
  

Abstract— Monitoring of electrocardiogram (ECG) provides 

vital information as well as any cardiovascular anomalies. 

Recent advances in the technology of wearable electronics have 

enabled compact devices to acquire personal physiological 

signals in the home setting; however, signals are usually 

contaminated with high level noise. Thus, an efficient ECG 

filtering scheme is a dire need. In this paper, a novel method 

using Ensemble Kalman Filter (EnKF) is developed for 

denoising ECG signals. We also intensively explore various 

filtering algorithms, including Savitzky-Golay (SG) filter, 

Ensemble Empirical mode decomposition (EEMD), Normalized 

Least-Mean-Square (NLMS), Recursive least squares (RLS) 

filter, Total variation denoising (TVD), Wavelet and extended 

Kalman filter (EKF) for comparison. Data from the MIT-BIH 

Noise Stress Test database were used. The proposed 

methodology shows the average signal to noise ratio (SNR) of 

10.96, the Percentage Root Difference of 150.45, and the 

correlation coefficient of 0.959 from the modified MIT-BIH 

database with added motion artifacts. 

I. INTRODUCTION 

According to the Centers for Disease Control (CDC), 

cardiovascular diseases have become the first leading cause 

of death of all deaths occurring in the United States in 2017 

[1]. According to the European Health Network European 

Cardiovascular Disease Statistics 2017 edition, each year 

cardiovascular disease causes 3.9 million deaths in Europe 

and over 1.8 million deaths in the European Union (EU) [2]. 

Assessment of electrocardiogram (ECG) will provide vital 

information about a heart condition, and the existence of 

abnormalities or distress. However, ECG recordings, 

especially by portable devices are commonly contaminated by 

outside interferences referred to as ‘noise artifacts’. These 

noise artifacts are a conglomerate of common noises such as 

motion noise, baseline wander, powerline interference, just to 

name a few. Despite the recent advances in signal processing, 

there is still no efficient method for denoising biopotentials 

acquired by wearables, such as ECG. 

The current global COVID-19 pandemic has challenged 

the hospital-centered healthcare system and presented huge 

demands on a person-centered care system. The developing 

field of healthcare Internet of Things (IoT) offers more 

accessibility and mobility of medical services outside of a 

hospital setting. As the healthcare IoT field develops, mobile 

ECG devices will become more ubiquitous and will need to 

accommodate for everyday tasks that bed-ridden patients 
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cannot perform. However, ECG recordings are commonly 

distorted contaminated by noise artifacts. Therefore, the 

extraction of high-resolution ECG signals from noisy 

measurements is required. 

Several methods have been proposed to filter ECG from 

the signal contaminated with undesired interferences; 

however, each has its advantages and limitations. These 

include methods using smoothing filters such as Savitzky-

Golay filtering (SG) [3], Extended Kalman Filter (EKF) [4], 

Wavelet Denoising (WD) [3], Empirical Mode 

Decomposition (EMD) [5], Ensemble Empirical Mode 

Decomposition (EEMD) [6], adaptive filtering like Recursive 

Least Squares (RLS) and Normalized Least-Mean-Square 

(NLMS) [3], Total Variation Denoising (TVD) [7], sparsity 

[8], among others. One study on ECG signals with noise 

levels from 5 dB signal to noise ratio (SNR) to 45 dB SNR 

showed that the WD denoises better than the others. However, 

SG and the Adaptive filter like RLS and NLMS perform 

better in some mid-range SNR [3]. The EKF is also a 

promising method; however, the filter model is highly reliant 

on the underlying dynamics assumed for the ECG signal and 

not practical for nonlinear models in a realistic environment 

[4]. Zebin et al. reported that after decomposing the ECG 

signal using EMD and applying soft wavelet thresholding to 

the high-frequency components, the reconstructed signal was 

denoised more effectively than if only one method were 

applied [5]. Kumar et al. applied TVD successfully for 

detecting R-peak signals with long-pause, drifts, complexes 

QRS, smaller R peaks, and even noisy signal portions. 

