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Abstract 
We examine the differences between two message 

passing environments, PVM and Parix, and their impact 
on the implementation of applications. We outline 
Ensemble, a methodology for designing and implementing 
message passing applications by providing common 
software architecture. We outline Ensemble applied to 
PVM and Parix. We describe the mechanical porting of 
applications developed under Ensemble from one 
environment to the other.  

1. Introduction 
The most widely used programming paradigm for 

distributed memory systems is message passing. Message 
passing interfaces [6] introduced by vendors relied on and 
exploited the special characteristics of their architectures. 
The implementation of message passing designs was 
difficult, as they depended on knowledge of the actual 
hardware platform. In the past few years, we have seen the 
emergence of Message Passing Environments (MPE), such 
as PVM [5], Parix [8], MPI [7], in which message-passing 
applications may be implemented without the precise 
knowledge of the underlying architecture. MPEs, 
particularly PVM and MPI, abstract architectural 
characteristics and permit application implementation on 
various platforms. Applications are thus portable among 
the parallel systems for which the interface is available.  

However, the implementation of application designs on 
MPEs is still a demanding task. The application 
implementation does not only involve the programming of 
process computations, but also requires the explicit 
programming of process management issues, such as their 
creation, their logical topology and their mapping onto the 
architecture. Consequently, the original design is diffused 
into the implementation, as statements implementing 
computations and process management co-exist in code 
segments. Furthermore, code development has to anticipate 
for all possible occurrences of the processes; for example 
all their possible positions in application topology and 
their interactions with their neighbouring processes in each 
case. The implementation complexity increases when the 
topology is not regular, as process positions and their 

communicating processes cannot be determined by 
functions. 

There are no methodologies supporting the 
implementation of application designs. In addition, 
reusability of executables is restricted as process 
management is encoded in them. Processes may only 
operate within the specific topology for which they are 
implemented, although their functionality could be used in 
other applications. MPEs may differ significantly in the 
way they manage processes, but also in other fundamental 
issues, such as the kind of processes they support (threads, 
lightweight and heavyweight, etc.), the naming and 
identification of processes. Due to these differences, some 
applications are easier to implement on some MPEs and 
more difficult on others. For example, a general tree 
topology is relative easy to implement on PVM, but more 
demanding on MPI or Parix. Each MPE requires its own 
implementation techniques and imposes its own structure 
on message passing implementations. Two programs 
implementing the same design, using the same sequential 
language, but implemented on different MPEs, look very 
different. Porting applications from one MPE to another is, 
in general, costly, as it is tackled case by case. 

We have developed a message passing implementation 
methodology, called Ensemble, in which implementations 
on any MPE have common software architecture. They 
preserve the original design and, for this reason, are easier 
to develop, debug and maintain; they are also easily 
portable from one MPE to another. Ensemble is not “yet 
another” message passing environment. It is a 
methodology, independent of any MPE, aiming to reduce 
the cost of message passing software development, 
maintenance and porting to other MPEs. In [2,4] we 
presented Ensemble for PVM and in [3] for Parix. In this 
paper, we present Ensemble comparatively for PVM and 
Parix and demonstrate the mechanical portability of 
applications between PVM and Parix. The structure of the 
paper is as follows: In section 2, we outline the 
characteristics of PVM and Parix and we examine their 
implications on application implementations. In section 3, 
we present the common software architecture of Ensemble 
implementations on PVM and Parix. In section 4, we 
address the portability of applications between PVM and 
Parix. Finally, in section 5 we present the conclusions. 
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2. PVM and Parix: two very different MPEs 
We outline the main characteristics of PVM and Parix. 

