
Porting Applications between PVM and Parix under Ensemble

J.Y. Cotronis, E. Avgeri and Y. Krallis
Dept. of Informatics, Univ. of Athens, Panepistimiopolis, 157 71 Athens, Greece

Tel.: +30 1 7291885 fax. +30 1 7219561 e-mail: cotronis@di.uoa.gr

Abstract
We examine the differences between two message

passing environments, PVM and Parix, and their impact
on the implementation of applications. We outline
Ensemble, a methodology for designing and implementing
message passing applications by providing common
software architecture. We outline Ensemble applied to
PVM and Parix. We describe the mechanical porting of
applications developed under Ensemble from one
environment to the other.

1. Introduction
The most widely used programming paradigm for

distributed memory systems is message passing. Message
passing interfaces [6] introduced by vendors relied on and
exploited the special characteristics of their architectures.
The implementation of message passing designs was
difficult, as they depended on knowledge of the actual
hardware platform. In the past few years, we have seen the
emergence of Message Passing Environments (MPE), such
as PVM [5], Parix [8], MPI [7], in which message-passing
applications may be implemented without the precise
knowledge of the underlying architecture. MPEs,
particularly PVM and MPI, abstract architectural
characteristics and permit application implementation on
various platforms. Applications are thus portable among
the parallel systems for which the interface is available.

However, the implementation of application designs on
MPEs is still a demanding task. The application
implementation does not only involve the programming of
process computations, but also requires the explicit
programming of process management issues, such as their
creation, their logical topology and their mapping onto the
architecture. Consequently, the original design is diffused
into the implementation, as statements implementing
computations and process management co-exist in code
segments. Furthermore, code development has to anticipate
for all possible occurrences of the processes; for example
all their possible positions in application topology and
their interactions with their neighbouring processes in each
case. The implementation complexity increases when the
topology is not regular, as process positions and their

communicating processes cannot be determined by
functions.

There are no methodologies supporting the
implementation of application designs. In addition,
reusability of executables is restricted as process
management is encoded in them. Processes may only
operate within the specific topology for which they are
implemented, although their functionality could be used in
other applications. MPEs may differ significantly in the
way they manage processes, but also in other fundamental
issues, such as the kind of processes they support (threads,
lightweight and heavyweight, etc.), the naming and
identification of processes. Due to these differences, some
applications are easier to implement on some MPEs and
more difficult on others. For example, a general tree
topology is relative easy to implement on PVM, but more
demanding on MPI or Parix. Each MPE requires its own
implementation techniques and imposes its own structure
on message passing implementations. Two programs
implementing the same design, using the same sequential
language, but implemented on different MPEs, look very
different. Porting applications from one MPE to another is,
in general, costly, as it is tackled case by case.

We have developed a message passing implementation
methodology, called Ensemble, in which implementations
on any MPE have common software architecture. They
preserve the original design and, for this reason, are easier
to develop, debug and maintain; they are also easily
portable from one MPE to another. Ensemble is not “yet
another” message passing environment. It is a
methodology, independent of any MPE, aiming to reduce
the cost of message passing software development,
maintenance and porting to other MPEs. In [2,4] we
presented Ensemble for PVM and in [3] for Parix. In this
paper, we present Ensemble comparatively for PVM and
Parix and demonstrate the mechanical portability of
applications between PVM and Parix. The structure of the
paper is as follows: In section 2, we outline the
characteristics of PVM and Parix and we examine their
implications on application implementations. In section 3,
we present the common software architecture of Ensemble
implementations on PVM and Parix. In section 4, we
address the portability of applications between PVM and
Parix. Finally, in section 5 we present the conclusions.

george
In Proc. 6th Euromicro Workshop on Parallel and Distributed Processing, IEEE Computer Science 1998, pp. 409-415

