
Exploiting Path Parallelism in Logic Programming*

Jordi Tubella and Antonio Gonz6lez

Universitat Politkcnica de Catalunya
C/. Gran CapitA, s/n. - Edifici D6

E-08071 Barcelona (Spain)
e-mail: {jordit,antonio}@ac.upc.es

Abstract

This paper presents a novel parallel implementa-
tion of Prolog. The system is based on Multipath
[12], a novel execution model for Prolog that imple-
ments a partial breadth-first search of the SLD-tree.
The paper focusses on the type of parallelism inher-
ent to the execution model, which is called path par-
allelism. This is a particular case of data parallelism
that can be efficiently exploited in a SPMD architec-
ture. A SPMD architecture oriented to the Multipath
execution model is presented. A simulator of such sys-
tem has been developed and used to assess the perfor-
mance of path parallelism. Performance figures show
that path parallelism is effective for non-deterministic
programs.

1 Introduction

The implementation of Prolog systems usually re-
lies on the inference rule based on SLD-resolation
[6, 81, which is used in a top-down fashion. The ap-
plication of the resolution steps starts from the initial
program query. Every resolution step takes a query
and tries to match one of its goals against the head of
a clause. Unification is used to match both predicates.
If it succeeds, then resolution computes a new query
or resolvent, substituting the selected goal with the
subgoals in the body of the clause. This process goes
on recursively until either some goal has no matching
clause, or until an empty query is generated. The ap-
plication of a SLD-resolution needs the definition of a
selection rule (also named computation rule) to choose
a goal from the query. In standard Prolog, this rule
selects the leftmost goal.

'This work has been supported by the Ministry of Education
of Spain under grant CICYT TIC 91/1036.

The fact that there can be more than one clause to
match with a given goal introduces non-determinism
at the resolution level. The execution of a Prolog pro-
gram consists in the exploration of a search space,
whose shape is a tree and which usually is referred
to as the SLD-tree or search tree. Given a SLD-
tree, the strategy to traverse it is known as the search
rule. Sequential implementations of Prolog make use
of a depth-first left-to-right search rule [7], that is, the
SLD-tree is traversed in depth-first order, trying the
clauses in a resolution step in the textual order, and
backtracking to the youngest resolution with remain-
ing clauses to match when the process described in the
above paragraph finishes.

For instance, the Warren Abstract Machine 111,
which is the starting point of many sequential execu-
tion models, implements the above mentioned leftmost
selection rule with the depth-first left-to-right search
rule.

Traditional implementations of Prolog have been
based on a depth-first execution model, whereas a
breadth-first search has been neglected. This is mainly
due to the fact that a breadth-first search would re-
quire a huge amount of memory, resulting in an im-
practicable approach or in a too slow system due to
the management of such big memory.

Apart from that, a breadth-first search theoretically
has a number of advantages when compared with the
traditional depth-first search. These advantages come
from the fact that, once we have found all the solu-
tions to a goal, they can be collected together and
subsequently processed simultaneously (not necessar-
ily in parallel). For instance, suppose the following
program:

io66-6192/95 $4.00 0 1995 IEEE
164

After finding all solutions to p / l , we have three
possible bindings for X : X/O, X / i , X/3. The three
possible bindings are collected and processed simul-
taneously when q/i is executed. At that time, we
see that only the first and third bindings are consis-
tent with q/ i and therefore, the second binding is dis-
carded. When r/l is executed, X has two possible
bindings: W O , X/2, that are processed at the same
time. In short, instead of traversing the SLD-tree car-
rying just one binding environment, the traversal is
done processing at the same time several binding en-
vironments, one for each solution found so far.

Processing multiple binding environments simulta-
neously results in the following benefits:

0 The overhead due to the execution of control in-
structions is considerably reduced. The impact
of this is especially important for combinatorial
search problems as it will be shown in this paper.