2.1 PVM overview 

1. The underlying architecture of PVM is any host system 
running UNIX and some special cases of parallel 
architectures, which are viewed as virtual machines. 
2. The PVM console allows the user to interactively start, 
query, and modify the virtual machine. Any PVM program 
may use the complete host system. 
3. A PVM process is a UNIX process running on a host 
machine. A process is spawned by its parent process. To 
run PVM programs the user spawns a root process. 
4. Processes are identified by unique task identifiers (tids) 
generated upon their creation. The tid is only known to the 
parent process; the spawned process may obtain its 
parent’s and its own tid by function calls. 
5. Processes may be spawned on specific hosts. If no host 
is specified, PVM chooses where to spawn them. 
6. Process communication and synchronisation are of two 
categories: a) Requiring process tids and possibly some 
message tag identifiers (tags), such as point-to-point 
asynchronous communication (pvm_send, pvm_recv, etc.) 
and multicast, sending the same value to a list of processes. 
In that sense (tid, tagid) pairs are the primary 
communication parameters. b) Requiring group definitions, 
such as bcast, sending the same value to processes in a 
group, and barriers, for synchronising processes in a group. 
Programming applications forming, in general, tree-like 
process communication dependencies, where each process 
communicates only with its parent and its children, is easy 
to program. However, establishing general graph process 
topologies requires substantial programming effort. 

2.2 Parix overview 

1. Parix runs on PARSYTEC architectures and views 
them as a logical grid of processors. The fist version was 
developed for transputer grids. Later versions however, run 
on super cluster architectures based on nodes running AIX. 
2. Throughout program execution a partition of 
processors is exclusively reserved and managed as a 
private resource of the application program. 
3. Applications are initiated from a front-end computer by 
loading the same initial main program onto all processors 
of the application partition. Thus, a Parix program initially 
appears as an SPMD program, each copy having its own 
context, i.e. an environment with its own code and data. A 
set of global data kept at each processor allows 
identification of the “own” processor position within the 
network. Depending on the position it is possible to 
execute different sections of the main code or execute 
identical instructions on different data. Contexts cannot 
migrate to another processor. 

4. A program may create lightweight processes (threads) 
handling asynchronous services. Threads are running 
concurrently in the same context and share all global 
variables defined in the program. Semaphores are provided 
for variable protection and synchronisation. 
5. It is also possible to load and run a different code on a 
processor by issuing an Execute call. This call loads an 
executable Parix program (on the processor the calling 
thread runs on) and creates a new context, distinct from the 
context of the calling thread. The calling thread waits for 
termination of the new context before it resumes execution. 
More than one context may run on the same processor. 
Thus, an application, which initially looks like an SPMD, 
may become during run-time a true MIMD. 
6. Communication between threads may be synchronous 
(S) or asynchronous (A). Communication may be based on 
virtual links (L), which build point-to-point connections 
between threads. A set of virtual links can be combined to 
build a virtual topology (T). Communication may also be 
random (R), that is, not requiring the definition of virtual 
links or topologies. There are routines for sending and 
receiving messages implementing the above 
communication types, as shown in the following table: 

 Links (L) Topology (T) Random (R) 
Synchronous 

(S) 
SendLink 
RecvLink 

Send, 
Recv 

SendNode 
RecvNode 

Asynchronous 
(A) 

 ASend, 
ARecv 

(PutMessage 
GetMessage) 

Note that asynchronous communication over links is not 
supported. In Parix 1.9 AR communication type is also not 
supported and for this reason are placed on parentheses. 
7. Communication types define, explicitly or implicitly, 
communication channels between threads. When virtual 
links are used, the channels are explicitly defined. A link 
between two threads is established when each calls a 
connection routine (e.g. ConnectLink) giving as 
parameters each other’s Processor Identifier, ProcId, and a 
common Request Identifier, ReqId. A topology groups 
links under a name and gives them unique symbolic names 
within the topology, thus defining channels explicitly and 
abstractly. In random communication, the channels are 
implicitly specified by referring directly to the processor 
identifiers the two threads are running on and to the 
common ReqId. Consequently, in all communication types 
between two threads the primary communication 
information is the ProcIds of the threads and the ReqIds 
tagging the messages over the channel. As threads cannot 
migrate, the processor identifier specifies the processor 
allocation of the thread and the request identifier uniquely 
specifies a particular channel. 

2.3 Implementation on PVM and Parix 

We will demonstrate the implementation on PVM and 
Parix, using an application, called Distribution of 



Maximum. There are two types of processes, terminal and 
relay. Each terminal process accepts an integer parameter 
and requires the maximum of these integer parameters. 
Groups of terminals send their values to a relay process 
(acting as their server). Relays find the local maximum of 
their associated terminals, which they asynchronously send 
to the other relays and, respectively, they receive the local 
maxima from them. Each relay finds the maximum value, 
which they send to their respective terminal processes.  

