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Abstract— The COVID-19 pandemic has fueled exponential
growth in the adoption of remote delivery of primary, specialty,
and urgent health care services. One major challenge is the lack
of access to physical exam including accurate and inexpensive
measurement of remote vital signs. Here we present a novel
method for machine learning-based estimation of patient res-
piratory rate from audio. There exist non-learning methods
but their accuracy is limited and work using machine learning
known to us is either not directly useful or uses non-public
datasets. We are aware of only one publicly available dataset
which is small and which we use to evaluate our algorithm.
However, to avoid the overfitting problem, we expand its effec-
tive size by proposing a new data augmentation method. Our
algorithm uses the spectrogram representation and requires
labels for breathing cycles, which are used to train a recurrent
neural network for recognizing the cycles. Our augmentation
method exploits the independence property of the most periodic
frequency components of the spectrogram and permutes their
order to create multiple signal representations. Our experiments
show that our method almost halves the errors obtained by the
existing (non-learning) methods.

Clinical relevance—We achieve a Mean Absolute Error
(MAE) of 1.0 for the respiratory rate while relying only on an
audio signal of a patient breathing. This signal can be collected
from a smartphone such that physicians can automatically and
reliably determine respiratory rate in a remote setting.

I. INTRODUCTION

The COVID-19 pandemic has established the use of
telemedicine as a critical health care delivery channel that is
likely to expand in the future. A significant challenge faced
in telemedicine care delivery is the accurate measurement of
vital signs such as respiratory rate. Respiratory rate, defined
as the number of breaths a person takes per minute, is
one of four clinical vital signs. As such, it plays a central
role in the physical examination and accurate diagnosis of
patients. Changes in respiratory rate have been shown to
be an important early indicator of clinical deterioration and
increased mortality in a variety of disease states [1], [2]. Thus
an accurate measurement of respiratory rate is critical for
assessing patient stability. The gold standard for measuring
respiratory rate is to count a patient’s breaths over a 60
second interval. In the busy clinic or triage setting, this
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approach is inefficient and often abbreviated by observing
breaths over shorter time intervals (e.g., 10 seconds) which
can lead to inaccurate estimates [3], [4], [5]. Additionally,
awareness of one measuring their own respiratory rate has
been shown to change a patient’s respiratory rate [6].

A variety of practical challenges for respiratory rate es-
timation are raised in the setting of a telemedicine visit
due to poor lighting, low video quality, and camera angle
which may hinder a practitioner’s ability to manually assess a
patient’s respiratory rate and increase the potential for human
error. Accordingly, there is an urgent need for a robust, low-
cost method for estimating respiratory rate for the delivery
of health care in busy and remote telemedicine settings.

One well-established automated approach for measuring
respiratory rate in the monitored clinical setting is known
as impedance pneumonography which measures changes in
transthoracic impedance during the respiratory cycle via skin
electrodes [7]. Yet this method requires expensive equipment
that is only typically available in a monitored clinical setting
such as an emergency department, intensive care unit and
some general medical wards and thus does not lend itself to
remote or resource-limited settings.

By contrast, an estimation system relying on audio signals
alone provides an automatic, remote, and virtually free
alternative for respiratory rate estimation that is amenable
to hospital and telehealth settings. Existing work in this area
involves both learning-based and purely signal processing-
based techniques that have been used to estimate respiratory
rate directly or related features like inspiration and expiration
cycle boundaries which can be used for computation of
respiratory rate [8], [9], [10], [11].

In this paper we make the following contributions: (1)
Propose a novel breath cycle supervision technique that
assigns a binary label to each acoustic frame. This allows
learning-based methods to be used for respiratory rate es-
timation when labeled data is scarce. (2) Propose a novel
input transformation that further mitigates overfitting in a
low-data scenario by focusing on periodicity in the signal.
(3) Create a partition of the only publicly-available labeled
audio respiration dataset (ICBHI) that makes it useful for
evaluation of respiratory rate estimation methods instead of
its original purpose which is lung sounds classification. (4)
Compare our proposed learning-based approach to existing
signal processing-based techniques on our partition.

II. RELATED WORK

Signal Processing-Based Methods: Multiple signal pro-
cessing methods have been used to estimate respiratory
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rate from audio alone. Dafna et al. implemented an
autocorrelation-based approach which maximizes correlation
between the original audio signal and the same signal de-
layed in time [8]. The autocorrelation is multiplied by a
breathing interval probability function (BIPF) which serves
to emphasize more physiologically-likely breathing intervals
based on prior knowledge. Ren et al. extract the envelope of
the audio signal by computing the maximum absolute value
of samples within an audio frame [9]. The breathing rate is
then estimated by examining the time at which a similarity
function between the original audio and time-delayed audio
is maximized.