2. PVM and Parix: two very different MPEs
We outline the main characteristics of PVM and Parix.

2.1 PVM overview

1. The underlying architecture of PVM is any host system
running UNIX and some special cases of parallel
architectures, which are viewed as virtual machines.
2. The PVM console allows the user to interactively start,
query, and modify the virtual machine. Any PVM program
may use the complete host system.
3. A PVM process is a UNIX process running on a host
machine. A process is spawned by its parent process. To
run PVM programs the user spawns a root process.
4. Processes are identified by unique task identifiers (tids)
generated upon their creation. The tid is only known to the
parent process; the spawned process may obtain its
parent’s and its own tid by function calls.
5. Processes may be spawned on specific hosts. If no host
is specified, PVM chooses where to spawn them.
6. Process communication and synchronisation are of two
categories: a) Requiring process tids and possibly some
message tag identifiers (tags), such as point-to-point
asynchronous communication (pvm_send, pvm_recv, etc.)
and multicast, sending the same value to a list of processes.
In that sense (tid, tagid) pairs are the primary
communication parameters. b) Requiring group definitions,
such as bcast, sending the same value to processes in a
group, and barriers, for synchronising processes in a group.
Programming applications forming, in general, tree-like
process communication dependencies, where each process
communicates only with its parent and its children, is easy
to program. However, establishing general graph process
topologies requires substantial programming effort.

2.2 Parix overview

1. Parix runs on PARSYTEC architectures and views
them as a logical grid of processors. The fist version was
developed for transputer grids. Later versions however, run
on super cluster architectures based on nodes running AIX.
2. Throughout program execution a partition of
processors is exclusively reserved and managed as a
private resource of the application program.
3. Applications are initiated from a front-end computer by
loading the same initial main program onto all processors
of the application partition. Thus, a Parix program initially
appears as an SPMD program, each copy having its own
context, i.e. an environment with its own code and data. A
set of global data kept at each processor allows
identification of the “own” processor position within the
network. Depending on the position it is possible to
execute different sections of the main code or execute
identical instructions on different data. Contexts cannot
migrate to another processor.

4. A program may create lightweight processes (threads)
handling asynchronous services. Threads are running
concurrently in the same context and share all global
variables defined in the program. Semaphores are provided
for variable protection and synchronisation.
5. It is also possible to load and run a different code on a
processor by issuing an Execute call. This call loads an
executable Parix program (on the processor the calling
thread runs on) and creates a new context, distinct from the
context of the calling thread. The calling thread waits for
termination of the new context before it resumes execution.
More than one context may run on the same processor.
Thus, an application, which initially looks like an SPMD,
may become during run-time a true MIMD.
6. Communication between threads may be synchronous
(S) or asynchronous (A). Communication may be based on
virtual links (L), which build point-to-point connections
between threads. A set of virtual links can be combined to
build a virtual topology (T). Communication may also be
random (R), that is, not requiring the definition of virtual
links or topologies. There are routines for sending and
receiving messages implementing the above
communication types, as shown in the following table:

 Links (L) Topology (T) Random (R)
Synchronous

(S)
SendLink
RecvLink

Send,
Recv

SendNode
RecvNode

Asynchronous
(A)

 ASend,
ARecv

(PutMessage
GetMessage)

Note that asynchronous communication over links is not
supported. In Parix 1.9 AR communication type is also not
supported and for this reason are placed on parentheses.
7. Communication types define, explicitly or implicitly,
communication channels between threads. When virtual
links are used, the channels are explicitly defined. A link
between two threads is established when each calls a
connection routine (e.g. ConnectLink) giving as
parameters each other’s Processor Identifier, ProcId, and a
common Request Identifier, ReqId. A topology groups
links under a name and gives them unique symbolic names
within the topology, thus defining channels explicitly and
abstractly. In random communication, the channels are
implicitly specified by referring directly to the processor
identifiers the two threads are running on and to the
common ReqId. Consequently, in all communication types
between two threads the primary communication
information is the ProcIds of the threads and the ReqIds
tagging the messages over the channel. As threads cannot
migrate, the processor identifier specifies the processor
allocation of the thread and the request identifier uniquely
specifies a particular channel.

2.3 Implementation on PVM and Parix

We will demonstrate the implementation on PVM and
Parix, using an application, called Distribution of

Maximum. There are two types of processes, terminal and
relay. Each terminal process accepts an integer parameter
and requires the maximum of these integer parameters.
Groups of terminals send their values to a relay process
(acting as their server). Relays find the local maximum of
their associated terminals, which they asynchronously send
to the other relays and, respectively, they receive the local
maxima from them. Each relay finds the maximum value,
which they send to their respective terminal processes.