Terminal processes have one communication 
dependency, that with their associated relay processes, 
which we call S (server) type. Relay processes have two 
types of communication dependencies, one with their 
terminal processes, which we call C (client) type, and one 
with the relay processes, which we call P (Pier-to-pier) 
type. A relay process may have any non-negative number 
of dependencies of C and P types. Processes are depicted 
by two concentric circles, as in fig. 1. On the inner circle, 
the communication types are depicted, namely S for 
terminal processes and C, P for relays. On the outer circle, 
the specific number of interconnections or ports of each 
communication type are depicted. Type S has one port (fig. 
1a) and C, P have n, m ports, respectively (fig. 1b).  
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Figure 1: Representation of processes 

The application topology with three relays, each one 
connected with two terminals, is depicted in fig. 2. Graphs 
are used as a natural representation of process 
communication [1]. Arcs connecting ports represent the 
communication channels between processes.  
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Figure 2: Topology of Distribution of Maximum 

The PVM implementation style we present is not 
unique, but typical for PVM and may be easily generalised 

for any application. A root-process spawns all terminal and 
relay processes and stores their tids. Then it sends to each 
process the tids of the processes it needs for 
communication. Processes are responsible for interpreting 
the tids (integer values) they receive in a compatible 
manner. In the outline of the root-process that follows, we 
use a simplified PVM spawn instruction, which defines the 
executable from which a process (e.g. terminal) is started, 
the parameters of the executable (e.g. “15”) and the host 
which will run the process (e.g. gaia). We also use a 
simplified Send instruction, which has the following 
structure: Send (Where: V1,V2,…,Vn). The parameter 
Where is the tid of the process that the message is sent to 
and V1, V2,…, Vn the data of the message sent. These 
syntactic modifications are used for brevity, as well as for 
identifying similarities and differences of PVM and Parix. 

 
/* PVM Root Process */ 

/* Create processes and store tids */ 
    /* Spawn terminals */ 
TerminalTid[0]=spawn(terminal,”15”, gaia);  /* Node 1 */ 
TerminalTid[1]= spawn(terminal,”34”, gaia); /* Node 2 */ 
TerminalTid[2]= spawn(terminal,”37”,chaos); /* Node 3 */ 
TerminalTid[3]= spawn(terminal,”4”,  chaos); /* Node 4 */ 
TerminalTid[4]= spawn(terminal,”5”,  eros);  /* Node 5 */ 
TerminalTid[5]= spawn(terminal,”99”, eros);  /* Node 6 */ 
 
    */ spawn relays */ 
RelayTid[0]= spawn(relay,” “, gaia);  /* Node 7 */ 
RelayTid[1]= spawn(relay,” “, chaos);  /* Node 8 */ 
RelayTid[2]= spawn(relay,” “,eros);  /* Node 9 */ 
 
/* Send tids to establish connections */ 
Send(TerminalTid[0]: RelayTid[0]); 
Send(TerminalTid[1]: RelayTid[0]); 
Send(TerminalTid[2]: RelayTid[1]); 
Send(TerminalTid[3]: RelayTid[1]); 
Send(TerminalTid[4]: RelayTid[2]); 
Send(TerminalTid[5]: RelayTid[2]); 
 
Send(RelayTid[0]:RelayTid[1],RelayTid[2], 
   TerminalTid[0],TerminalTid[1]); 
Send(RelayTid[1]:RelayTid[0],RelayTid[2], 
   TerminalTid[2],TerminalTid[3]); 
Send(RelayTid[2]:RelayTid[0],RelayTid[1], 

TerminalTid[4],TerminalTid[5]); 
 
In Parix, the same main program runs on a partition of 

processors reserved by the application. If each process 
runs on a unique processor, we need nine (9) processors 
uniquely identified by ProcIds from 0 to 8. The outline of 
the main program, which according to Parix is initiated on 
each of the nine processors, is shown below. Each process 
gets the ProcId it runs on and loads the appropriate 
executable and command line parameters. 



