
Effective Usage of Vector Registers in Decoupled Vector
Architectures

Luis Villa * Roger Espasat Mako Valero

Departament d'arquitectura de Computadors,
Universitat Politkcnica de Catalunya-Barcelona

{ 1uisv.roger ,mateo} @ac.upc.es
http:/fwww.ac.upc.es/hpc

Abstract

Thzs paper presents a s tudy of t he ampact of reduc-
i n g t h e vector regaster saze rn a decoupled vector archz-
tecture. In tradi t ional in-order vector archatectures,
l o i i g ?lector regrsters haue typically been the n o r m . W e
s tart present ing data t h a t shours that, even for hrgh.ly
rmtorrnable codes, only a sma l l f rac t ion os all e l emen t s
of (I long vector regaster are actually used. U7e also
sho,w tha t reducang the regaster swe an a tradataonal
~ i ~ e c t o ~ architect,ui,e in an a t t empt t o reduce hardware
cost u n d iiiaxainzze regrster utalazataon 1-esults an a se-
' i l c ~ e l m f o r m a i z c e degradataon. However, we combine
t h e decoupling techiiique urith the vector register re-
diietron and show t h a t t he resultany architecture toler-
a t t s very well the regaster szze cuts. W e samulate a
s t l cc f zon of Perfect Club and SpecfpSL programs us-
rirg U trace draven approach, and compare t h e ezecu-
troll. t i m e L I Z a convent ional vector architecture with a
tlr-coupled vector architecture uszng dafferent regasters
' i i z c s . Halvang the regrster szze and uszng decouplzng
pi,oe'ides speedups between 1.04-1.49 over a tradataonal
iiZ-order .rector machrnes. Euen reduczng the regaster
lei ig-th t o 1/4 the original size (a n d , in. s o m e cases,
t o 1/81 t h e per formance of t he decoupled machzne IS
better t h a n a conventronal vector model. Moreover, 'we
observe t h a t t he resultaizg decoupled mach ine wath short
r-egisters tolerates very well long m e m o r y latenczes.

1 Iiitroduction

1;ector architectures have been used for many years
for high performance numerical applications - an area
where they still excel.

The traditional approach to vector processor de-
sign has been to use an in-order execution engine and
ncliieve high performance exploiting the natural data-
level parallelism embedded in each vector instruction.

* C h i leave froin the Centro de Investigaci6n en C6mputo, In-
st,ituto Polit6cnico Nacional ~ hlCsico D.F. This work was sup-
ported by the Instituto de Cooperacion Iheroamericana (ICI),
Cloiisqio Nacional de Ciencia y Teciiologia (CONACYT).

t This work was supported by the Ministry of Education of
Spain under contract 0429/95, and by the CEPBA.

Typically, traditional vector architectures have used
very limited forms of ILP techniques, only allowing
some overlapping of vector and scalar instructions
but keeping the scalar and vector instruction streams
strictly ordered. To achieve good performance and to
be able to tolerate the large latencies associated with
supercomputer main memory systems, vector design-
ers have exploited the large number of independent
operations present in each vector instruction. When
a vector instruction is started, it pays for some ini-
tial (potentially long) latency, Imt then it works on a
long stream of elements and effectively amortizes this
latency across all elements. A few of these vector in-
structions running concurrently can yield a very good
usage of the available hardware resources.

In this context, it is natural that vector processor
designers have striven to implement vector registers
as large as budget and technology constraints would
allow. Nonetheless, in today's environment where ILP
techniques such as out-of-order execution, decoupling,
multithreading, branch prediction, speculation, etc,
have proved their value as latency tolerance mecha-
nisins, it is less clear that the best way to invest the
available register space consists in having only few
very large registers.

First, if
an application can not make full use of each register,
then a precious hardware resource is being wasted.
Second, given a certain budget in terms of transistors,
large registers imply that only a few of them can be
implemented. A small number of logical registers has
a direct impact on the amount of spill code that the
compiler and/or programmer must introduce to fit all
live variables in the limited register file. Third, in-
troducing ILP techniques in a processor having a few
very large logical registers is difficult. For example,
out-of-order execution without renaming with only 8
logical vector registers provides little benefit. On the
other hand, introducing register renaming can be very
costly since many copies of registers that are very large
have to be provided.

Reducing the vector registers length is certainly a
solution to the problems just outlined. If most applica-
tions can not fully use all elements present in each vec-
tor register, then reducing the vector register length
will reduce cost and increase the fraction of usage of

Large registers have several drawbacks.

