness function is introduced to assess the candidate
feature subsets without using prediction target such as
survival time of patients. Therefore, it can be considered
as an unsupervised method. We evaluate the performance
of MAgentOmics on the TCGA ovarian cancer multi-omics
data from 176 patients using a 5-fold cross-validation.
The results demonstrate that the integration power of
MAgentOmics is relatively better than the state-of-the-art
supervised multi-view method. The code is publicly available
at https://github.com/SinaTabakhi/MAgentOmics.

Clinical relevance— Discovering knowledge in existing multi-
omics datasets through better feature selection enhances the
clinical understanding of cancers and speeds-up decision-
making in the clinic.

I. INTRODUCTION

The advent of high-throughput technologies has recently

generated massive amounts of biological omics data, pro-

vided the ability of comprehensive assessment of a set

of molecules, and created new trends for biologists and

data scientists to diagnose, treat and even cure cancers

[1], [2]. Each type of omics data provides unique insights

into biological processes. Multi-omics integration aims to

simultaneously and comprehensively measure these biolog-

ical molecules to obtain a deep understating of complex

molecular mechanisms that lead to diseases [3], [4]. Public

multi-omics datasets such as The Cancer Genome Atlas

(TCGA) [5] and International Cancer Genomics Consortium

(ICGC) [6] programs have collected comprehensive pro-

files of several cancer types for multiple molecular layers,

encouraging researchers to study cancer-causing features.

Therefore, the integration task is a challenging issue for

researchers working with high multi-dimensionality datasets

with a relatively small number of samples. This phenomenon

is called “the curse of dimensionality,” presenting many

challenges to machine learning tasks [7]–[9].
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A way to categorize existing integration methods for

different machine learning tasks is needed to select best

practices. Multi-omics integration methods have been widely

classified into early, late, and intermediate integration ap-

proaches [10]. The early integration approach considers the

concatenation of each omics dataset into a single joint matrix,

and machine learning models are applied on the produced

single matrix. Support vector machines [11] and deep neural

networks [12] have been used to analyze combined multi-

omics data. Though the early integration is simple and easy

to implement, it increases the number of features and ignores

the size difference among omics data which makes the

learning process difficult [10].

In comparison, the late integration approach employs ma-

chine learning models on each omics data separately and then

aggregates models results. MOGONET [13] is a complex

example of late integration for the biomedical classification

task. This approach can use available methods that have been

proposed explicitly for each omics type. Ignoring interactions

among omics data to utilize the complementarity information

between them is the main disadvantage of the late integration

approach [7], [10].

On the other hand, the intermediate integration approach

contains methods that construct a single joint model of the

multi-omics data. Huang et al. [14] proposed deep learning-

based networks to aggregate different types of omics data for

survival analysis of breast cancer. Generally, this approach

outperforms other approaches because it assumes that the

different omics data share a common space which shows the

underlying biological mechanisms [15].

Since multi-omics data possess a high dimensionality,

many studies have utilized feature selection to simplify the

integration process [16]. However, feature selection methods

have been independently applied to each omics data as a

preprocessing step which neglects all omics data together.

Therefore, the genuine joint feature selection for multi-omics

data remains very rare. EL-Manzalawy et al. [17] proposed

a multi-view feature selection based on min-redundancy and

max-relevance criteria for multi-omics data, called mRMR-

mv. They used an incremental feature selection process to

select a feature subset from all views with maximal relevance

to the target class and minimal redundancy between pairs of

selected features. However, their method identifies the subset

of features in a single-iteration process that is started from

a specific point; as a result, it can be easily trapped into the

local optimum.

Multi-agent systems (MAS) consist of multiple simple

agents collaborating in a shared environment to achieve

an objective. Among many MAS algorithms, ant colony



optimization (ACO) has extensively been used for feature

selection on single view data due to their acceptable perfor-

mance [18]–[20]. The main superiority of the ACO compared

to other MAS algorithms can be noted as the availability of

a distributed long-term memory to share knowledge between

ants, simulation of reinforcement learning concepts for find-

ing better solutions, and parallel nature of the algorithm to

reduce the execution time [9], [21].