/* Parix Main Program */ 
MyProcID = Get_my_ProcId; 
case MyProcID of 
{ 0 : Execute(terminal, 6,”15”);  /* Node 1 */ 
 1 : Execute(terminal, 6,”34”);  /* Node 2 */ 
 2 : Execute(terminal, 7,”37”);  /* Node 3 */ 
 3 : Execute(terminal, 7,”4”);  /* Node 4 */ 
 4 : Execute(terminal, 8,”5”);  /* Node 5 */ 
 5 : Execute(terminal, 8,”99”);  /* Node 6 */ 
 6 : Execute(relay, 7,8,0,1);  /* Node 7 */ 
 7 : Execute(relay, 6,8,2,3);  /* Node 8 */ 
 8 : Execute(relay, 6,7,4,5);  /* Node 9 */ 
} 
We used the Execute(executable, P1, P2, …, Pn) which 

spawns a process from “executable”, passing parameters, 
P1, P2,…, Pn. We have put application parameters in 
quotes to simplify the comparison with PVM 
implementation. The other parameters are the ProcIds of 
the processes with which each process needs to 
communicate. For example, the first and second terminal 
processes (ProcIds 0 and 1) have parameter 6 which means 
that they will communicate with (relay) process with 
ProcId=6. Relay with ProcId=6 has parameters 7, 8, 0, 1, 
which means that it communicates with the relays having 
ProcIds 7 and 8 and with the terminals having ProcIds 0 
and 1. Executables are responsible for interpreting their 
parameter list in a compatible manner. 

Executables terminal and relay, used in each system, 
have again differences. We will show them, as well as their 
similarities. We have extended the notation Send(Where: 
P1, P2, …, Pn) for receive instructions, Receive(Where: 
P1, P2, …, Pn). Furthermore, we have used as Where 
variable names of communication ports S1, C1, C2, P1, P2 
used in the process communication graph of fig. 2. The 
type and values of port variables are different for PVM and 
Parix. In the coding of terminal and relay that follows, we 
localise and hide these differences in Initial Actions: 

/* Terminal */ 
void main (argc, argv); 
{ Initial Actions; 
 GetParam(V); Send(S1: V); Receive(S1: GMax);} 

/* Relay */ 
void main (argc, argv); 
{ Initial Actions; 
  LMax=0; 
  Receive(C1: V); if (V>LMax) LMax=V; 
  Receive(C2: V); if (V>LMax) LMax=V; 
  Send(P1: LMax); Send(P2: LMax); 
  GMax= LMax; 
  Receive(P1: V); if (V> GMax) GMax=V; 
  Receive(P2: V); if (V> GMax) GMax=V; 
  Send(C1: GMax); Send(C2: GMax); } 

  
In PVM, terminal processes receive the tid of the relays 

that communicate with, and relay processes receive the tids 

of two relays and two terminals from the root-process. The 
Initial Actions of terminal and process in PVM are: 

 
Terminal Initial Actions Relay Initial Actions 
Parent = get_parent_tid; 
Receive(Parent:S1); 

Parent = get_parent_tid; 
Receive(Parent: P1, P2, C1, C2); 

 
According to the Parix implementation policy we have 

adopted, each process gets the ProcIds of the processes it 
communicates from its parameters by calling a GetParam 
routine. However, Parix supports different kinds of 
communications (Random, Links and Topology). If we 
choose Random communication, we skip any further 
action. We describe further actions for communication 
over Links. For two processes to establish a link, each one 
must make a ConnectLink call, using as parameter the 
ProcId of the other process. ConnectLink returns a link, 
which is used by send and receive routines thereafter. The 
execution of ConnectLink enforces synchronous 
communication between the processes; consequently, the 
danger of deadlock is apparent. If for example, we alter the 
order of parameters 6, 8 in ProcId=7, i.e. from 
Execute(relay, 6,8,2,3) to Execute(relay, 8,6,2,3), the 
program would deadlock. Relay with ProcId=6 would wait 
to be connected with relay with ProcId=7, which would 
wait to be connected with relay with ProcId=8, which in 
turn would wait with relay with ProcId=6, forming a 
dependency cycle. As the order of the parameters stands 
now there is no dependency cycle. 

Terminal Initial Actions Relay Initial Actions 
GetParam(R); 
S1=ConnectLink(R); 

GetParam(R1, R2, T1, T2); 
C1=ConnectLink(T1);  
C2=ConnectLink(T2);  
P1=ConnectLink(R1);  
P2=ConnectLink(R2); 

 
Although we have simplified and hidden a number of 

differences of PVM and Parix, the implementations of the 
application are dramatically different.  