Terminal processes have one communication
dependency, that with their associated relay processes,
which we call S (server) type. Relay processes have two
types of communication dependencies, one with their
terminal processes, which we call C (client) type, and one
with the relay processes, which we call P (Pier-to-pier)
type. A relay process may have any non-negative number
of dependencies of C and P types. Processes are depicted
by two concentric circles, as in fig. 1. On the inner circle,
the communication types are depicted, namely S for
terminal processes and C, P for relays. On the outer circle,
the specific number of interconnections or ports of each
communication type are depicted. Type S has one port (fig.
1a) and C, P have n, m ports, respectively (fig. 1b).

terminal process relay process

(a) (b)

1
2

n

1
2

m

P

S
1

...
...

C

Figure 1: Representation of processes

The application topology with three relays, each one
connected with two terminals, is depicted in fig. 2. Graphs
are used as a natural representation of process
communication [1]. Arcs connecting ports represent the
communication channels between processes.

S

T[6]

1

6

T[3]
T[4]

S S
1 1

3 4

T[2]

T[1]

T[5]

S

S

S

1

1

1

1

2

5

1
R[3]

C

P

1

9

1

R[2]
C

P

1
2

8

R[1]

C

P

1

2

2

7

2

2

1

2

Figure 2: Topology of Distribution of Maximum

The PVM implementation style we present is not
unique, but typical for PVM and may be easily generalised

for any application. A root-process spawns all terminal and
relay processes and stores their tids. Then it sends to each
process the tids of the processes it needs for
communication. Processes are responsible for interpreting
the tids (integer values) they receive in a compatible
manner. In the outline of the root-process that follows, we
use a simplified PVM spawn instruction, which defines the
executable from which a process (e.g. terminal) is started,
the parameters of the executable (e.g. “15”) and the host
which will run the process (e.g. gaia). We also use a
simplified Send instruction, which has the following
structure: Send (Where: V1,V2,…,Vn). The parameter
Where is the tid of the process that the message is sent to
and V1, V2,…, Vn the data of the message sent. These
syntactic modifications are used for brevity, as well as for
identifying similarities and differences of PVM and Parix.

/* PVM Root Process */

/* Create processes and store tids */
 /* Spawn terminals */
TerminalTid[0]=spawn(terminal,”15”, gaia); /* Node 1 */
TerminalTid[1]= spawn(terminal,”34”, gaia); /* Node 2 */
TerminalTid[2]= spawn(terminal,”37”,chaos); /* Node 3 */
TerminalTid[3]= spawn(terminal,”4”, chaos); /* Node 4 */
TerminalTid[4]= spawn(terminal,”5”, eros); /* Node 5 */
TerminalTid[5]= spawn(terminal,”99”, eros); /* Node 6 */

 */ spawn relays */
RelayTid[0]= spawn(relay,” “, gaia); /* Node 7 */
RelayTid[1]= spawn(relay,” “, chaos); /* Node 8 */
RelayTid[2]= spawn(relay,” “,eros); /* Node 9 */

/* Send tids to establish connections */
Send(TerminalTid[0]: RelayTid[0]);
Send(TerminalTid[1]: RelayTid[0]);
Send(TerminalTid[2]: RelayTid[1]);
Send(TerminalTid[3]: RelayTid[1]);
Send(TerminalTid[4]: RelayTid[2]);
Send(TerminalTid[5]: RelayTid[2]);

Send(RelayTid[0]:RelayTid[1],RelayTid[2],
 TerminalTid[0],TerminalTid[1]);
Send(RelayTid[1]:RelayTid[0],RelayTid[2],
 TerminalTid[2],TerminalTid[3]);
Send(RelayTid[2]:RelayTid[0],RelayTid[1],

TerminalTid[4],TerminalTid[5]);

In Parix, the same main program runs on a partition of

processors reserved by the application. If each process
runs on a unique processor, we need nine (9) processors
uniquely identified by ProcIds from 0 to 8. The outline of
the main program, which according to Parix is initiated on
each of the nine processors, is shown below. Each process
gets the ProcId it runs on and loads the appropriate
executable and command line parameters.