Learning-Based Methods: A number of deep learning-
based algorithms have also been created in order to es-
timate respiration rate. Nallanthighal et al. [10] collected
audio data from subjects performing a number of tasks
including spontaneous speech, reading a script and general
speech. Then spectral features like spectrograms and log
Mel spectrograms calculated from the audio signals were
fed into CNN and LSTM models, using respiratory belt
sensor values as ground truths. Jácome et al. [11] used
the Faster R-CNN architecture to classify regions in input
spectrograms into three regions: background, inspiration,
and expiration. Unlike Nallanthighal et al. who used audio
gathered from an external microphone, lung sounds gathered
from a microphone-enabled stethoscope were used as input
audio sources.

III. DATA

Respiratory Sound Database ICBHI1 2017: The Respi-
ratory Sound Database from ICBHI 2017 [12] was collected
for classification of various breathing disorders. The dataset2

consists of breathing samples with full inspiration/expiration
intervals labeled. To the best of our knowledge, this is the
only publicly-available dataset of breathing sounds. In the
original dataset, there are many irregular breathing samples
that have properties inconsistent with normal breathing data
that the algorithms presented in this paper would expect as
input, i.e. aperiodic. To have an accurate representation of
performance on regular breathing data, which is what would
be expected in most settings, we want to test our system
on relatively periodic and clean3 breathing samples only. We
manually remove samples from the dataset for our purposes
according to four general criteria: (1) samples with noticeable
heart beats (2) samples with too many random background
sounds (3) too much background noise or hum present in the
audio sample (4) irregular or non-periodic breathing pattern.
Of the original 914 audio samples, only 419 remained after
manual removal according to the above criteria. We also trim
audio segments from the second to the second-to-last interval
label, because we find inconsistent labels at the beginning

1International Conference on Biomedical and Health Informatics.
2All human subjects data (breathing audio) used in this study was already

publicly available online and was not collected by any of the authors of this
work. Therefore there was no need to consult our Institutional Review Board
for approval.

3Audio samples with little background noise, i.e. high Signal-to-Noise
Ratio (SNR).

and end of many samples that do not correspond to full
breathing cycles.

Preprocessing and Feature Extraction: We use the log
Mel spectrogram as our feature representation for audio in
all approaches except the envelope baseline (discussed in
the following section). We downsample audio recordings to
16kHz and use a window of length 1024, a hop size of 10ms,
and 80 Mel frequency bins. We clip all signal components
below −120dB and normalize to the range 0 to 1 where 0
corresponds to −120dB and 1 corresponds to 0dB.

IV. BASELINES

Autocorrelation approach: We adapted the
autocorrelation-based approach from [8] to serve as a
baseline. We compute the log Mel spectrogram as discussed
previously, and then periodicities are calculated for a given
frequency component i using the following equation:

Pi,l =
1

T × FR− l

T×FR−l∑
n=0

(Xi,n − X̄i)× (Xi,n+l − X̄i)

(1)
where T is the window’s length in seconds, FR is the frame
rate in Hertz, X̄i is the mean of component i, and l is
the time-lag in seconds. The periodicities are then smoothed
with a low-pass filter. We choose the top 20 most periodic
frequency components per breathing sample4 and take the
mean of these 20 components per frame to get the overall
periodicity signal. We multiply the periodicity signal by the
BIPF [8] and then calculate the breathing rate estimate using
the first local maximum in the resulting signal.

Envelope approach: The second baseline is an envelope-
based approach adapted from [9]. Due to the sensitiv-
ity of this approach to amplitude variations, the raw au-
dio signal is first denoised using a python library called
noisereduce [13], [14]. The denoising approach relies
on example acoustic frames containing noise only, which
we select by choosing acoustic frames whose features have
a normalized variance above a pre-decided threshold. The
denoised signal is then bandpass filtered to exclude low and
high frequency cutoffs unrelated to breath sounds. The audio
signal is then divided into frames, and the maximum absolute
value of audio samples in a given frame is calculated. Cubic
spline interpolation is used to ensure that the envelope and
the original audio signal have the same length. A similarity
function f(t) is then computed between the original envelope
e(l) and a time-lagged envelope e(l+ t) using the following
equation:

f(t) =

∑N−Tmax−1
l=0 |e(l)− e(l + t)|

N − Tmax
(2)

for Tmin ≤ t ≤ Tmax where N is the total length of the
envelope and Tmin and Tmax represent the lower and upper

4For each frequency component, we compute the autocorrelation at
various shifts. Then we compute the variance of those autocorrelation calcu-
lations. Frequency components with the highest variance in autocorrelation
are the most periodic.
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Fig. 1. Neural network architecture for interval count estimator.

bounds of the time lag. The breathing rate is ultimately
estimated from the first local minimum of the similarity
function.