The number of unifications decreases. This hap-
pens when the same unification occurs in differ-
ent paths (branches) of the SLD-tree. The depth-
first search repeats the unification operation every
time, whereas a breadth-first search avoids these
unnecessary recomputations.

0 A new type of parallelism, called path parallelism,
is exhibited by the model. This type of paral-
lelism is exploited a t each operation to be per-
formed on any variable with multiple bindings
(unification, creation, ...). The different bindings
belong to different binding environments and can
be processed in parallel. This type of parallelism
can be efficiently exploited by a SPMD-like com-
puter, having a main processing unit, which con-
ducts the search of the SLD-tree, together with
several unification units working in parallel.

As it usually happens, the most efficient solution
may be a trade-off between two opposite designs. This
led us to think about the possibility of combining a
depth-first and a breadth-first search in the same ex-
ecution model. This combination is called a partial
breadth-first search and it is the search rule used by
Multzpath, a novel execution model for Prolog.

For details about the Multipath execution model
and its sequential implementation we refer the inter-
ested reader to [11, 12, 31. Multipath has been proved
to be more efficient than the traditional depth-first
based execution model on a sequential environment
[la]. In this paper, we focus on the parallel implemen-
tation of the Multipath execution model and on those
issues related to the exploitation of path parallelism.

The rest of the paper is organized as follows. Re-
lated work is reviewed in section 2. Section 3 presents
a brief summary of the Multipath execution model.
The main issues regarding the parallel implementa-
tion of Multipath are analyzed in section 4. Perfor-
mance figures about the performance of the parallel
implementation are presented in section 5. Finally,
we summarize the main conclusions of this work.

2 Related work

A preliminary definition of the Multipath execu-
tion model was presented in [ll]. At about the same
time, in [9] D. A. Smith presents Multilog as a data
parallel language that computes solutions to any arbi-
trary goal into a set of environments, and subsequent
goals execute in this set of environments, with unifica-
tion being performed in parallel. Multilog and MEM
have been carried out concurrently and independently.
They have similar objectives although their implemen-
tations are rather different.

Another related work is the DAP Prolog system
proposed in [5], in particular its set mode operation.
This proposal extends the standard implementation
of Prolog in order to support sets of data and exploit
parallelism for managing the different elements of a
set. There are several important differences between
DAP and Multipath. First, DAP extends the seman-
tics of Prolog with sets whereas Multipath is transpar-
ent to the programmer (a standard Prolog program
does not require any modification to be executed by
Multipath). Second, the source of parallelism in DAP
is due only to facts while, in Multipath, multiple bind-
ings to the same variable can be obtained as a result
of any type and number of clauses. Finally, the imple-
mentation of Multipath is simpler since the different
relationships that may happen to have different sets
makes the management of sets very cumbersome in
DAP.

Path parallelism is a particular case of data par-
allelism. Data parallelism consists in the concurrent
treatment of multiple bindings of variables. In the
literature, data parallelism has been exploited in the
context of OR-parallel systems [4]. In this approach,
after binding a variable to multiple values, execution
can continue in parallel exploring the subtrees related
to each binding in an independent way. For each one
of these subtrees, just one of the bindings is visible. In
path parallelism, variables get multiple bindings as a
result of the sequential execution of a nondeterminate
goal. When all bindings are collected, parallelism is

165

exploited when a unify operation is to be performed
on variables with multiple bindings.

Path parallelism is also different from unification
parallelism [2]. In unification parallelism, parallel uni-
fications are performed on different arguments of a
goal for a single binding environment. In this case,
there may be data dependences among the unifica-
tions. In path parallelism, the parallel execution cor-
responds to unifications of the same argument for dif-
ferent binding environments. In this case there are no
data dependences.

3 The Multipath Execution Model

The main feature of Multipath is that it allows a
given goal to be executed in depth-first, breadth-first
or partial breadth-first order. The choice among these
three options can be made by the programmer, the
compiler and the execution model itself at run time.

