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Abstract— Executive function (EF) consists of higher level
cognitive processes including working memory, cognitive
flexibility, and inhibition which together enable goal-directed
behaviors. Many neurological disorders are associated with EF
dysfunctions which can lead to suboptimal behavior. To assess
the roles of these processes, we introduce a novel behavioral task
and modeling approach. The gamble-like task, with sub-tasks
targeting different EF capabilities, allows for quantitative
assessment of the main components of EF. We demonstrate
that human participants exhibit dissociable variability in
the component processes of EF. These results will allow us
to map behavioral outcomes to EEG recordings in future
work in order to map brain networks associated with EF deficits.

Clinical relevance— This work will allow us to quantify EF
deficits and corresponding brain activity in patient populations
in future work.

I. INTRODUCTION
Executive function (EF) encompasses several higher-level

cognitive processes including working memory, cognitive
flexibility, and inhibition. Together they enable and control
goal-directed behaviors [1]. These processes depend on brain
networks thought to be predominantly localized in prefrontal
cortex [2]. Many developmental, neurological and neuropsy-
chiatric disorders are associated with deficits in EF, including
neurodegenerative conditions such as Alzheimer’s disease, as
well as stroke, autism spectrum disorders, attention deficit
and hyperactivity disorder, obsessive-compulsive disorder,
schizophrenia, bipolar disorder, major depression disorder,
and Tourette’s syndrome [3], [4], [5], [6], [7], [8], [9], [10].
Further, individuals in sub-clinical or non-clinical populations
exhibit individual differences and longitudinal changes in
executive function that impact well-being [11].

Executive function impairments associated with these
disorders may stem from interacting deficits in working
memory, cognitive flexibility, and inhibition. In order to
target treatment for these disorders and restore EF, it is
critical to understand the neural networks governing each
component of EF. However, it is unclear if individuals
exhibit differences in these EF components independently
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Fig. 1. Three component dimensions of Executive Function

and in combination, and which brain networks generate these
differences. Understanding how brain networks govern these
EF processes in healthy individuals and how they change in
disease may guide new diagnostic tools and neuromodulation
therapies to restore brain networks in patients that suffer
disorders.

We have developed a novel experiment to dissociate and
quantify the EF processes of working memory, cognitive
flexibility, and inhibition (Figure 1). We build on our
previous work that used a card-game based gambling task
and intracranial EEG to identify risk-taking bias and its
neural basis in human decision-making [12], [13], [14],
[15]. Here we propose a modified task that effectively
decomposes EF into these processes and quantifies participant
EF along each dimension. This novel task further allows us to
dissociate participants into groups based on process-specific
EF performance (e.g., a group may entail participants who
are stronger in cognitive flexibility than working memory).
We quantify participant working memory, cognitive flexibility,
and inhibition, and we show that participants exhibit indi-
vidual differences in three distinct component dimensions of
executive function. These results will guide future work to
identify brain networks that govern each behavioral metric
in healthy and patient populations.
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Fig. 2. Illustration of the two tasks. Task 1 tests both working memory/planning and inhibition, while task 2 tests cognitive flexibility. The red frame in
task 1 (not present in display) indicates that participants are told which is the current deck in this task.

II. METHODS

A. Behavioral Task

We developed a novel two-stage behavioral experiment
(Figure 2) to dissociate each component of EF:

1) Task 1 tests working memory and inhibition. The task
is a modified version of the card game “War”. In
each gambling round, the participant is dealt one card.
It is drawn from a deck of cards which consists of
Spades 2-10 only. Cards are drawn from one of two
possible distributions which are shown as histograms
in the display, Figure 2. Critically, the probability of
drawing each card is not uniform, but can be skewed
toward either high cards or low cards. The participant
knows that a second card (the “computer’s card”) will
subsequently be drawn from the same distribution and
has to bet whether the second card will be greater or
smaller than their own card. In this task, the participant
is informed which of the two distribution is being
used in a given trial by being shown an image of
the histogram of the card probabilities for only the
correct, current deck. After pressing a button to indicate
their response, the computer’s card is revealed. In this
task, optimal performance only depends on participants
representing task conditions correctly to implement the
optimal decision, (the decision that maximizes expected
reward given the card). For the example shown in
Figure 2 (left), the optimal decision is to press ‘S’
since the current deck is skewed to cards lower than 5.
However, participants must also inhibit behavior based
on biases such as rewarding outcomes on prior trials or
repetition of the same choice as on prior trials. Thus,
this task also enables us to quantify inhibition using a
modeling approach.