Interval count estimator: The interval count estimator
baseline is learning-based, and thus requires a supervision
signal. As a simple approach, we choose to model respiratory
rate estimation as a classification problem over the number
of inspiration/expiration regions present in the audio. For this
dataset, the maximum number of regions is 14, so we predict
over 14 possible classes where each class index indicates
the number of regions in an audio sample5. We use a neural
network composed of two Bi-directional Long Short-Term
Memory (BLSTM) layers and two fully-connected (FC)
layers (see Figure 1). The hidden states in the BLSTM and
FC layers both have dimension 100. The final state of the
forward direction and the first state of the backward direction
from the BLSTM are concatenated to create a fixed-length
representation to summarize the audio. This representation
is then passed through the FC layers where a softmax is
computed over the possible classes. We optimize the network
using the crossentropy loss, train with the Adam optimizer,
and use a learning rate of 0.0001.

V. METHODS

Binary Framewise Supervision: Since we have little
training data, we want to keep the supervision signal as
simple as possible. Due to the periodic nature of respira-
tion, we hypothesize that representing transitions between
different regions at the frame level, rather than predicting
the total number of inspiration/expiration regions at the
sample level, may provide better supervision for this task. We
choose to supervise a neural network with a binary framewise
signal, where transitions are indicated by switching the class
label. We always label each frame corresponding to the first
inspiration/expiration region with class 0. We also train a
separate system where we reverse the spectrogram along the

5The ground truth count is obtained by counting the number of inspira-
tion/expiration regions in the annotation for an audio sample.
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Fig. 2. Neural network architecture of proposed approach.

Forward Supervision

Backward Supervision

0 1 0 1

1 0 1 0

Fig. 3. Provided are an example of forward supervision and backward
supervision. Note that for forward supervision, the label of the first inspira-
tion/expiration interval (from left to right) is zero. For backward supervision
we have the opposite case, where the last interval (again left to right) is
labeled zero.

time axis and label it in the same fashion. We refer to these
labeling techniques as forward and backward supervision,
respectively. For a visual depiction of the supervision signals,
refer to Figure 3.

We use a neural network similar in size and structure
to the Interval Count Estimator baseline for our proposed
approach (see Figure 2). We use two BLSTM layers and
two FC layers both with hidden dimension 100. Unlike the
Interval Count Estimator, the FC layers are applied to each
hidden state output by the BLSTM, because classification is
performed at the frame level. We then optimize the network
with crossentropy at each frame, using the Adam optimizer
and a learning rate of 0.0001.

Frequency Permutation: Due to the underlying period-
icity of the breathing signal, many frequency components
should be relatively periodic individually. Note that this
is a necessary assumption for the autocorrelation baseline
[8]. Thus, we hypothesize that the framewise relationships
between different frequency components are not important.
For tasks such as automatic speech recognition (ASR), this
is not the case, but for this task we can capitalize on
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Fig. 4. Given is a visual depiction of the process of frequency permutation of the input spectrogram (80 frequency bins on left). The 20 most periodic
frequency components of the sample are selected. 10 components are then randomly selected and shuffled before passing to the model for prediction (right).

frequency independence to propose another form of data
augmentation that helps us avoid overfitting. Instead of
providing the spectrogram as-is, we randomly permute the
frequency components each time we pass a training example
to our model. Periodicity information is still present in the
input after permutation, but the exact form of the training
example will be different every time. We hypothesize that
the model learns to look for periodicity in every channel,
without being able to overfit to any frequency-specific pattern
that may be found in the data.

Since we want our model to focus on periodicity infor-
mation, we want to avoid distraction that would be caused
by providing relatively non-periodic components. To do this,
we follow the same approach proposed in the autocorrelation
baseline, where we first select the top 20 most periodic
components in the audio sample. We further augment the
data by randomly choosing a subset of 10 of these frequency
components, and randomly permute this subset before pass-
ing it as input to our model (see Figure 4).

Respiratory Rate Estimation from Learned Signal:
Once training is complete, we need to compute the respira-
tion rate from the framewise class probabilities output by the
model. This sequence should alternate between outputting
classes 0 and 1 with relatively high probability. We empiri-
cally observe that predictions are confident and accurate for
the earlier inspiration/expiration regions, and become less
confident over time. Thus, we choose to make our estimate
of the underlying period of the breath by the length of the
first region. The length of this region is determined as the first
frame at which the probability of class 0 drops below 0.5.
To enhance our prediction, we also train a separate model
where we flip the audio and make the same predictions.
Thus, we rely on the predicted length of the first and
last inspiration/expiration regions, called breathing intervals,
to make the final prediction, which is the mean of both
individual model predictions (see Figure 5).