3. The Ensemble methodology 
Structuring of implementations described in the 

previous section, as an organiser and executable programs, 
leads to two observations, regarding reuse of executables 
and generalisation of establishing process topologies. 

 Reuse of executables. The Distribution of Maximum 
implementation on the two MPEs may be easily scaled by 
adding to the root-process in PVM and to the main in 
Parix, instructions for the creation and connection of 
terminal and relay processes. Changes to the executables 
of terminal and relay are not required. They are like library 
routines. We observe that they don’t involve any 
instructions for topology or any process creation. Before 
any calculations are performed by these processes, the 



communication is established with the use of the 
instructions included in their respective Initial Actions.  

However, there is a limitation; all relays must have 
exactly two terminals as clients. Usually, due to 
programming complexity, scalability is designed on global 
factors in an application, e.g. sizes of dimensions of a grid 
topology, or relays having a specific number of terminals. 
However, there may be other local scalability factors. In 
general, scaling of applications requires replication of 
processes and their interconnections. For some process 
topologies, such as a torus, it is sufficient to replicate 
identical processes each having the same number of 
connections. However, for other topologies, such as 
master/slave, each replicated process may have a distinct 
number of interconnections, possibly within a range. We 
would like to permit the design option to scale the 
application by adding any number of terminals to any 
relay, so that relays may have any number of terminals.  

Generalisation of establishing process topologies. We 
observed that the topology, which is created by the root-
process of PVM and the main program of Parix, is 
described by the general graph of the application of fig. 2. 
We may annotate this graph by information pertinent to 
PVM or Parix. For example, all parameters of spawn may 
annotate the corresponding nodes. For Parix 
implementation, nodes may be annotated with the associate 

ProcIds. The arcs of the graph may be annotated by tagids 
and ReqIds of PVM and Parix messages, respectively, 
which have been ignored for simplicity. 

Since all information needed to implement a topology, 
appears on the application graph, the root-process for 
PVM and the main routine for Parix may be generalised to 
launcher programs or loaders of the application. 

In Ensemble, application implementation is an 
‘ensemble’ of an annotated graph, the reusable and 
scalable executables and a launcher program. Each MPE 
requires its own graph annotation, its own techniques for 
reusable executables and its own launcher. We have 
developed these tools for PVM [2,4] and Parix [3]. We 
briefly describe the implementation of the Distribution of 
Maximum using Ensemble. 

3.1 The annotated graph. 

We have developed a script language, which describes 
annotated graphs of applications. A script abstractly 
describes the processes and their communication channels, 
the mapping of the processes onto the architecture, the 
executables and the application parameters. The script for 
the Distribution of Maximum application is shown in fig. 
3. The script is structured in two main parts: 

 
Ensemble Script 

Application Distribution_of_Maximum; 
PCG 
Components 

terminal port-types: S[1..1]; 
relay port-types : C[1..], P[0..];  

Processes 
relay[1],relay[2], relay[3] #ports = C:2, P:2; 
terminal[1], terminal[2], terminal[3],terminal[4], terminal[5], terminal[6] #ports=S:1; 

Channels 
terminal[1].S[1] <-> relay[1].C[1];  terminal[2].S[1] <-> relay[1].C[2]; 
terminal[3].S[1] <-> relay[2].C[1];  terminal[4].S[1] <-> relay[2].C[2]; 
terminal[5].S[1] <-> relay[3].C[2];  terminal[6].S[1] <-> relay[3].C[2]; 
relay[1].P[1] <-> relay[2].P[1]; relay[1].P[2] <-> relay[3].P[1]; relay[2].P[2] <-> relay[3].P[2]; 

 

PARALLEL SYSTEM 
PVM3 
  tagID : default; 
Process Allocation 
relay[1], terminal[ 1 ], terminal[2] on gaia; 
relay[2], terminal[ 3 ], terminal[4] on chaos; 
relay[3], terminal[ 5 ], terminal[6] on eros; 

 PARALLEL SYSTEM 
PARIX [5] 
  reqID : default; 
  ProcID : default; 
Communication Type R 
  