This study aims to design a multi-agent architecture for

multi-view (i.e. multi-omics) feature selection to consider

different omics data together, named MAgentOmics. To the

best of our knowledge, it is the first attempt to apply a

MAS for multi-view feature selection to handle the high-

dimensionality nature of multi-omics data. In the proposed

method, the labels of samples are not required in the feature

selection process, and it can be considered as an unsuper-

vised method. MAgentOmics consists of ants that interact

with each other through sharing knowledge. Iteratively, each

ant generates a subset of features using a combination of

relevance and redundancy analyses. Then, a new fitness

function is proposed to evaluate the constructed solutions. To

incorporate different views in the feature selection process,

a probability distribution is defined to show the relative

importance of the view, and it gets updated through a new

probability updating rule. Finally, the global-best solution is

chosen as the final feature subset.

II. MATERIALS AND METHODS

A. Multi-omics Data

The performance of the MAgentOmics method has been

evaluated on a publicly available dataset from the TCGA pro-

gram [22]. We selected ovarian serous cystadenocarcinoma

data from the TCGA and analyzed three omics, including

gene-level copy number variation, DNA methylation, and

gene expression RNAseq. The ovarian data were downloaded

from the UCSC Xena Platform1. A brief description of the

dataset is shown in Table I.

For the classification task, the data were divided into

two groups based on the clinical information (i.e. recorded

time of death and vital status) in the TCGA ovarian can-

cer, namely, long-term and short-term groups. The long-

term group includes those samples with survival time ≥
3 years. On the other hand, the short-term group includes

samples with survival time < 3 years and vital status of

‘DECEASED’ [17]. Since data from all omics were not

measured for each patient, only those patients with all omics

measured and available clinical information are included in

this study. Therefore, the final multi-omics data used further

are 176 samples, 85 of which belong to the long-term group.

B. Data Pre-processing

Raw data of ovarian cancer were then pre-processed by the

following steps to ensure the robustness for computation in

the classification task [22], [23]. Features with missing values

in each omics data were removed. For each feature in the

1https://xenabrowser.net/datapages/.

TABLE I

CHARACTERISTICS OF THE TCGA OVARIAN CANCER MULTI-OMICS

DATA USED IN THE EXPERIMENTS.

Omics Type Version #Features #Samples

DNA methylation 2017-09-08 27,578 616
Gene-level copy number variation 2017-09-08 24,776 579
Gene expression RNA-seq 2017-10-13 20,530 308

data, then, values were normalized to the range of [0, 1] by

applying the min-max normalization approach [24]. Finally,

retained features with variance values lower than 0.05 were

filtered out.

C. Multi-agent Feature Selection Architecture

MAgentOmics is a multi-agent architecture for feature

selection designed for multi-omics data. The overall frame-

work of the proposed method to find the near-optimal feature

subset is comprised of the ACO algorithm. Therefore, the

search space should be modeled as a suitable graph for

ACO before starting the feature selection procedure, which

is illustrated in Fig. 1.

More formally, each omics data can be represented as

a complete weighted graph, G =< F v, Ev, pv >, where

F v denotes the nodes in the graph corresponded to a set of

available features in v-th view, and Ev = {(fv
i , f

v
j ), f

v
i , f

v
j ∈

F v} indicates the set of edges of the graph. Each edge

is assigned a value corr(fv
i , f

v
j ), which is the correlation

between features fv
i and fv

j . To compute the correlation

between each pair of features, we use the absolute value

of the Pearson’s correlation coefficient between them [24].

Additionally, pv denotes the global relative importance of v-

th view in the multi-omics data that estimates the probability

of selecting a feature from v-th view.