2) Task 2 tests cognitive flexibility. Participants are shown
two possible deck distributions (histograms) and in-
formed that the deck occasionally switches randomly
from one to the other, but not which desk is currently in

use. They are shown two cards and asked to guess which
of the two distributions the cards are currently being
drawn from. This stage quantifies optimal performance
in cognitive flexibility by assessing ability to detect
when the environment changes. Optimal here is defined
as the most likely deck given current and previous cards
drawn. In the example shown in Figure 2 (middle), the
optimal choice is deck 1 if previous trials also suggest
deck 1.

B. Behavioral Data

Tasks 1 and 2 were performed by 95 high-functioning
participants, undergraduate students at a major North Amer-
ican research university who were compensated for their
time by course credit. The study was approved by the Johns
Hopkins University Institutional Review Board. The task was
implemented online using PsyToolkit, a platform for custom-
built cognitive tasks to be run in browser and accessed using a
unique link for each participant [16], [17]. PsyToolkit allows
the recording of precise response times for specified keyboard
inputs in response to on-screen visual stimuli. Participants
completed 100 trials of all tasks. The 95 participants that
took part in the study were divided into four groups, differing
in the specific sequence of cards on each part of the task.

C. Data Analysis

We developed metrics to quantify optimal performance for
each task and to quantify the distance between each partici-
pant’s behavior and the optimal behavior. Optimal behavior
in the first dimension, working memory, was defined as the
choice that maximized expected reward given the known card
distributions shown to the participants. Accordingly, when
the deck was skewed low, optimal behavior would be to bet
that the computer card would be higher only when the player
card is 2 or 3; otherwise, the optimal behavior would be to
bet that the computer card would be lower. Similarly, when
the deck is skewed high, the optimal behavior would be to
bet that the computer card would be lower only when the
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Fig. 3. Hidden Markov Model for task 2. Optimal player would compute
the forward probability of the HMM to determine the most likely state of the
deck on trial t, p(zt = k), based on the observation of card yt . Dashed lines
indicate the hidden state—the player is unaware of the true state of the deck
and must compute the most likely state given the observation probabilities
p(yt |zt) and transition probabilities A jk .

player card is 9 or 10; otherwise the optimal behavior would
be to bet that the computer card would be higher.

Distance from optimal behavior in the first task was
quantified as the normalized root mean square error between
participant bets and the optimal bet. We computed the fraction
of times the participant bet high for each participant card
value and then computed the root mean square error (RMSE)
with what the optimal fraction of betting high would be, then
normalized the RMSE to chance performance. Optimal betting
was defined as the bet on each card value that maximized
expected reward given the card distribution. The distance
from optimal was computed as:

d =

√
∑

10
i=2 ( fi − poi)2

n
(1)

Where fi is the fraction of high bets on card i, poi is the
optimal probability of betting high on card i (0 or 1 depending
on which bet maximized reward), and n is the number of
cards.

For the second task, testing cognitive flexibility, optimal
behavior was defined as the most likely choice given past and
current card observations in task 2. This was computed by
modeling the task as a hidden Markov model (HMM), with
observation probabilities corresponding to the probability
of observing each card value and transition probabilities
corresponding to the true transition probability of switching
between the two decks in the task (Figure 3). We quantified
distance from optimal behavior by computing normalized
RMSE between the optimal guess and the participant’s actual
guess on each trial, again normalizing to chance performance,
similar to equation (1).

We developed a model to dissociate inhibition from
working memory/planning in task 1. Participant bets were
modeled using a logistic regression that considered card value

Fig. 4. Participants exhibit differences in executive function separable
into distinct dimensions between task 1 and task 2. The origin (red star)
indicates optimal performance, and horizontal/vertical dashed lines at 1.0
indicate chance performance in each dimension. The x-axis quantifies working
memory/planning and inhibition performance as distance from optimal bet
decision on task 1, and the y-axis quantifies cognitive flexibility as distance
from optimal guess of current card distribution in switching task (task 2).
Each scatter point represents an individual participant. Dashed diagonal line
with slope of unity distinguishes performance in each behavioral dimension.

and intercept terms as reflecting working memory/planning
and prior outcome and prior choice terms as reflecting
inhibition:

ln
pt

1− pt
= β0 +β1 × ct +β2 × pot +β3 × pct (2)

Here, pt is the probability of betting the computer card will be
greater than the participant’s card on trial t, ct represents the
participant’s card value (z-scored) on trial t, pot represents
the effect of prior outcomes on trial t, and pct represents
the effect of prior choices on trial t. The model allows us
to dissociate whether participant choices are driven by card
values alone or also by biases due to reward history or choice
history.