Executable Components 
terminal: path default file terminal.sun; 
relay   : path default file relay.sun;   
Parameters 
terminal[1]:"15"; terminal[2]:"34"; terminal[3]:"37"; 
terminal[4]:"4";  terminal[5]:"5";  terminal[6]:"99" 

 Executable Components 
terminal: path default file terminal.px; 
relay   : path default file relay.px;   
Parameters 
terminal[1]:"15"; terminal[2]:"34"; terminal[3]:"37"; 
terminal[4]:"4";  terminal[5]:"5";  terminal[6]:"99" 

Figure 3. The Script for application Distribution of Maximum for PVM and Parix 



PVM Reusable Components  Parix Reusable Components 
#include Libraries for PVM and Ensemble  
PVM port={int tid, tagid} 

 #include Libraries for Parix and Ensemble 
Parix port={int ProcId, Reqid; link L; Top T} 

/* common main */  void main(argc, argv);       
 {  struct port_type {int portcount; port_struct *port} 
         type_def struct *port_type Interface; 
         extern int TypeCount; 
         Makeports(Interface); SetInterface(Interface); RealMain(Interface)}   

 /* Terminal RealMain */  void RealMain (Interface, argc, argv);          
  { Int TypeCount=1; GetParam(V); Send(S, 1: V); Receive(S, 1: Max); } 

/*  Relay RealMain */ void RealMain (Interface, argc, argv);     
  { Int TypeCount=2; 
           LMax=0; 
           for (i=1; i=C.portcount; i++)  { UReceive(C, i: V);  if (V>LMax) LMax=V}; 
           for (j=1; j=P.portcount; j++) { USend(P, j: LMax); } 
           GMax= LMax; 

                           for (j=1; j=P.portcount; j++) { UReceive(P, j: V); if (V>GMax) GMax= V}; 
           for (i=1; i=C.portcount; i++) {USend(C, i: GMax)} } 

Figure 4. The common structure of reusable and scalable terminal and relay 
The first part, headed by PCG, specifies the Process 

Communication Graph (PCG) of applications independent 
of any MPE. PCGs are a natural structure for specifying 
processes and their communication dependencies and are 
close to program design. Nodes on a PCG denote 
processes and arcs communication channels between them. 
In the PCG part, we first specify the components involved 
(e.g. T and R) together with the number of ports of each 
communication type. Then we specify the processes 
instantiated from each component, together with the actual 
number of ports of each communication type. Finally, we 
specify the communication channels between processes.  

The second part, headed by Parallel System, includes 
information for the annotation of the PCG according to the 
implementation environment. For a PVM script, the tagid 
annotation must be specified and optionally the allocation 
of processes. For a Parix script, the number of processors 
allocated to the application should be specified, as well as 
the mapping of processes to processors. In Parix, the 
communication type (R, L and T) should also be specified. 
Finally, information about the executables (name and full 
path) and the parameters of each process are specified. 

The PCG-builder program common for all MPEs, reads 
the PCG part of the script and builds the PCG. The PCG-
annotator specific for each MPE, reads the second part of 
the script and annotates the PCG graph. 

3.2 The reusable program components 

These are programs for calculating results or providing 
the service of the application. They do not include any 
process management. A message passing application is 
composed of processes, spawned from executables, which 
have open interfaces, do not assume any particular 
topology or any particular processes for communication. 

Their open interface consists of arrays of ports, one array 
for each communication type. Each port stores information 
needed for the communication routines. For PVM, a port is 
a (tid, tagid) pair. In Parix, a port is also a pair (ProcId, 
ReqId) and possibly a Link variable L and a Topology 
name T. Although port information differs in MPEs, the 
structure of Interface is the same (fig. 4). The first action 
of a process is to obtain the number of ports of each type 
from its parameter list and fix Interface reserving space for 
the ports for each type. This is coded in the MakePorts 
routine. Port information, (tid, tagid) for PVM and  
(ProcId, ReqId) for Parix, is then obtained and stored in 
Interface. This activity is coded in the SetInterface routine. 
An interesting case is the creation of Links that demands 
synchronisation of ConnectLink calls. For the executable 
program components to be reusable, the danger of a 
deadlock creation should be avoided. For this reason, we 
used one thread for each connection, which provides an 
asynchronous connection of processes. Finally, RealMain 
routine is called, where the application activities are coded. 
The programmer has only to use this common structure 
and program the RealMain routines of the applications. In 
the Distribution of Maximum application, we need coding 
of terminal and relay. Where parameter of Send and 
Receive refers to ports (CommunicationType, PortIndex). 
We have also written universal send and receive routines, 
USend and UReceive, respectively, which call appropriate 
PVM and Parix routines, making RealMain identical in 
PVM and Parix. 