In this context, a breadth-first execution of a goal
means to explore all the alternative clauses that can
lead to solutions of the goal before proceeding with
the next goal, whereas a partial breadth-first execu-
tion means to explore in breadth-first order some (but
not all) the alternative clauses, and go back to ex-
plore the remaining ones by means of backtracking.
These remaining clauses may be then explored in any
of the three possible orders (depth, breadth or partial
breadth).

In this way, unlike a pure breadth-first execution,
the amount of memory required by the execution of a
partial breadth-first search can be limited. Once the
amount of memory used has grown to a given size,
breadth-first execution is not permitted. When some
of the memory used is released (because of failures in
some binding environments), a breadth-first is again
allowed for those goals identified either by the pro-
grammer or compiler.

A goal that is executed in breadth or partial
breadth order may result in some variables bound to
multiple values. For instance, in the following code:

p(Y):-q(X) ,r(X,Y>.
q(1) * r(2,3).
q(2) . r(3,4).
q(3) * r(4,5).

a breadth execution of q/1 results in x being bound
to three different values 1, 2 and 3.

The multiple bindings that result from a (partial)
breadth execution of a goal are then processed all to-
gether afterwards. In the previous example, when X

Figure 1: Basic operations of the Multipath execution
model.

is dereferenced during the execution of r/2 the result
will be that it is bound to three different values: 1,
2 and 3. This is equivalent to say that the execution
model explores several paths (branches) of the SLD-
tree at the same time.

Each resolution step of the Multipath execution
model (MEM) involves the following operations. The
sequence among these operations is illustrated in fig-
ure 1 and commented in the next paragraphs. A fur-
ther explanation of MEM can be found in [12].

GOALSELECTION selects the leftmost goal in the
current query (as stated by the selection rule) in order
to attempt an inference.

F-CLAUSESELECTION selects a clause to be unified
with the chosen goal. If there are more than one candi-
date clause, they are tried in the order they are writ-
ten. Thus, f-clauseselection always selects the first
one. Note that f- stands for forward execution to dif-
ferentiate it from the clause selection operation to be
performed in backward execution (see below).

Then, the selected goal (including its arguments)
and the head of the selected clause are unified in the
UNIFICATION operation. The unification is performed
for every current binding environment, The unifica-
tion operation fails if every individual unification in
each binding environment fails, otherwise succeeds.
The agent that is responsible for managing each differ-
ent binding environment is called a Unification Engine
(UE). Since unifications related to different binding
environments are independent, and they can be car-
ried out in parallel, we could have as many parallel
threads as number of UEs. However, as we will dis-
cuss later on, it could be more effective to map several

166

UEs to a single thread because of granularity reasons.
This source of parallelism is what we call path paral-
lelism and it will be further analyzed in the following
sections.

If unification succeeds, the selected goal is substi-
tuted by all the subgoals in the body of the clause,
and bindings representing the most general unifier in
each binding environment are added to it.

When a solution to a breadth goal is found (this
condition is tested in BREADTH-GOALSOLVED?), it
is decided whether the execution continues with a
breadth-first or a depth-first search, that is, with a
backward or a join of paths operation, respectively.
In the current implementation, this decision depends
only on the amount of available memory. That is,
there is a limit on the number of binding environments
(and thus, in the number of UEs) that can be used a t
the same time by the execution. When this number
is reached, the execution shifts to a depth-first search
even if the current predicate has still more alterna-
tives. The remaining alternatives will be explored by
backtracking. When a binding environment fails and
it is known that it is not required any more (it is still
required if backtracking to a location before the fail
is possible), it is appended to the list of free binding
environments and can be used to perform a breadth-
first search of following goals. That is, the depth-first
search shifts to a breadth-first search when there are
again enough available binding environments.

Currently, more complex strategies to shift between
breadth-first and depth-first search are being analyzed
in order to take into account other overheads of the
system like copying of binding environments, which
occurs in the backward operation (see below).