We quantified distance from optimal working mem-
ory/planning using the model by computing the 2-norm of
β0 + β1 × ct for each participant compared to the optimal
model. Similarly, we quantified the distance from optimal
inhibition by computing the 2-norm of β2 × pot +β3 × pct
for each participant compared to the optimal model. We
normalized these distance values to the maximum distance
in each dimension.

III. RESULTS

Executive function consists of distinct processes, but it is
not clear to what extent these processes are separable and
whether individuals vary in their ability independently for
each component process. We designed a two-stage card game
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task (Figure 2) to separate the EF components of working
memory/planning, cognitive flexibility, and inhibition, and
we quantified individual participant variability along multiple
dimensions of EF.

We found that participants exhibit individual differences
in EF that are separable between distinct tasks. We indepen-
dently quantified distance from optimal behavior for task
1 (working memory/planning and inhibition) and task 2
(cognitive flexibility) for each participant on each task (see
methods). When we perform a scatter plot of individual
participants showing distance from optimal behavior for
each task (Figure 4), our results demonstrate that healthy
individuals exhibit variability in their performance, and that
individual performance is separable into distinct dimensions.
Specifically, some participants perform better on the working
memory/planning and inhbition task (above the dashed line
with slope of unity) while others perform better on the
cognitive flexibility task (below the line).

Deviations from optimal behavior in task 1 may be due
to either deficits in working memory/planning or deficits
in inhibition. Specifically, behavior that depends on reward
history or choice history is suboptimal and reflects a lack of
inhibitory control to suppress suboptimal choices. However,
suboptimal behavior may also be free of any effect due to trial
history and simply reflect that a participant is implementing
a suboptimal betting strategy based on inaccurate beliefs
about card values that is not consistent with the true expected
reward of each card. Thus, to separately quantify working
memory/planning and inhibition, we dissociated participant
behavior in task 1 into these component dimensions using
a modeling approach. We found that participants exhibited
individual variability in working memory/planning and in-
hibition in task 1 (Figure 5). This result suggests healthy
participants exhibit a range of inhibitory control and working
memory/planning abilities with independent deficits in each
of these EF processes.

Altogether, our results indicate that individual differences
are observable in healthy participants that distinguish perfor-
mance by the EF components of working memory/planning,
inhibition, and cognitive flexibility.

IV. DISCUSSION

The behavioral results from this study demonstrate that
our novel task decomposes executive function into its com-
ponent processes and identifies individual variability between
participant in the dimensions of working memory/planning,
inhibition, and cognitive flexibility. We demonstrate a range
of individual behavior from a healthy, non-clinical population,
suggesting that the task is sensitive enough to detect a
wide range of individual differences. This sensitivity to
individual differences may enable detection of cognitive
impairments in clinical patients with early, mild symptoms.
Specifically, this task may help identify patients with gradual
onset of mild cognitive impairment, which is currently
difficult to diagnose in its earliest stages—the time when
pharmacological intervention would be likely to be the most
effective.

Fig. 5. Model dissociates behavior in task 1 into two dimensions—
working memory/planning and inhibitory control. The origin indicates optimal
performance. The x-axis quantifies working memory/planning deficits and
the y-axis quantifies inhibition deficits. Each scatter point represents an
individual participant. See Methods for model details.

These behavioral results will enable future work to identify
brain networks that govern these EF processes in both healthy
and clinical populations by performing EEG recordings
during the experiment. In future work we intend to apply
decoding methods to EEG spectrotemporal data and network
connectivity analyses to EEG signals from distinct areas to
predict each metric of executive function from EEG signals
and identify network activity patterns that underlie differences
in executive function. Furthermore, the EEG brain networks
identified in each aspect of EF in future work may inform
targeted neurostimulation therapies for different disorders that
exhibit EF deficits.
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[12] P. Sacré, M. S. D. Kerr, S. Subramanian, Z. Fitzgerald, K. Kahn,
M. A. Johnson, E. Niebur, U. T. Eden, J. A. González-Martı́nez, J. T.
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