In the ACO algorithm used in the feature selection prob-

lem, ants build feature subsets by moving from feature

to feature on the graph. The ants’ solution construction

is guided by two components: “pheromone” and “heuristic

information”. A pheromone strength τvi is associated with

the features and will be changed during the search process

to show the information obtained by ants. The heuristic

information is used as the prior knowledge of the problem

to guide the search strategy of the ACO algorithm. In this

paper, two static heuristic information are defined, which are

calculated at the initialization time and do not change during

the algorithm’s run. The first heuristic function is computed

as the inverse of the correlation between features. Moreover,

each feature’s relevance is considered as the second heuristic

function and measured by the term variance criterion [24].

Algorithm 1 describes the framework of the proposed

multi-agent feature selection method. This framework is

comprised of three main sections, including initialization

(lines 1-4), feature selection procedure (lines 5-18), and final

dataset construction (lines 19-20).

Initially, the correlation values between pairs of features

from each view are computed and assigned to the graph

edges. Then, the relevance of each feature is separately

assessed by utilizing the term variance. Thereafter, the initial

value of pheromone on each feature is set to a small constant
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Fig. 1. The graph representation of the search space for the multi-view
feature selection problem.

c. Finally, the initial probability values are equally distributed

among views (pk = 1/v, ∀k = 1, 2, . . . , v).

The feature selection procedure in MAgentOmics involves

iterative improvement in which any iteration of the algorithm

works in five steps.

Step 1: For each view v, NA ants are put on a randomly

chosen graph node from view v as their initial states.

Step 2: At the construction step, each ant extends its

current partial solution by sequentially employing “state

transition rules” biased by the amount of pheromone and

heuristic information. Ants, generally, prefer features that

are marked by the more substantial pheromone trail and

higher relevancy, as well as have a lower correlation with

the previously selected feature. These rules allow ants to

greedily search for the following features at their current

view or probabilistically explore other views for prospective

features. The subset generation will be stopped when the ants

select a pre-defined number of features.

Step 3: The quality of the generated candidate subsets

is measured using a new fitness function. Then, the best

subset found at the current iteration is kept as the current-best

solution.

Step 4: Once the solutions have been built and evaluated,

pheromone trails can be updated through a process called

the “pheromone updating rule.” This process acts by the

fact that the pheromone evaporates after some time, and

less promising features progressively lose pheromone. On the

other hand, the features which are repeatedly selected by the

ants are more likely to be chosen in the subsequent iterations

and get the greater level of pheromone. Furthermore, the ant

with the current-best solution can deposit an extra amount

of pheromone on its selected features.

Step 5: The probability distribution is updated by the

concept of reinforcement learning; an agent is encouraged

to explore the state that has obtained a high positive rein-

forcement in the long run [25]. To simulate this concept,

the number of features selected by ants in a specific view is

relatively considered as the importance of that view.

These five steps are repeated until the maximum number of

iterations is met. The global-best solution is selected among

Algorithm 1 MAgentOmics – Multi-agent Feature Selection

for Multi-view Data Integration

Input
D =< (X1, X2, ..., Xv), y >: multi-view dataset.
NI : maximum number of iterations.
NA: number of agents placed in each view.

Output
D

′ =< X ′, y >: final single dataset X ′, d′ × n.

1: Calculate corr(fk
i , f

k
j ), ∀k = 1, 2, ..., v.

2: Calculate rel(fk
i ), ∀k = 1, 2, ..., v.

3: τk
i (0)← c, ∀k = 1, 2, ..., v. ▷ Initialize pheromone

4: pk ←
1

v
, ∀k = 1, 2, ..., v. ▷ Initialize probability

5: for t = 1 to NI do
6: for k = 1 to v do
7: Put NA agents on a randomly chosen node.
8: end for
9: for k = 1 to v do

10: for a = 1 to NA do
11: Form new feature subset by (1), (2) or (3).
12: Evaluate the generated subset by (6).
13: end for
14: end for
15: Select the current-best solution at t-th iteration.
16: Update the pheromone values by applying (4).
17: Update probability distribution by applying (7).
18: end for
19: Choose the global-best solution found.
20: Construct D′ based on the global-best solution.

the best solutions in all iterations. Each omics data is then

reduced based on the features represented in the global-

best solution. The final dataset is constructed by combining

multiple reduced omics datasets.