In the Multipath execution model, when a unifi-
cation fails, execution does not continue immediately
with a backtracking operation. There is a BACKTRACK
test that considers the existence of a breadth goal that
has no possibilities to obtain more solutions. In this
case, a join of paths operation is executed. Otherwise,
a backward operation is executed.

The JOIN-OF-PATHS operation joins all solutions
found so far to the youngest breadth goal of the SLD-
tree and proceeds with a forward execution.

In case of a BACKWARD operation to the youngest
branch alternative of the SLD-tree, the main action is
to restore the computation state at that point. There
are two ways to restore it: in case the binding en-
vironment has failed previously, it is done by simple
backtracking; and, in case the binding environment is
still active, it is done by allocating a free binding en-
vironment and copying to it the contents of the active

binding environment.
B-CLAUSE-SELECTION selects the next candidate

clause to be unified with the leftmost goal in the cur-
rent query.

Operations described above are continually re-
peated until one or all solutions to the program have
been found. The agent that conducts the search in
this way is called Main Engine (ME).

4 Parallel implementation of Multi-
path

In this section, the main issues regarding the paral-
lel implementation of the Multipath execution model
(MEM) are analyzed.

The implementation of the MEM is done by intro-
ducing some extensions to the Warren Abstract Ma-
chine (WAM) [l]. This modified WAM is called Mul-
tipath Abstract Machine (MAM).

The main difference between WAM and MAM is
the existence of two types of variables: single and
multiple. The former are the conventional variables
used by WAM. These variables have a unique binding
shared by all paths that can be simultaneously tra-
versed. The latter are variables that may be bound
to multiple values at the same time, each one corre-
sponding to a different binding environment.

Single variables are stored as in the WAM: in
the environments of the STACK or in the HEAP. A
new memory area, called MBE (Multi-Binding Environ-
ment), is added in order to store multiple variables. A
multiple variable has the same address in all the bind-
ing environments where it is visible.

The MAM instructions are the same as in the WAM
but their semantics are slightly modified in order to
manage multiple binding environments. Those in-
structions referencing a multiple variable must repeat
its operation for every binding environment. The op-
erations on each binding environment are performed
by different Unification Engines (UEs, see section 3) ,
which can work in parallel depending on the underly-
ing hardware.

A parallel architecture that efficiently exploits the
features of the Multipath execution model is shown in
figure 2.

The system is based on a SPMD-like computer, and
consists of a Main Unit (MU) where the Main Engine
(ME) is executed. All data structures that are re-
quired by the MU are stored in the Shared Memory .
There are also a number of Unification Units (UUs).
Several Unification Engines (UEs) are mapped on each

167

Shared Memory

Global Interconnection Network

((6;
&) ($ 1111111111111 ($ 7 yl l l l l l l l l l l l l l ~ ~

Local Interconn. Networ

Figure 2: A parallel architecture for Multipath.

UU. We could allocate just one UE on each UU but,
although this would produce a higher degree of paral-
lelism, the system performance would be worse since
path parallelism is fine-grained. Results about the
performance obtained when the number of UEs per
UU varies are shown in the next section.

The ME conducts the search of the SLD-tree. Ev-
ery time it has to perform an operation on a mul-
tiple variable (like unification), it sends a command
to all the UEs related to the binding environments
currently active. As a result of it, the different UEs
perform the same operation on different binding envi-
ronments. Depending on the command, the ME waits
until all the UEs have finished the command or con-
tinues traversing the search tree. For instance, if the
command is to perform a unification, the ME waits
because it must know which UEs succeed and which
ones fail. However, if the command is to create a new
free multiple variable, the ME continues as the com-
mand has no influence on the traversal of the search
tree. Obviously, a UE cannot execute a new command
until the previous one has finished. In each UU, there
is a command queue where the commands sent by the
ME are placed. These commands are processed in
FIFO order.