/* Parix Main Program */
MyProcID = Get_my_ProcId;
case MyProcID of
{ 0 : Execute(terminal, 6,”15”); /* Node 1 */
 1 : Execute(terminal, 6,”34”); /* Node 2 */
 2 : Execute(terminal, 7,”37”); /* Node 3 */
 3 : Execute(terminal, 7,”4”); /* Node 4 */
 4 : Execute(terminal, 8,”5”); /* Node 5 */
 5 : Execute(terminal, 8,”99”); /* Node 6 */
 6 : Execute(relay, 7,8,0,1); /* Node 7 */
 7 : Execute(relay, 6,8,2,3); /* Node 8 */
 8 : Execute(relay, 6,7,4,5); /* Node 9 */
}
We used the Execute(executable, P1, P2, …, Pn) which

spawns a process from “executable”, passing parameters,
P1, P2,…, Pn. We have put application parameters in
quotes to simplify the comparison with PVM
implementation. The other parameters are the ProcIds of
the processes with which each process needs to
communicate. For example, the first and second terminal
processes (ProcIds 0 and 1) have parameter 6 which means
that they will communicate with (relay) process with
ProcId=6. Relay with ProcId=6 has parameters 7, 8, 0, 1,
which means that it communicates with the relays having
ProcIds 7 and 8 and with the terminals having ProcIds 0
and 1. Executables are responsible for interpreting their
parameter list in a compatible manner.

Executables terminal and relay, used in each system,
have again differences. We will show them, as well as their
similarities. We have extended the notation Send(Where:
P1, P2, …, Pn) for receive instructions, Receive(Where:
P1, P2, …, Pn). Furthermore, we have used as Where
variable names of communication ports S1, C1, C2, P1, P2
used in the process communication graph of fig. 2. The
type and values of port variables are different for PVM and
Parix. In the coding of terminal and relay that follows, we
localise and hide these differences in Initial Actions:

/* Terminal */
void main (argc, argv);
{ Initial Actions;
 GetParam(V); Send(S1: V); Receive(S1: GMax);}

/* Relay */
void main (argc, argv);
{ Initial Actions;
 LMax=0;
 Receive(C1: V); if (V>LMax) LMax=V;
 Receive(C2: V); if (V>LMax) LMax=V;
 Send(P1: LMax); Send(P2: LMax);
 GMax= LMax;
 Receive(P1: V); if (V> GMax) GMax=V;
 Receive(P2: V); if (V> GMax) GMax=V;
 Send(C1: GMax); Send(C2: GMax); }

In PVM, terminal processes receive the tid of the relays

that communicate with, and relay processes receive the tids

of two relays and two terminals from the root-process. The
Initial Actions of terminal and process in PVM are:

Terminal Initial Actions Relay Initial Actions
Parent = get_parent_tid;
Receive(Parent:S1);

Parent = get_parent_tid;
Receive(Parent: P1, P2, C1, C2);

According to the Parix implementation policy we have

adopted, each process gets the ProcIds of the processes it
communicates from its parameters by calling a GetParam
routine. However, Parix supports different kinds of
communications (Random, Links and Topology). If we
choose Random communication, we skip any further
action. We describe further actions for communication
over Links. For two processes to establish a link, each one
must make a ConnectLink call, using as parameter the
ProcId of the other process. ConnectLink returns a link,
which is used by send and receive routines thereafter. The
execution of ConnectLink enforces synchronous
communication between the processes; consequently, the
danger of deadlock is apparent. If for example, we alter the
order of parameters 6, 8 in ProcId=7, i.e. from
Execute(relay, 6,8,2,3) to Execute(relay, 8,6,2,3), the
program would deadlock. Relay with ProcId=6 would wait
to be connected with relay with ProcId=7, which would
wait to be connected with relay with ProcId=8, which in
turn would wait with relay with ProcId=6, forming a
dependency cycle. As the order of the parameters stands
now there is no dependency cycle.

Terminal Initial Actions Relay Initial Actions
GetParam(R);
S1=ConnectLink(R);

GetParam(R1, R2, T1, T2);
C1=ConnectLink(T1);
C2=ConnectLink(T2);
P1=ConnectLink(R1);
P2=ConnectLink(R2);

Although we have simplified and hidden a number of

differences of PVM and Parix, the implementations of the
application are dramatically different.

3. The Ensemble methodology
Structuring of implementations described in the

previous section, as an organiser and executable programs,
leads to two observations, regarding reuse of executables
and generalisation of establishing process topologies.