However, TVD is still comparatively less accurate than other 

methods for detecting false-positive and false-negative [7].  

In this paper, we propose and develop a novel algorithm 

based on the Ensemble Kalman Filter (EnKF) to remove noise 

in ECG signals. Our results demonstrated that the proposed  

algorithm is reliable and effective as it could provide genuine  

ECG signals under strong noise condition. 

II. METHODS AND IMPLEMENTATION 

A. Ensemble Kalman Filter 

The Kalman Filter (KF) was initiated by R. E. Kalman for 

linear models and the noises involved are additive [9]. For 

nonlinear cases, EKF has been widely used, which is based 

on local linearization of the nonlinear model using the 
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Jacobian [10]. The EKF-based algorithms have a drawback 

that, at every instant of time, they approximate the posterior 

probability density of the parameter of interest by a Gaussian 

distribution. When the true posterior density is not Gaussian, 

Sequential Monte Carlo (SMC) filtering methods show 

superior performance over EKF methods. G. Evensen 

introduced the EnKF [11] which is an approximate filtering 

method that represents the distribution of the state with an 

ensemble of draws from that distribution. Suppose the 

unknown time-varying state vector of a dynamic state-space 

model is denoted by 𝒙𝑛 ∈ 𝑅𝐷𝑥  where 𝑛 =
1, 2, … . , 𝑁 represents time instants and 𝐷𝑥  represents the 

dimension of 𝒙𝑛, and its evolution is given by: 

𝒙𝑛 = 𝑓𝑛(𝒙𝑛−1) + 𝒖𝑛               (1) 
where 𝑓(. ) represents a state function which, in general, is 

nonlinear, and un denotes the state noise vector with a known 

probability density function (pdf). Furthermore, the 

observation equation of the state-space model is given by: 

𝒚𝑛 = ℎ𝑛(𝒙𝑛) + 𝒗𝑛               (2) 
where 𝒚𝒏𝜖𝑅𝐷𝑦 denotes the measurement vector obtained at 

time 𝑛, 𝐷𝑦  represents the dimension of the vector 𝒚𝑛, and 𝒗𝑛 

denotes the measurement noise vector whose pdf is assumed 

known. Given the state-space model (1) and (2), our objective 

is to make a sequential estimate of the evolution of the state 

vector 𝒙1:𝑛 = {𝒙1, . . . , 𝒙𝑛}in real-time as the measurement 

vector denoted by 𝒚1:𝑛 = {𝒚1, . . . , 𝒚𝑛} becomes available.  

EnKF computes the Kalman gain by approximating 𝑷𝑥𝑦,𝑛 and 

𝑷𝑦𝑦,𝑛 using their corresponding sample covariances, �̂�𝑥𝑦,𝑛 

and �̂�𝑦𝑦,𝑛 . To do so, 𝑁 number of ensembles, 

{𝒙(𝑖)
𝑛|𝑛−1}

𝑖=1

𝑁
 , are first drawn from the prior probability 

density of the state vector, 𝑝(𝒙𝑛|𝑛−1), which has the same 

probability distribution function as the state noise with a mean 

of 𝑓(𝒙(𝑖)
𝑛−1). Once the ensembles are generated, the sample 

covariances of the errors are computed as follows: 

�̂�𝑥𝑦,𝑛 =
1

𝑁
∑ (𝒙(𝑖)

𝑛|𝑛−1
− 𝒙𝑛)(𝒚(𝑖)

𝑛|𝑛−1
− 𝒚𝑛)𝑇

𝑁

𝑖=1
(3) 

�̂�𝑦𝑦,𝑛 =
1

𝑁
∑ (𝒚(𝑖)

𝑛|𝑛−1
− 𝒚𝑛)(𝒚(𝑖)