The MU and the UUs communicate by means of
shared variables in the Shared Memory. The Global
Interconnection Network allows the MU and all the
UUs to access to the Shared Memory. Single variables
are also stored in the Shared Memory since they are
manipulated by the MU and read by the UUs. The

MU and each U U has a Cache Memory (CM) in order
to speed-up the average memory access time.

Every UU has its own Local Memory (LM). Each
LM contains the multiple variables belonging to the
unification engines related to that UU. A given multi-
ple variable may be visible for different unification en-
gines and therefore for different UUs. However, each
unification engine can only see one of its multiple Val-
ues. In consequence, such variables can be allocated
to several LMs but each LM stores only those values
that are visible to the unification engines mapped onto
that UU.

Eventually, all the multiple variables of a binding
environment are required to be copied into another
binding environment. As described in section 3, this
happens when a backward operation is performed. A
copy between two unification engines that are in the
same UU is done locally. If the engines are in different
UUs, it is done through the Local Interconnection Net-
work. This is a high-speed network .that just performs
DMA transactions between two LMs.

5 Performance analysis

In order to isolate the different benefits of Multi-
path, we will start by analyzing the performance of a
sequential implementation. That is intended to pro-
vide insight about the benefits of a partial breadth-
first search in terms of reducing unifications and con-
trol overhead. Then, the additional benefits provided
by path parallelism will be discussed.

The Multipath execution model has been imple-
mented on a sequential environment by developing an
interpreter of the abstract machine outlined in sec-
tion 4. By tracing the sequential implementation, the
execution time of the different threads suitable to be
executed in parallel has been measured and these fig-
ures have been used to feed a simulator of the parallel
machine described in the previous section in order to
estimate the execution time in such parallel platform.

The simulator of the parallel machine makes some
assumptions in order to keep the simulation cost rea-
sonable. In particular, it is assumed no conflicts nei-
ther in the global interconnection network nor the
shared memory modules.

An interpreter of the original Warren Abstract Ma-
chine, which implements the traditional depth-first
search, has been used as a reference system to be com-
pared with the Multipath execution model.

Using these interpreters, a set of benchmarks have
been run on a DEC 3800 system whose CPU is an

168

16

1 5 .

1 4 .

1 3 .

12 -
; 1 1 :

'10.

.4 O '

:
1 S .

U e .

8 7 .

3

2 .

1 .

TRIANGLE
16 , ,

.

:
,
...

J-

IM 200 3m 400 sm so0 7 m m m im

l i !

number of UEs

QUEENS 10
16
1 6 .

1 4 . :
13 .

::! number of UEs

HAM

:: number of UEs

Figure 3: Sequential execution time for WAM and sequential Multipath.

Alpha 21064 microprocessor. The benchmarks are the Bits-pal: Finds all palindromic lists of 17 binary
following: elements using linear time reverse. It has been

taken from [9].
Queensi0: Finds all ways of placing 10 queens in
a chess board without attacking among them.

Ham: Finds all the hamiltonian paths on a graph.

Triangle: This is the 'triangle' program (struc-
ture version, 133 solutions) of Evan Tick [lo].

Cube: Solves the Instant Insanity puzzle (6 cubes)
from [IO].

Zebras: A logical constraint problem from [lo].

5.1 Control overhead and unification cost

The benefits of a partial breadth-first search in front
of a depth-first search in terms of reducing the con-
trol overhead and the number of unifications depend
on the characteristics of the program. For very non-
deterministic programs these benefits are expected to
be high since, during the execution, Multipath will be
able to traverse the SLD-tree carrying a high num-
ber of binding environments at the same time. As
programs are more deterministic, the number of bind-

169

ing environments processed simultaneously decreases
and in consequence, the reduction in control overhead
and number of unifications is lower. Obviously, there
is a minimum execution time for a sequential execu-
tion of Multipath, which corresponds to the amount
of time needed for data computations to be performed
on binding environments, plus the minimum time due
to the breadth control.