VI. EXPERIMENTS

We run experiments with all baselines and our proposed
model under three different noise conditions. For the first
condition, no noise is added to the signal such that the signal-
to-noise (SNR) ratio is infinity. For the other two conditions,
we add white noise such that the SNR is -10dB or -20dB
to simulate performance in adverse recording conditions. We
split the data into a training and test split, where the training
set is used to calculate statistics for the autocorrelation
baseline BIPF and train neural networks for the Interval
Count Estimator baseline and our proposed approach. We

𝑝(𝑙 = 0|𝑋, 𝑓𝑜𝑟𝑤𝑎𝑟𝑑)

𝑝(𝑙 = 0|𝑋, 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑)

𝐵𝐼𝑓𝑜𝑟𝑤𝑎𝑟𝑑

𝐵𝐼𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑

Fig. 5. Visual depiction of estimation of repiratory rate from predicted
framewise probabilities using forward and backward supervised models.
BIforward refers to the forward breathing interval, BIbackward refers
to the backward breathing interval, and X refers to the input provided to
the neural network (spectrogram is shown in the figure for intuition).

then estimate the respiratory rate for all methods using the
test set. Our training set consists of 335 samples (40 of which
are held out for validation), and the test set consists of 84
samples.

VII. RESULTS

Mean Absolute Error (MAE) and Standard Deviation
(STD) for each method under each noise condition are
reported in Table I. We compute statistical significance using
a dependent t-test for paired samples.

While statistical significance varies, our method is best
for all noise conditions both for MAE and STD, imply-
ing more accurate and stable predictions compared to the
other techniques. The autocorrelation approach is the most
competitive baseline compared to our proposed approach,
but its performance suffers in worse noise conditions. We
hypothesize that the Interval Count Estimator does a poor
job most likely due to weak sample-level supervision and
the relatively small amount of data. Since class predictions
are integer counts, errors of even one class cause large
deviations from the correct respiration rate for samples with
few inspiration/expiration regions.

VIII. ABLATION

We want to compare the results of our proposed system
to a version where the frequency channels are not permuted
to determine the importance of permutation for avoiding
overfitting. We run an additional experiment where we
provide the entire input spectrogram to the model instead
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MAE
SNR ∞ -10dB -20dB

Autocorrelation 1.9* 4.3 6.4**
Envelope 4.6** 8.1** 7.4**

Interval Count 7.7** 8.7** 8.7**
Proposed 1.0 4.1 4.0

STD
SNR ∞ -10dB -20dB

Autocorrelation 4.6 5.3 5.6
Envelope 6.4 5.7 5.6

Interval Count 6.7 7.2 7.2
Proposed 1.7 4.1 3.8

TABLE I
COMPARISON OF METHODS. THE BEST VALUE AT EACH SNR LEVEL IS

BOLDED. FOR MAE, STATISTICAL SIGNIFICANCE BETWEEN THE

PROPOSED APPROACH AND ALL OTHER METHODS IS DENOTED BY * FOR

p < 0.1 OR ** FOR p < 0.05 ON EACH OF THE OTHER METHODS,
RESPECTIVELY.

of the random subset of 10 frequency channels from the
20 most periodic channels. Results for this experiment are
given in Table II. We find that the system without frequency
permutation performs worse than the system with frequency
permutation at a statistically-significant level. This provides
strong evidence that providing the entire spectrogram as
input to the model with so few training examples allows
the model to overfit and leads to worse generalization than
the model with permuted frequency channels.

IX. FUTURE WORK

We explore a novel way to supervise a neural respiratory
rate estimation system through binary framewise labels,
but our approach to estimate the breathing rate from the
predicted framewise probabilities of the trained model can be
improved. We use only the first and last predicted breathing
interval boundaries to estimate the breathing rate, which
may be suboptimal to an approach that takes all predicted
interval boundaries into account. An improved method for
using the predicted framewise probabilities from our model
to determine respiratory rate is left to future work.

MAE STD
No Freq Permutation 1.8** 3.0

Freq Permutation 1.0 1.7

TABLE II
ABLATION STUDY WITH SNR= ∞. STATISTICAL SIGNIFICANCE AT

p < 0.05 IS DENOTED WITH ** FOR MAE BETWEEN “NO FREQ

PERMUTATION” AND “FREQ PERMUTATION” OPTIONS.

X. CONCLUSIONS

In this paper, we propose two techniques that can be used
to improve training of deep neural networks for respiratory
rate estimation. Binary framewise labeling can be used to
provide a stronger supervision signal to the neural network.
Additionally, frequency permutation, which relies on the
principle that frequency components should be periodic
individually, can be used as a data augmentation method

to avoid model overfitting for this task. We show that the
proposed approach performs better than all baselines and that
a system with frequency permutation outperforms a system
without frequency permutation. Given that the ICBHI Res-
piratory Sounds Database is the only known public database
of labeled respiratory sounds, and is relatively small, our
proposed approach offers added benefit in that it performs
extremely well with very few labeled training examples. The
proposed approach demonstrates how a supervised respira-
tory rate estimation system can be built within a low-data
setting.
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