495
0-8186-8332-5/98 $10.00 0 1998 IEEE

http:/fwww.ac.upc.es/hpc

registers Tlie drawback of register length reductio11 is
t,lie a,ssociated perforiiiance penalty. Each time a vec-
t,or iiistruction is executed, its associated latencies are
iIl11ortlzetl over a smaller number of elements. This
can ha\-e a significant impact on performance, espe-
cially for memory accesses. Moreover, more instruc-
tions have to be executed each with a shorter effective
length, and, therefore, the number of times that la-
t.encies must lie payed is larger.

Unless some extra latency tolerance mechanism is
iiit,roduced in a vector architecture, vector length can
not lie reduced without a severe performance penalty.
TT71iile many techniques have been developed to toler-
ate iiieiiiory latency in superscalar processors, only a
f e r studies have considered the same problem in the
coiitext of’ vector architectures [l, 2, 31.

This pa.per will present data confirming the fact
t,liat traclit,ioiial vector architectures can not reduce
heir vector register length without suffering a severe
p(>rlorinaiice penalty. However, we will show that by
combiniiig the vector register length reduction with an
ILP kchnique, decoupling, the per€ormance penalty
ca,ii be made very small. We will show that result-
ing architecture tolerates very well long memory la-
tencies and also malies a better usage of the avail-
able storage s p x e in each vector register. Not only
1,lie performance iinpact of reducing the vector length
is small, but when our architecture with short vec-
i,or registers are compared against a traditional vector
iiia,chine 1mitl.1 large vector registers, performance is in
iiiost ca.ses far better across a large memory latency
rmge .

2 Vector Length usage

The usage of the vector register file elements is de-
teriniiied by both the degree of vectorizatioii of a pro-
gram aad the natural vector lengths associated with
the data structures of‘ an application. Many applica-
t,ioiis ha.ve small data sets or iterate over a particular
diineiision of‘ an iteration space which is smaller than
t h 7;ector register length. In [3] we evaluated a set
d highly vectorizable applications in order to know
\rliicii \vas the vector length used by these programs.

‘rhe first thing to note is that , even though these
set, oC prograins are highly vectorizable, their average
\,.ect,or leiigths are not very high. Investigation of the
programs reveals that often times this is due to the
~ ia t~ura l shape of the application data space. In other
cases, it is due to the nature of the algorithm, i.e., a
triaiigiilar matrix operation teiids to have many small
wctor lengths.

Which mill be the effective register length use if we
vary tlie vector register size ?? In [4] answered this
question showing how tlie application vector length
aiid the hardware vector register length are related.
We noted that in order to augment the percentage of
rii l i stripes we would have to choose as relatively small
\,-ector regist,er size. Next sections will look into the
performance implications of choosing a small vector
regiskr size.

+FW(I.J.l)
+FW(I.J.l)
+FW(I.J.3)
+FW(I.J.4)

Figure 1: (a) Flo52 loop without Strip-Mining, (b)
Adding strip-mining.

3 Compiliiig for smaller vector lengths

In order to investigate the effects of reducing the
hardware vector register length we need a set of bench-
marks compiled assuming different vector lengths.
Unfortunately, no public domain vectorizing compiler
is available and, therefore, we a.re forced to artificially
fool the Convex compiler [5] to generate code “as if”
the vect,or length mas 16, 32 or 64 (instead of the real
128). To obtain the desired binaries we modified the
source benchmarks as follows. Using the vectorization
information produced by the Convex compiler, we lo-
cated in the source code each vectorized loop. For
each loop nest, and taking into account loop transfor-
mations such as peeling, interchange and skewing, we
manually strip-mined the loop being vectorized. This
manual strip-mining consisted in adding a strip mine
loop performing steps of length VLZ and modifying
the original vectorized loop to do at most VLZ itera-
tions (see figure 1). To prevent the compiler from gen-
era.ting a doubly strip-mined loop (our strip-mining
plus the natural strip mining introduced by the com-
piler) we used tlie MAXTRIPS directive [SI. This di-
rective iiiforined the compiler that the inner loop was
performing less than 128 trips and thus no extra strip-
mining was generated

Using such a procedure we strip-mined most (but
not all) vectorized loops present in our ten bench-
marlis. Loops that escaped from this strip-mining
where vector loops that are in libraries and loops
where introducing one extra level of strip-mining
stopped vectorization. Moreover, due to the large
number of loops to strip-mine, we first selected those
that accumulate 95370 of all execution time. The re-
maining loops that form tlie other 5% of execution
time were not instrumented. For each program, we
generated four different binaries, assuming that the
maximum hardware vector leiigth was 16, 32, 64 and
128. For each register length, the percentage of opera-
tions that escaped our strip-mining procedure varied,
but was below 4% for all programs except arc2d and
flo52 where it was close to 10%.