On the other hand, the overhead introduced by the
breadth-first search also depends on the type of pro-
gram. This breadth overhead is mainly due to the
copying of binding environments and the increase in
the average memory access time caused by a bigger
working set. Therefore, this overhead is higher as the
size of the binding environments managed by the pro-
gram execution increases. This overhead also depends
on the number of unification engines because the num-
ber of times a binding environment is copied and the
working set increase with the number of unification
engines.

In addition to the program, the performance is also
related to the strategy used to shift between depth-
first and breadth-first search. Currently, it is done by
having a maximum number of binding environments.
Since each binding environment is processed by a uni-
fication engine (whether unification engines are pro-
cessed sequentially or in parallel depends on the un-
derlying hardware), this is equivalent to say that the
execution model makes use of a maximum number of
unification engines, which may vary from one execu-
tion to another.

Because of that, in first place the effect of varying
the number of unification engines for different bench-
marks is analyzed. Figure 3 compares the execution
time of sequential Multipath and WAM, that is of
a partial breadth-first search and a pure depth-first
search. The results are presented for four of the bench-
mark programs and correspond to computing all so-
lutions to them. The results for the other two bench-
marks do not add significant differences. The bench-
marks have been executed varying the number of uni-
fication engines from 1 to 1000.

In order to characterize the benchmarks, we define
a non-determinasm metr ic as the ratio of the average
number of active unification engines over the maxi-
mum number of unification engines. This metric de-
pends only on the benchmark, and remains constant
when varying the number of unification engines.

The best results are for bits-pal, since it represents
the type of programs where a partial breadth-first is
most beneficial. This program is a typical example of
a 'generate-and-test' program. Because of that, it is

quite non-deterministic which results in a high utiliza-
tion of the unification engines. Its non-determinism
ratio is 63%. On the other hand, the binding envi-
ronments are small and in consequence the breadth
overhead is not much significant. As a result, we can
see that Multipath is about 10 times faster than WAM
with a quite low number of unification engines (about
70) and the performance is scarcely degraded when
the number of unification engines increases.

Queens10 is more deterministic that bits-pal, with
a non-determinism ratio of 8%. This causes that the
the difference between the execution time of Multipath
and WAM is not so high although still quite impor-
tant (about 3 times). This also causes that the curve
for Multipath goes down with a lower slope than for
bits-pal, and in that case, the optimal number of unifi-
cation engines is a bit higher (about 200). The size of
the binding environments is also small and, like bits-
pal, the degradation due to increasing the number of
unification engines is almost negligible.

Triangle is even more deterministic, with a non-
determinism ratio of 3%. In consequence, the optimal
number of unification engines is also higher (about
440). Since binding environments are also small, the
drawbacks due to increasing the number of unification
engines are again almost negligible.

Finally, ham has the worst results. This program is
quite deterministic (non-determinism ratio is equal to
7%), and therefore, the breadth-first search is quite
limited. In addition, its binding environments are
rather big, which results in a significant breadth over-
head. In consequence, Multipath has about the same
performance than WAM for about 120 unification en-
gines, but if we increase the number of unification en-
gines, we can observe a significant detriment in the
performance. In this case, half the execution time
is spent on binding environment copies. This has
motived us to try to improve the implementation of
Multipath by changing the copying of binding envi-
ronments during its initialization to a copy on dem-
mand of variable bindings. This is a work currently in
progress.

Notice that the choice of an appropriate number of
unification engines has a significant impact on the per-
formance of the system. Because of that , we are also
currently working on the development of a strategy
that allows this number to be adapted dynamically,
during the execution, to the requirements of the pro-
gram. The implementation currently available uses a
fixed number of unification engines for the whole exe-
cution of the program.