𝑛|𝑛−1
− 𝒚𝑛)𝑇

𝑁

𝑖=1
(4) 

where 𝒚(𝑖)
𝑛|𝑛−1

= ℎ(𝒙(𝑖)
𝑛|𝑛−1), 𝒙𝑛 =

1

𝑁
∑ 𝒙(𝑖)

𝑛|𝑛−1
𝑁
𝑖=1  

𝒚𝑛 =
1

𝑁
∑ 𝒚(𝑖)

𝑛|𝑛−1
𝑁
𝑖=1  .Then, the Kalman gain is 

approximated by: �̂�𝑛 = �̂�𝑥𝑦,𝑛 (�̂�𝑦𝑦,𝑛)−1           (5) 

the ensembles of the state vector, {𝑥(𝑖)
𝑛}, are computed as 

𝒙(𝑖)
𝑛 = 𝒙(𝑖)

𝑛|𝑛−1 + �̂�𝑛(𝒚𝑛 + 𝒗(𝑖)
𝑛 − 𝒚(𝑖)

𝑛|𝑛−1
) (6) 

where 𝒗(𝑖)
𝑛 are samples obtained from Gaussian distribution 

with mean 𝑦𝑛 and covariance 𝑸𝑤. Once the ensembles of the 

state vector are computed, the estimate of the state vector is 

obtained by taking the averages of ensembles as follows: 

�̂�𝑛 =
1

𝑁
∑ 𝒙(𝑖)

𝑛
𝑁
𝑖=1     (7). All these are illustrated in Fig. 1. 

B. State-Space Model of a Synthetic ECG 

A dynamic ECG model was proposed by McSharry et. al. to 

generate synthetic ECG trajectory in 3D Cartesian coordinate 

[12]. Further, the ECG dynamic model is transformed into 

simpler polar form by Sameni et al. and provided a convenient 

discrete-time mathematical model [13]. The model represents 

an ECG signal by a sum of five Gaussian functions, each 

corresponding to the five waves of an ECG signal, namely P, 

Q, R, S, T waves. The state vector of the dynamic model is 

defined by 𝐱𝒌 = [𝜃𝑘 , 𝑧𝑘]𝑇 , and the state equation is given by: 

{
𝜃𝑘 = (𝜃𝑘−1 + 𝜔. ∆) 𝑚𝑜𝑑 2𝜋           

𝑧𝑘 = − ∑
𝛼𝑖∆𝜃𝑖𝜔.∆

𝑏𝑖
2𝑖𝜖[𝑃,𝑄,𝑅,𝑆 ,𝑇] exp (−

∆𝜃2
𝑖

2𝑏𝑖
2) + 𝑧𝑘−1 + 𝜂𝑘

 (8) 

where ∆𝜃𝑖 = (𝜃𝑘 − 𝜃𝑖) 𝑚𝑜𝑑 2𝜋 is the phase increment, ∆ is 

the sampling period, 𝜂𝑘 is the state noise, 𝜔 is the angular 

velocity of the trajectory as it moves around the limit cycle, 

and 𝛼𝑖, bi and 𝜃𝑖  represent the amplitude, width, and center of 

the Gaussian functions, respectively. The measurement vector 

is defined by 𝒚𝑘 = [𝜙𝑘 , 𝑠𝑘] 𝑇, where 𝜙𝑘 is the observed phase 

representing the linear time wrapping of the R-R time interval 

into [0, 2π], and sk is the observed amplitude. The 

measurement equation is given by : 

{
𝜙𝑘 = 𝜃𝑘 + 𝑢𝑘

𝑠𝑘 = 𝑧𝑘 + 𝑣𝑘
,   (9) 

C. Data for Testing 

1) Challenge databank 

Generally, all algorithms under development would be 

evaluated using reliable and open online databanks. Our 

experiments use the MIT-BIH Noise Stress Test Database 

which includes twelve-half hours of ECG recordings and 

three-half hours of ECG with typical noise such as baseline 

wander, muscle artifact, and electrode motion artifact [14]. 

Clean ECG signals were used from the MIT-BIH Arrhythmia 

 
 

Figure 1. The EnKF algorithm flow chart. 