496

4 Short Vectors Performance

We &art by analyzing the performance of a tra-
djtional in-order vector machine when the hardware
vxtjor length is varied. We are interested in the effect
(,hat, cliff'ereiit memory latencies have on performance
a.nd how it interacts with vector register length.

4.1 Performance on the Reference Archi-
tecture

Our reference inachine is loosely based on a Convex
C3409. The esseiitia.1 characteristics of the reference
architecture are a single memory port, two functional
units and 8 vector register. In [GI we give a detailed
explanation of this reference archit'ecture. In [4] we
studied four different variants of this reference ma-
chiiie. The four models under study was referred to as
the REF128, REF64, REFS2 and REF16 architectures
r i t h a. vector length of 128, 64, 32 and 16 elements re-
spectively.

1Te noted that the impact of memory latency is very
significant. For our unmodified model (REF128) we
olxerved that execution time is degraded by factors of
1.2- 1.4 in most programs when we vary the latency
froin 1 to 100 cycles.

We observed that reducing the vector register
length performaace degradation is very high. Our con-
clusion were that] reducing the vector register length
in a traditional vector machine results in a remarkable
loss of performance, The cost savings are clearly out-
weighted liy the execution time degradation. Unless
some latency tolerance technique is added to a tradi-
f,ional vect,or inachine, vector register length should be
kept a.s long as possible. In the next section we will
see 11ow drcoupliiig can compelisate this performance
loss.

5 Combining short vectors and decou-
p li 11 g

In this section we will study how the combination of
a. latency t,olerance technique such as decoupling can
he combined with a vector architecture having short
registers to overcome the performance degradation
seen in the previous section. As we will see, decou-
Illing ~ i t h short registers can even provide speedups
Tyit,li respect to a traditional in-order machine.

5.1 Decoupled Vector Architecture

For ours simulations we used the decoupled vector
architecture introduced in [l]. The main idea in this
architectjure is lo use a fetch processor to split the in-
coming, noli-decoupled, instruction stream into three
dif€erent, decoupled streams. Tlie translation is such
h t each processor can proceed independently and,
yet synchronizes through the coinmuiiication queues
 hen needed. Each of these three streams goes to a

different processor: the address processor (A P) , that
performs all memory accesses on behalf of the other
two processors, the scalar processor (SP), that per-
forins all scalar computations and the vector proces-
sor (V P) , that performs all vector computations. The
three processors communicate through a set of zmple-
~ r i e ~ i t u t i o n a l queues and proceed independently. This
set of queues is akin to the implementational queues
that can be found in the floating point part of the
RPOOO microprocessor[7]. Tlie main difference of this
decoupled architecture with previous scalar decoupled
architectures such as the ZS-1 [8] or the MAP-200 [9]
is that it has two computational processors iiistead of
just one. These two computation processors, the SP
and tlie VP, have been split due to the very different
nature of tlie operands on which they worli (scalars
and vectors, respectively).

Tlie main parameters of this architecture are tlie
length of its queues: the three instruction queues, tlie
inter-processor queues, the scalar queues and the load
store address queues were set at 16 elements. For the
vector queues (numbers 1 and 2) , each slot is a full vec-
tor register and, therefore, their size has to be carefully
considered. We start with 4 slots in each of them, as
suggested in [l]. Reducing the vector register length
benefits a decoupled implenientatioii since each slot in
the extra queues required to decouple the machine can
be smaller than in the original machine.

The key points in this architecture will be to achieve
good perforinance with relatively few slots in these
two queues. This is another point where reducing the
vector register length can be very helpful.

5.2 Performance of the DVA

What is the performance of the clecoupled machine
using different vector register lengths ? Figure 2 plots
the simulated performance for tlie decoupled and non-
decoupled machines for several ineinory latencies. For
each program, we plot tlie baseline performance of the
non-decoupled inachine with a register length of 128
and the performance of the decoupled versions using
register lengths of 16, 32, 64 and 128. Note that the
Y-asis plots the relative performance of each config-
uration relative to the non-decoupled machine with
length 138 and memory latency of 1 cycle. Thus, in
figure 2 numbers above 1.0 indicate a slowdown and
nuinbers below 1 .0 indicate speed,ups.

We will start comparing the performance of the de-
coupled and non-decoupled machines with the max-
imum vector register length (128). As already pre-
sented in [1], the performance improvements due to
decoupling are quite substantial. Even with a perfect
memory system with latency 1, speedups are in the
range 1.10-1.25. When memory latency is increased
up to 100 cycles, the DVA experiences some slow-
clowiis, hut much smaller than the reference machine.
Comparing both machines at a latency of 100, the
DVA yields speedups in the 1.22-1.52 range.