3.3 The launcher 

The launcher is a program, which interprets the 
annotated PCG and composes applications. It is different 



for each MPE, but universal for all applications 
implemented under the same MPE.  

PVM launcher acts in two phases. In phase 1, it visits 
nodes of annotated PCGs, spawns processes with 
command line parameters the number of ports. It stores the 
tids of spawned processes. In phase 2, it visits nodes and 
sends port information to set their interface. PVM launcher 
is an extension of the root-process of section 2. 

Parix launcher runs on all processors, visits PCG nodes, 
spawns processes and passes the appropriate parameters 
needed for Execute calls. Parix launcher acts in one phase, 
as all port information is known at compile time. Parix 
launcher is an extension of Parix main of section 2. 

4. Portability between PVM and PARIX 

Portability of applications between PVM and PARIX 
requires porting of script and of program components. The 
two implementations have already the same structure. 
Furthermore, script and reusable components have a 
number of common parts. 

4.1 Porting of script 

The PCG part of the script, that specifies the Process 
Communication Graph of the application, is exactly the 
same for both PVM and PARIX implementations, as it 
specifies the topology of the application and is 
independent of the implementation’s environment. For the 
Distribution of Maximum script, refer to fig. 3. 

The second part of the script, headed by PARALLEL 
SYSTEM, includes elements that specify the annotation of 
the PCG and depends on the implementation environment. 
The default function that specifies the tagid and reqid is 
the same in both environments and annotates the arcs of 
the PCG with unique positive numbers. In PVM there is an 
optional part, headed by Process Allocation, where 
processes are allocated to hosts, but in PARIX, we must 
specify ProcIds of processes. In PARIX, the default 
function, that specifies the mapping of processes to 
processors, uses the modulo of the number of processors. 
In order to port a PVM application to PARIX, we 
correspond each PVM host to a PARIX processor and 
define their number as the number X of the processors 
(Parix[X]). For porting from PARIX to PVM there are two 
alternatives. We can drop the Process Allocation part, as it 
is optional, or we can assign processes to PVM hosts.  

In the part of the script that refers to the executables, we 
specify their name and the location, as well as the 
parameters of the processes. If these parameters are 
constants, there is no change at all. 

4.2 Reusable components 

Ensemble handles reusable components in the same way 
in both systems. Each component uses a library that 
includes MakePorts, SetInterface, USend and UReceive 

routines, that are environment depended. Main is the same 
in PVM and Parix; it calls MakePorts, SetInterface and 
finally RealMain.  

RealMain, where all process communications and 
computations are performed, is also the same. The 
communication routines are called in an abstract way from 
USend and UReceive referring to communication ports. By 
this method, the portability of source code from one 
system to the other is direct, requiring compiling of 
RealMain and their linking to main. 

4.3 Portability and communication types 

PVM supports asynchronous communication, point to 
point and broadcast, whilst PARIX has five communication 
types: SL, ST, SR, AT, AR (section 2), all point to point. 
Direct porting from one system to the other is possible 
using the communication type Parix-AR and PVM-point-
to-point. Using Ensemble, porting from an asynchronous 
type of Parix to another is very simple. We just need to 
define in the script, the required communication type, e.g. 
R, L or T. Porting from AR to AT and the reverse is 
automatic. Converting synchronous programs to 
asynchronous may be also mechanical, but needs care as 
communication dependencies change. The programmer 
must ensure that the application doesn’t lead to a deadlock.  

5. Conclusions 

We examined the differences between PVM and Parix 
and their implications on the structure of applications. We 
outlined Ensemble and its common software architecture 
of implementations in PVM and Parix. We described the 
mechanical porting of implementations under Ensemble 
from one system to the other. The mechanical porting 
between MPEs is very important, as it guarantees that 
applications developed on an MPE may be ported to future 
MPEs with the minimum and predictable effort.  
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