 Reuse of executables. The Distribution of Maximum
implementation on the two MPEs may be easily scaled by
adding to the root-process in PVM and to the main in
Parix, instructions for the creation and connection of
terminal and relay processes. Changes to the executables
of terminal and relay are not required. They are like library
routines. We observe that they don’t involve any
instructions for topology or any process creation. Before
any calculations are performed by these processes, the

communication is established with the use of the
instructions included in their respective Initial Actions.

However, there is a limitation; all relays must have
exactly two terminals as clients. Usually, due to
programming complexity, scalability is designed on global
factors in an application, e.g. sizes of dimensions of a grid
topology, or relays having a specific number of terminals.
However, there may be other local scalability factors. In
general, scaling of applications requires replication of
processes and their interconnections. For some process
topologies, such as a torus, it is sufficient to replicate
identical processes each having the same number of
connections. However, for other topologies, such as
master/slave, each replicated process may have a distinct
number of interconnections, possibly within a range. We
would like to permit the design option to scale the
application by adding any number of terminals to any
relay, so that relays may have any number of terminals.

Generalisation of establishing process topologies. We
observed that the topology, which is created by the root-
process of PVM and the main program of Parix, is
described by the general graph of the application of fig. 2.
We may annotate this graph by information pertinent to
PVM or Parix. For example, all parameters of spawn may
annotate the corresponding nodes. For Parix
implementation, nodes may be annotated with the associate

ProcIds. The arcs of the graph may be annotated by tagids
and ReqIds of PVM and Parix messages, respectively,
which have been ignored for simplicity.

Since all information needed to implement a topology,
appears on the application graph, the root-process for
PVM and the main routine for Parix may be generalised to
launcher programs or loaders of the application.

In Ensemble, application implementation is an
‘ensemble’ of an annotated graph, the reusable and
scalable executables and a launcher program. Each MPE
requires its own graph annotation, its own techniques for
reusable executables and its own launcher. We have
developed these tools for PVM [2,4] and Parix [3]. We
briefly describe the implementation of the Distribution of
Maximum using Ensemble.

3.1 The annotated graph.

We have developed a script language, which describes
annotated graphs of applications. A script abstractly
describes the processes and their communication channels,
the mapping of the processes onto the architecture, the
executables and the application parameters. The script for
the Distribution of Maximum application is shown in fig.
3. The script is structured in two main parts:

Ensemble Script

Application Distribution_of_Maximum;
PCG
Components

terminal port-types: S[1..1];
relay port-types : C[1..], P[0..];

Processes
relay[1],relay[2], relay[3] #ports = C:2, P:2;
terminal[1], terminal[2], terminal[3],terminal[4], terminal[5], terminal[6] #ports=S:1;

Channels
terminal[1].S[1] <-> relay[1].C[1]; terminal[2].S[1] <-> relay[1].C[2];
terminal[3].S[1] <-> relay[2].C[1]; terminal[4].S[1] <-> relay[2].C[2];
terminal[5].S[1] <-> relay[3].C[2]; terminal[6].S[1] <-> relay[3].C[2];
relay[1].P[1] <-> relay[2].P[1]; relay[1].P[2] <-> relay[3].P[1]; relay[2].P[2] <-> relay[3].P[2];

PARALLEL SYSTEM
PVM3
 tagID : default;
Process Allocation
relay[1], terminal[1], terminal[2] on gaia;
relay[2], terminal[3], terminal[4] on chaos;
relay[3], terminal[5], terminal[6] on eros;

 PARALLEL SYSTEM
PARIX [5]
 reqID : default;
 ProcID : default;
Communication Type R

Executable Components
terminal: path default file terminal.sun;
relay : path default file relay.sun;
Parameters
terminal[1]:"15"; terminal[2]:"34"; terminal[3]:"37";
terminal[4]:"4"; terminal[5]:"5"; terminal[6]:"99"

 Executable Components
terminal: path default file terminal.px;
relay : path default file relay.px;
Parameters
terminal[1]:"15"; terminal[2]:"34"; terminal[3]:"37";
terminal[4]:"4"; terminal[5]:"5"; terminal[6]:"99"

Figure 3. The Script for application Distribution of Maximum for PVM and Parix

PVM Reusable Components Parix Reusable Components
#include Libraries for PVM and Ensemble
PVM port={int tid, tagid}