State Transition Rule. The selection of the next feature

to add to the solution is made greedily or probabilistically

at each construction step. In the greedy rule, the maximum

value with which an ant, currently at feature i from view v,

decides to select feature j from the same view at the t-th
iteration of the algorithm is:

fv
j = argmin

j∈Ωv
iv

[

τvj (t)
[

η1
(

fv
j

)

]α[

η2
(

fv
i , f

v
j

)

]β
]

if q≤q0, (1)

where Ωv
iv is unvisited features in view v for the ant, τvj (t)

is the pheromone level on feature j from view v at time

t, η1(f
v
j ) is the first heuristic information which shows

the relevance of feature j from view v, η2(f
v
i , f

v
j ) is the

second heuristic information which indicates the inverse of

the correlation values between features fv
i and fv

j , the role of

parameters α and β is to determine the relative importance

of pheromone and two heuristic information values, q is

a uniform random number distributed in [0, 1] and q0 is a

parameter (0 ≤ q0 ≤ 1).

In the probabilistic way, first of all, an ant placed in view

v chooses a random view v′ from the set of views V (v′ can

be equal to v) by considering the probability distribution of

views P = {p1, p2, . . . , pv} as follows:

v′ = choice(V,P) if q > q0. (2)

Once the next view has been chosen, the next feature j
from view v′ is selected based on the probability P (fv′

j |fv
i ),



which is calculated according to the following equation:

P (fv′

j |fv
i ) =

τv
′

j (t)
[

η1
(

fv′

j

)

]α[

η2
(

fv
i , f

v′

j

)

]β

∑

u∈Ωv′

iv

τv′

u (t)
[

η1
(

fv′

u

)

]α[

η2
(

fv
i , f

v′

u

)

]β
. (3)

Pheromone Updating Rule. After all ants have formed

candidate subsets, the intensity of pheromone level on the

nodes is updated, which is commonly implemented as:

τvi (t+1)=(1−ρ)τvi (t)+ρ

[

count({fv
i })

count(S)
+
[

∆τvi (t)
]best

]

, (4)

where

[

∆τvi (t)
]best

=

{

[fitness(Sa)]
best if fv

i ∈ Sa,
0 otherwise,

(5)

ρ is a parameter that is called evaporation rate (0 < ρ <
1), τvi (t) and τvi (t + 1) indicate the pheromone level on

feature i from view v at time t and t + 1, respectively,

count(.) is a function that counts the number of times that

a subset of features have been selected during the current

iteration, and S is the subset of all selected features during

the current iteration. In Eq. (5), fitness[(Sa)]
best denotes a

fitness function which evaluates the quality of the constructed

subset Sa by ant a, and ‘best’ notation shows the current-best

solution.

Fitness Function. The goal of the fitness function is to fig-

ure out the quality of a feature subset. In this study, the fitness

function is designed to incorporate two important metrics in

the feature selection research area, maximal relevance and

minimal redundancy, which is defined as:

fitness(Sa) =

∑

fv
i
∈Sa

rel(fv
i )/|Sa|

∑

fv
i
,fv′

j
∈Sa

corr(fv
i , f

v′

j )/
∑|Sa|−1

i=1
i
, (6)

where rel(fv
i ) is the relevance function, corr(fv

i , f
v′

j ) is the

function to compute the correlation between pair of features,

and |Sa| is the size of the selected subset Sa by ant a. In

Eq. (6), the numerator of the fraction computes the average

of the relevance values of features in the selected subset Sa,

and the denominator calculates the average of the correlation

values between each pair of distinct features in Sa.

Probability Updating Rule. The probability distribution is

intended to make a view with the higher number of selected

features more desirable for ants in the subsequent iterations.