Another possible way to improve the system is by

170

BITS-PAL
. ,

J

Z l

24

P

20

18

18

? 14

U 12
n

10

8

1

8

. l
la, 200 300 ua 600 MO m MO ma lwo

number of UEs

TRIANGLE

18UV I 32 vu

I
im 200 300 um EQI MO 700 MO em

number of UEs

n

24

zi

X

11

16

I 14

0
0 12

i a

a

4

8

8

4

2

I I
tm 200 ya 4m 600 MO m MO em two

number of UEs

I
1w 200 ya ua 600 em 7m MO ma lwo

number of UEs

Figure 4: Speed-up of parallel Multipath.

doing a more careful analysis through abstract inter-
pretation in order to determine which goals are more
suitable for a breadth-first search and which ones are
not. This is again a work currently in progress.

Table 1 summarizes the execution times of sequen-
tial Multipath and WAM for all the analyzed bench-
marks as well as some significant measures as the
optimal number of Unification Engines and the non-
determinism ratio. ' Notice that Multipath provides a
significant improvement in execution time for most of
the programs (it is several times faster than WAM)
and in the worst case (ham), Multipath is only slightly
worse than WAM.

5.2 Path parallelism

Figure 4 depicts the additional speed-up that can be
obtained with the parallel architecture of figure 2. The
results are shown for a different number of Unification
Units (UUs) and a varying number of Unification En-
gines (UEs). Usually there are more Unification En-
gines than Unification Units. This is managed by allo-
cating several Unification Engines to each Unification
Unit. This has proved to be a good strategy because
the amount of work to be performed by each Unifi-
cation Engine is rather small. In this way, the gran-
ularity of the different parallel threads is increased.
The results are presented for the same four bench-
marks used in the previous subsection. The graphs

171

SPEED-UP: S e q . Multipath -> Par. Multipath

s

24 .
22.

2 0 .

18 .

16.

2 4 6 B 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2

number of UUs

Figure 5: Speed-up of parallel Multipath for the opti-
mal number of UEs.

correspond to the speed-up as it is usually defined:
execution time with one MU and zero UUs divided by
the execution time with one MU and N-1 UUs.

Notice in figure 4 that the speed-up clearly depends
on the non-determinism ratio exhibited by the pro-
gram. If this metric gets higher, then the speed-up
increases. Also, in a parallel execution, increasing the
number of UEs implies more potential parallelism to
be exploited, in addition to the benefit of reducing
the overhead of control instructions and unifications.
This is why increasing the number of UEs respect to
the sequential implementation is now beneficial.

Figure 5 depicts the speed-up for all the bench-
marks varying only the number of UUs. For each num-
ber of UUs, the execution time for the optimal number
of UEs is taken to compute the speed-up. Speed-ups
are rather good, especially when the number of UUs
is not very high. For example, with 8 UUs, the speed-
ups for bits-pal, queensl0, triangle and ham are 5.83,
4.05, 2.67 and 3.70, respectively. A higher number of
UUs provides additional improvement in the execution
time but the efficiency is reduced. This is due to the
size and type of these benchmarks. For bigger pro-
grams and more non-deterministic programs we can
expect a higher degree of path parallelism and in con-
sequence, a better utilization of a higher number of
unification units.

To conclude, table 1 summarizes the more signifi-

cant results when analyzing the sequential as well as
the parallel execution of all the benchmarks. They
include the execution time (in seconds) of a WAM in-
terpreter, the execution time and the optimal number
of UEs of the sequential execution of Multipath, the
speed-up or gain from WAM to sequential Multipath,
the execution time and the optimal number of UEs
of the parallel execution of Multipath with 8 UUs,
the additional speed-up obtained by the parallel ex-
ecution, and finally the total speed-up from a WAM
execution to the parallel (8 UUs) execution of Multi-
path.

6 Conclusions

In this paper, a novel execution model for Prolog,
which is called Multipath, has been presented. This
execution model implements a partial breadth-first
search of the SLD-tree. This search strategy has sev-
eral advantages when compared with the traditional
depth-first search:

The overhead due to control instructions is re-
duced.