 #include Libraries for Parix and Ensemble
Parix port={int ProcId, Reqid; link L; Top T}

/* common main */ void main(argc, argv);
 { struct port_type {int portcount; port_struct *port}
 type_def struct *port_type Interface;
 extern int TypeCount;
 Makeports(Interface); SetInterface(Interface); RealMain(Interface)}

 /* Terminal RealMain */ void RealMain (Interface, argc, argv);
 { Int TypeCount=1; GetParam(V); Send(S, 1: V); Receive(S, 1: Max); }

/* Relay RealMain */ void RealMain (Interface, argc, argv);
 { Int TypeCount=2;
 LMax=0;
 for (i=1; i=C.portcount; i++) { UReceive(C, i: V); if (V>LMax) LMax=V};
 for (j=1; j=P.portcount; j++) { USend(P, j: LMax); }
 GMax= LMax;

 for (j=1; j=P.portcount; j++) { UReceive(P, j: V); if (V>GMax) GMax= V};
 for (i=1; i=C.portcount; i++) {USend(C, i: GMax)} }

Figure 4. The common structure of reusable and scalable terminal and relay
The first part, headed by PCG, specifies the Process

Communication Graph (PCG) of applications independent
of any MPE. PCGs are a natural structure for specifying
processes and their communication dependencies and are
close to program design. Nodes on a PCG denote
processes and arcs communication channels between them.
In the PCG part, we first specify the components involved
(e.g. T and R) together with the number of ports of each
communication type. Then we specify the processes
instantiated from each component, together with the actual
number of ports of each communication type. Finally, we
specify the communication channels between processes.

The second part, headed by Parallel System, includes
information for the annotation of the PCG according to the
implementation environment. For a PVM script, the tagid
annotation must be specified and optionally the allocation
of processes. For a Parix script, the number of processors
allocated to the application should be specified, as well as
the mapping of processes to processors. In Parix, the
communication type (R, L and T) should also be specified.
Finally, information about the executables (name and full
path) and the parameters of each process are specified.

The PCG-builder program common for all MPEs, reads
the PCG part of the script and builds the PCG. The PCG-
annotator specific for each MPE, reads the second part of
the script and annotates the PCG graph.

3.2 The reusable program components

These are programs for calculating results or providing
the service of the application. They do not include any
process management. A message passing application is
composed of processes, spawned from executables, which
have open interfaces, do not assume any particular
topology or any particular processes for communication.

Their open interface consists of arrays of ports, one array
for each communication type. Each port stores information
needed for the communication routines. For PVM, a port is
a (tid, tagid) pair. In Parix, a port is also a pair (ProcId,
ReqId) and possibly a Link variable L and a Topology
name T. Although port information differs in MPEs, the
structure of Interface is the same (fig. 4). The first action
of a process is to obtain the number of ports of each type
from its parameter list and fix Interface reserving space for
the ports for each type. This is coded in the MakePorts
routine. Port information, (tid, tagid) for PVM and
(ProcId, ReqId) for Parix, is then obtained and stored in
Interface. This activity is coded in the SetInterface routine.
An interesting case is the creation of Links that demands
synchronisation of ConnectLink calls. For the executable
program components to be reusable, the danger of a
deadlock creation should be avoided. For this reason, we
used one thread for each connection, which provides an
asynchronous connection of processes. Finally, RealMain
routine is called, where the application activities are coded.
The programmer has only to use this common structure
and program the RealMain routines of the applications. In
the Distribution of Maximum application, we need coding
of terminal and relay. Where parameter of Send and
Receive refers to ports (CommunicationType, PortIndex).
We have also written universal send and receive routines,
USend and UReceive, respectively, which call appropriate
PVM and Parix routines, making RealMain identical in
PVM and Parix.

3.3 The launcher

The launcher is a program, which interprets the
annotated PCG and composes applications. It is different

for each MPE, but universal for all applications
implemented under the same MPE.

PVM launcher acts in two phases. In phase 1, it visits
nodes of annotated PCGs, spawns processes with
command line parameters the number of ports. It stores the
tids of spawned processes. In phase 2, it visits nodes and
sends port information to set their interface. PVM launcher
is an extension of the root-process of section 2.