Database (102, 108, 121, 122, 215, 220, 232, 118, and 119), 

and each dataset was calibrated at six noise levels based on 

different signal-to-noise ratios (SNR) from -6 to 24 dB at 360 

samples per second.  

2) Modified Signals with Motional Artifacts Added 

When an ECG signal is recorded in daily life, it would be 

contaminated with many kinds of noise, such as motion 

artifacts. Unfortunately, the online dataset collected in the 

clinical setting is the ideal resting position with minimal 

motion artifacts. Therefore, here, we added the motion noise 

to the online clean dataset to have a better realistic scenario in 

our experiments. The ECG data were recorded using 

OpenBCI Cyton board (OpenBCI, Brooklyn, NY, USA) from 

healthy subjects during daily activities. Next, we normalized 

the recorded data to reinsure ECG and motion noise have 

realistic amplitudes. The EKF was employed to extract 

motion artifact noise. Then, ECG data should be normalized 

with the same threshold; before adding the motion noise to the 

new ECG. The process was previously described in  [15]. 

D. Comparison Criteria 

To evaluate the performance of denoising algorithms, the 
improvement in SNR before and after denoising, the root mean 
square error (RMSE), the Percentage Root Difference (PRD), 
and the correlation coefficient between the denoised and the 
clean signal are calculated. Equations 10-13 gives the 
formulae for calculating these evaluations.  where 𝑥(𝑛), and 
 𝑦(𝑛) are the original and the denoised signal respectively.  

𝑆𝑁𝑅 = 10 log (
∑ 𝑥2(𝑛)𝑛

𝑖=1

∑ (𝑥(𝑛) − 𝑦(𝑛))
2𝑛

𝑖=1

)                                 (10) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥(𝑛) − 𝑦(𝑛))

2
𝑛

𝑖=1

                                           (11) 

𝑃𝑅𝐷 = √
∑ (𝑥(𝑛) − 𝑦(𝑛))

2𝑛
𝑖=1

∑ 𝑥2(𝑛)𝑛
𝑖=1

 × 100                                  (12) 

𝐶𝑜𝑟𝑟

=
𝑛(∑ 𝑥(𝑛)𝑛

𝑖=1 𝑦(𝑛)) − [(∑ 𝑥(𝑛))𝑛
𝑖=1 (∑ 𝑦(𝑛)𝑛

𝑖=1 )]

√[𝑛 ∑ 𝑥(𝑛)2 − (∑ 𝑥(𝑛)𝑛
𝑖=1 )

2𝑛
𝑖=1 ] [𝑛 ∑ 𝑦(𝑛)2 − (∑ 𝑦(𝑛)𝑛

𝑖=1 )
2𝑛

𝑖=1 ]

  

                                                                                                         (13) 

III. EXPERIMENTS AND RESULTS 

The three-dimensional trajectory which is generated from 
(8), consists of a unit circular (r=1) limit cycle which is going 
up and down when it approaches one of the P, Q, R, S, or T 
points. The projection of these trajectory points on the z-axis 
gives a synthetic ECG signal. We intensively explored various 
filtering algorithms, including EKF, SG, WD, EEMD, LMS, 
RLS, and TVD. Fig. 2 illustrates the typical phase-wrapped 
results of the EnKF, EKF, SG, WD, EEMD, LMS, RLS, and 
the TVD for an input SNR of 12 dB. The signal under test is 
the record 118 from the MIT-BIH Arrhythmia Database with 
different SNR from 6 to 24 dB. The efficacy of the denoising 
techniques with the different input SNR levels is described in 
Fig. 3. The records from the MIT-BIH database are used. For 
each record, the SNR varies from 6 to 24 dB. This figure 
presents the SNR improvement, PRD, Correlation and RMSE 

for all the denoising techniques, at different levels of noise. 
Table 1 presents the performance of all filtering algorithms 
performing on the modified MIT-BIH database with added 
motion artifacts. 