The number of unification operations decreases.

Introduces an inherent new type of parallelism,
called path parallelism. This parallelism is a par-
ticular case of data parallelism and can be ex-
ploited quite efficiently since the amount of syn-
chronization and data sharing that it requires is
very low.

The paper analyses the benefits of Multipath by
comparing it with the standard depth-first search im-
plemented by the Warren Abstract Machine. For the
analyzed benchmarks, and assuming that there are
8 Unification Units working in parallel, Multipath is
about 63 to 4 times faster than WAM. The best results
are for very non-deterministic programs, but even for
more deterministic programs the results can be con-
sidered acceptable.

The conclusion is that a partial breadth-first search
is more attractive than a pure depth-first search. In
some sense, a partial breadth-first search introduces
a new flexibility in the execution model: it allows the
execution model to choose between a depth-first search
and a breadth-first search for different parts of the
SLD-tree. That is, the search strategy is dynamically
adapted to the requirements of the execution.

The system presented here is a first version of such
execution model. We believe that the results may

172

WAM execution time
See. Multipath time

Speed-up WAM to Seq.

Par. Multipath (8 UUs) time
Optimal # UEs

Optimal # UEs

Non-determinism ratio (%)

bits-pal queens10 triangle cube zebras ham
11.40 12.37 8.59 9.05 7.12 3.54
1.05 3.42 2.11 4.56 6.64 3.74

70 200 440 65 75 120
10.96 3.62 4.07 2.01 1.07 0.94

63 8 3 10 4 7
0.18 0.79 0.79 0.91 1.35 1.01
230 1000 1000 585 710 560

Table 1: Significant results for the analyzed benchmarks.

be still much better by improving several aspects like
those outlined in the paper (i.e., copy on demmand of
variable bindings instead of copy on initialization of
binding environments, strategy to determine the op-
timal number of unification engines, scheme to deter-
mine the type of seerch, etc.).

[9] D. A. Smith. Multilog: Data Or-Parallel Logic
Programming. In Proceedings of the Tenth Inter-
national Conference on Logic Programming. MIT
Press , 1993.

[lo] Evan Tick. Parallel Logic Programming. MIT
Press, 1991.

[ll] Jordi Tubella and Antonio GonzLlez. MEM: A
New Execution Model for Prolog. Microprocess-
ing and Mzcroprogramming, 39:83-86, 1993.

References

[l] H. Ait Kaci. Warren’s Abstract Machine. MIT
Press, 1991. [12] Jordi Tubella and Antonio Gonzdez. A Partial

Breadth-First Execution Model for Prolog. In
Proceedings of the 6th Int’l Conf. on Tools with
Artificial Intelligence TAI’94, To appear.

[2] W. V. Citrin. Parallel Unification Scheduling in
Prolog. UCB/CSD 88/415, Berkeley University,
1988.

[3] Antonio Gonzdez and Jordi Tubella. The Mul-
tipath Parallel Execution Model for Prolog. In
Proceedings of the First Int’I Conf. on Parallel
Symbolic Computation PASCO ’94. World Scien-
tific Pub., 1994.

[4] P. Heuze. Using Data Parallelism in Elipsys. elip-
sys 003, ECRC, 1989.

[5] P. Kacsuk. DAP Prolog: A Parallel Array Exten-
sion of Prolog. In Proceedings of CONPAR’88.
British Computer Society, 1988.

[6] R. A. Kowalski. Predicate Logic as a Program-
ming Language. In Information Processing 74,
Stockholm, pages 569-574. North-Holland, 1974.

[7] J . W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, second edition, 1987.

[8] J . A. Robinson. A Machine Oriented Logic Based
on the Resolution Principle. Journal of the ACM,
l2(23) :23-4 1, January 1965.

173