Parix launcher runs on all processors, visits PCG nodes,
spawns processes and passes the appropriate parameters
needed for Execute calls. Parix launcher acts in one phase,
as all port information is known at compile time. Parix
launcher is an extension of Parix main of section 2.

4. Portability between PVM and PARIX

Portability of applications between PVM and PARIX
requires porting of script and of program components. The
two implementations have already the same structure.
Furthermore, script and reusable components have a
number of common parts.

4.1 Porting of script

The PCG part of the script, that specifies the Process
Communication Graph of the application, is exactly the
same for both PVM and PARIX implementations, as it
specifies the topology of the application and is
independent of the implementation’s environment. For the
Distribution of Maximum script, refer to fig. 3.

The second part of the script, headed by PARALLEL
SYSTEM, includes elements that specify the annotation of
the PCG and depends on the implementation environment.
The default function that specifies the tagid and reqid is
the same in both environments and annotates the arcs of
the PCG with unique positive numbers. In PVM there is an
optional part, headed by Process Allocation, where
processes are allocated to hosts, but in PARIX, we must
specify ProcIds of processes. In PARIX, the default
function, that specifies the mapping of processes to
processors, uses the modulo of the number of processors.
In order to port a PVM application to PARIX, we
correspond each PVM host to a PARIX processor and
define their number as the number X of the processors
(Parix[X]). For porting from PARIX to PVM there are two
alternatives. We can drop the Process Allocation part, as it
is optional, or we can assign processes to PVM hosts.

In the part of the script that refers to the executables, we
specify their name and the location, as well as the
parameters of the processes. If these parameters are
constants, there is no change at all.

4.2 Reusable components

Ensemble handles reusable components in the same way
in both systems. Each component uses a library that
includes MakePorts, SetInterface, USend and UReceive

routines, that are environment depended. Main is the same
in PVM and Parix; it calls MakePorts, SetInterface and
finally RealMain.

RealMain, where all process communications and
computations are performed, is also the same. The
communication routines are called in an abstract way from
USend and UReceive referring to communication ports. By
this method, the portability of source code from one
system to the other is direct, requiring compiling of
RealMain and their linking to main.

4.3 Portability and communication types

PVM supports asynchronous communication, point to
point and broadcast, whilst PARIX has five communication
types: SL, ST, SR, AT, AR (section 2), all point to point.
Direct porting from one system to the other is possible
using the communication type Parix-AR and PVM-point-
to-point. Using Ensemble, porting from an asynchronous
type of Parix to another is very simple. We just need to
define in the script, the required communication type, e.g.
R, L or T. Porting from AR to AT and the reverse is
automatic. Converting synchronous programs to
asynchronous may be also mechanical, but needs care as
communication dependencies change. The programmer
must ensure that the application doesn’t lead to a deadlock.

5. Conclusions

We examined the differences between PVM and Parix
and their implications on the structure of applications. We
outlined Ensemble and its common software architecture
of implementations in PVM and Parix. We described the
mechanical porting of implementations under Ensemble
from one system to the other. The mechanical porting
between MPEs is very important, as it guarantees that
applications developed on an MPE may be ported to future
MPEs with the minimum and predictable effort.
References
[1] G.R.Andrews: Paradigms for Process Interaction in

Distributed Programs, ACM Computing Surveys, Vol.23,
No1, March 91.

[2] J.Y.Cotronis: Efficient composition and automatic
initialization of arbitrary structured PVM programs, Proc. 1st

Workshop on PDSE, ICSE 96, Berlin, March 96.
[3] J.Y.Cotronis: Efficient Program Composition on Parix by the

Ensemble Methodology, Euromicro96, Prague, 1996.
[4] J.Y.Cotronis: Message-Passing Program Development by

Ensemble, Proc. PVMPI97, M.Bubak, J. Dongarra, J.
Wasniewski (Eds.) LNCS 1332, pp 242-249, November 97.

[5] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
Vaidy Sunderam, ‘PVM 3 User’s guide and Reference
Manual’, ORNL/TM-12187, May 1994.

[6] O.A. McBryan, “An overview of Message Passing
Environments”, Parallel Computing 20 (1994) 417-444.

[7] MPI: A Message-Passing Interface Standard, Message
Passing Interface Forum, June 12, 1995.

[8] Parix1.2, Manual.