IV. DISCUSSION & CONCLUSION 

In Fig. 2, results for filtering ECG performed by EnKF, 

EKF, SG, WD, EEMD, LMS, RLS, and TVD are depicted. 

As seen, the EnKF has followed the dynamics of the ECG 

signal and it has suppressed the noise more than the other 

methods. The proposed method, EnKF, is compared with 

those widely used filtering methods and it outperforms them 

in terms of visual quality. TVD and LMS annihilate the 

morphology of ECG which contains useful information. The 

SG, EEMD, and RLS could not eliminate the noise 

completely. The results of WD, and EKF are fairly consistent. 

Fig. 3 illustrates the performance of different denoising 

methods at different input SNR levels. This figure compares 

RMSE, Correlation, PRD, and SNR of different denoising 

methods. Fig. 3a presents the comparison of the RMSE 

results obtained by using different denoising methods at the 

various level of SNR. As seen, for particular SNR levels, the 

proposed method yields the smallest RMSE thus 

demonstrates its capability to yield enhanced ECG signal with 

better quality. Fig. 3b depicts the correlation results for 

different input SNR levels. The proposed method has the 

maximum correlation with the clean signal. The proposed 

method provided significantly higher Correlation when 

compared with the other existing techniques. Fig. 3c indicates 

 

 

 
Figure 2. Phase-wrapped ECG filtering results for an input signal of 12 

dB. (a) EnKF. (b) EKF. (c) SG. (d) Wavelet denoising. (e) EEMD filter. 

(f) LMS adaptive filter. (g) RLS adaptive filter. (h) Total variation 
denoising. 
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that the proposed denoising method provides lower PRD than 

other used methods. The mean of the SNR improvements 

versus different input SNRs is plotted in Fig. 3d. It is worth 

noting that EnKF has better performance in input SNRs 

greater than 10 dB. Visually comparing these results, it can be 

found the proposed methods have admirably tracked the 

original signal. This figure shows that the proposed method 

provided reasonably higher SNR in the higher SNR input 

level. To show that EnKF improvement is effective in daily 

life situations, the method has been validated using the 

modified data with motion noise added. Table 1 shows the 

denoising performance comparison in terms of RMSE. 

Correlation, PRD, and SNR at the modified MIT-BIH 

database with added motion artifacts. It can be seen from the 

table that the EnKF has the highest SNR improvement. The 

same conclusion can be drawn from the PRD and Correlation. 

The results of this paper approve the applicability of the 

EnKF, for the filtering of noisy ECG signals. In the future, we 

would like to optimize our denoising method and test with raw 

ECG data. We are developing a novel wearable ECG 

monitoring system in real-time and pseudo-real time combined 

with our denoising method EnKF [16]. The device will provide 

analytics details on our mobile Android and iOS apps using 

cloud computing. 
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Figure 3. (a) Comparison of the mean RMSE obtained by using 
different denoising methods at different input SNR levels. (b) 

Comparison of the mean Correlation versus different input SNR levels. 

(c) Comparison of the PRD for different denoising methods at different 
input SNR levels. (d) Comparison of the mean SNR improvements for 

different denoising methods versus different input SNR levels. 

TABLE I.  PERFORMANCE OF DENOISING ALGORITHMS FOR THE 

MOTION NOISE CANCELLATION 

 SNR Correlation PRD RMSE 

EnKF 

10.965 

 

0.959 

 

150.45 0.105 

 

EKF 
10.226 

 

0.913 

 

288.18 0.128 

 

SG 
9.280 

 

0.888 

 

387.12 0.148 

 

WD 
7.813 

 
0.883 

 
277.82 0.150 

 

EEMD 
5.187 

 

0.825 

 

469.50 0.183 

 

LMS 
9.254 

 

0.897 

 

297.12 0.131 

 

RLS 
9.206 

 

0.892 

 

298.15 0.129 

 

TVD 
9.397 

 

0.890 

 

361.32 0.142 

 

 
 