A new equation has been proposed and implemented to

update probability distribution as follow:

pv(t+ 1) = (1− ρ)pv(t) + ρ

[

count(Sv)

count(S)

]

, (7)

where pv(t) and pv(t+1) indicate the probability values of

view v at time t and t+1, respectively, and Sv indicates the

selected features subset in view v during the current iteration.

III. RESULTS AND DISCUSSION

We empirically evaluate the performance of the MA-

gentOmics as an unsupervised feature selection method in

comparison to the mRMR-mv [17] which is a supervised

multi-view feature selection method. The experiments are

conducted upon ovarian cancer data derived from the TCGA.

The proposed method is implemented using Python and

the code is publicly available on GitHub2. In the experiments,

the classification accuracy of two widely used classifiers has

been applied as the performance metric, logistic regression

(LR) [26] and random forest (RF) [27]. The Scikit-learn

library [28] was used to implement the presented classifiers.

To evaluate the average classification accuracy of the se-

lected subsets, 5-fold cross-validation (CV) was used. Since

k-fold CV may give rise to a noisy estimate of classifier

performance, we repeated the CV procedure 5 times and

reported the average values across all runs.

For the proposed method, a set of parameters is required

to set, the maximum number of iterations NI = 30, the

number of ants in each view NA = 20, α = β = 2 to

show equal importance of two heuristic information, the

evaporation rate ρ = 0.2, initial pheromone level on each

node τki (0) = 0.2, ∀k = 1, 2, . . . , v , and state transition

rules control parameter q0 = 0.7.

For the mRMR-mv method, the absolute value of Pear-

son’s correlation coefficient was considered as the redun-

dancy function. Moreover, the mutual information imple-

mented in Scikit-learn was selected as the relevance function

according to the original paper [17].

Fig. 2 illustrates the results of the comparison between

the MAgentOmics method and the mRMR-mv method in

terms of average classification accuracy (in %) of LR and RF

classifiers over different selected features sizes. The reported

results from Fig. 2a show that the proposed method has

the better performance compared to mRMR-mv when the

number of selected features is 10, 50, 60, 70, 80, 90, and

100. Additionally, Fig. 2b indicates that the classification

accuracy of the proposed method is higher than the mRMR-

mv method in most cases. For example, the classification

accuracy of the MAgentOmics was 57.1% when 50 features

were selected, while this value for mRMR-mv was 52.7%.

Overall, it can be observed that the best performance of

the proposed method was 59.1% and 57.1% using LR and

RF, respectively, while for mRMR-mv, these values were

reported 57.2% and 55.3%, correspondingly.

IV. CONCLUSION AND FUTURE WORK

MAgentOmics is a multi-agent feature selection archi-

tecture designed for multi-omics data integration with the

task of survival analysis. The architecture is based on the

interactions of multiple ants which share their knowledge

for finding the best global feature subset. In addition, we

proposed a new fitness function to evaluate generated subsets

by considering the maximum relevance and the minimum

redundancy analyses. To assess the relative importance of

2https://github.com/SinaTabakhi/MAgentOmics.
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Fig. 2. Average classification accuracy (in %), with respect to the number
of selected features over 5-fold cross-validation.

each view in the feature selection process, we proposed a

probability updating rule to iteratively update probability

distribution by the concept of reinforcement learning. In

other words, a view with a higher number of selected features

is more likely to be chosen by ants in the following iterations.

The performance of the proposed method was compared

to the supervised mRMR-mv feature selection method in

terms of classification accuracy of the logistic regression and

random forest classifiers. MAgentOmics achieved promis-

ing results on the TCGA ovarian cancer compared to the

mRMR-mv method. Although the proposed fitness function

analyzes the relevance and redundancy of the candidate

feature subsets, it needs high computational time to calculate

redundancies. Furthermore, it is an unsupervised function

that may result in lower accuracy.

Future work will handle the design of new fitness functions

to assess the subsets more accurately within lower compu-

tational time. Since the number of edges between pairs of

features is high in the multi-omics data, considering a search

space as a sparse graph can improve the execution time.
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