When the register length is reduced we still obtain
very good results. Halving the register length (64 el-
ements), yields a machine tha,t performs only worse

497

tomcatv trfd

1 SO 1 0 0
ClyfeSm

li'igure 2: Effects of memory latency and vector register length on perforniance wheii using decoupling.

t,liaii tlie DVA128 by factors of 1.01-1.10 but that,
in a l l ca.ses perforins much better than the reference
machine. Comparing performance at 100 cycles niem-
or>- hteiicy, me see speedups of tlie DVA64 over the
REF niacliine in the 1.05-1.49 range. Note t,hat, in
three cases, tlie performance of tlie DVA64 at 100 cy-
cles latency is bettel. than the REF ma.chine perfor-
mance a.t 1 cycle memory latency. In all programs
but trfd and su2cor, if we compare tlie DVA64 at
100 cycles and the reference machine at 50 cycles we
s w t81iat the decoupled machine perforins better (by
filct80rs 111 the range 1.01-1.32). These results suggest
f#lia,t evrii halving tlie register length, a machine with
a slower vneniory system (thus, a much cheaper mem-
ory system) would perform better than a traditional
machine.

Reducing the register length to 1/4 of the original
lengLh (3% elements). we still see that the performance
of the DVAS2 is better than the reference machine.
Except for programs hydro2d, nasa7 and su2cor, the
llJ7A32 achieves speedups over tlie REF machine in
t,hc range 1.01-1.25 and goes up to 1.42 for dyfesm
(a t la.tency 50).

Only when tlie register length is reduced to 16 el-
ements (1/8 of the original) performance starts to
degra.da.te noticeably. Seven out of ten prograins per-
forin worse with tlie DVA16 than with the REF ma-
chinp , a n d only dyf esm and tomcatv maintain a. good
perf'orinaace. This sudden jump in execution time is
due to the combination of several effects: the number
of scatter/gather operations, the number of outstand-
ing hranches and dependencies in scalar code intro-
duce iiiaiiy cycles of stall iii a program run. These
t h e e types of hazards stall the vector processor very
hxpeiitly, thereby exposing the full memory latency
at, ex11 memory load being executed. This explains

the steep slopes of each of the DVAlG curves.

6 Increasing Queue Length

The load and store queue length is a Bey param-
eter in a decoupled architecture. It determines the
amount of data that can be prefetched ahead of time
and, therefore, the queue length puts an upper limit
on the maximum memory latency that can be toler-
ated. For example, a system having 8 slots in the
load queue, each corresponding to a 32 element vec-
tor can request up to 8 x 32 = 256 data items to the
memory system before blocking. If main memory la-
tency is shorter than 256 cycles, then this decoupled
system can establish a continuous flow of data from
main memory into the processor without stalls (pro-
vided there are enough load instructions to keep the
pipeline fed, of course). On the other hand, if mem-
ory latency (L) is larger than 256 cycles, no matter
how fast we can feed the address processor, the flow
of requests to the memory system will be interrupted
and a fraction of all memory latency (L - 256) will be
exposed to the coinputation processor.

In this section we will look at the performance im-
provement due to enlarging both the load and store
queue lengths. We expected that, the longer the
queue, the better memory latency will he tolerated.
As we will see, this intuition is wrong and there is
a limit after which increasing queue length does not
yield any significant performance advantage.

Figure 3 presents for our ten benchmark programs
the improvements due to increasing the queue size.
Due to lack of space we present only the data for tlie
DVA16 model, where each vector register is supposed

498

to liold 16 elements. For each program we plot 4 dif-
ferent bars, labeled “&=4” through “&=32” that in-
dica.te the number of slots in the vector load queue
and the vector store queue. For these 4 bars, memory
lat,ency was assumed to be 50 cycles. Moreover, at the
lop of each bar there is a white bar representing the
execution time for the same queue size but assuming
a ineinory latency of 100 cycles.

As it can be seen from this figure, increasing from
4 slots to 8 slots does provide some performance im-
provement, especially at 100 cycles memory latency,
b u t lurther increasing the queue to 16 or 32 slots
does iiot provide any additional benefits. The result
i s striking: if we compare the total area requirements
of ljhe DVA128 and DVAlG architectures. For exam-
ple> t$he DVA128 architecture holds a total of 128 x 4
itmeins in each of its load and store queues. Similarly,
t,he DVA16 architecture with 32 slots in the queues
can potentially hold exactly the same amount of data
(I (< x 321, and yet it achieves a much worse perfor-
iiiaice. Although not presented here, a similar effect
1ia.ppens with the DVA32 and DVAB4 architectures.

‘The overall conclusion is that increasing queue size
does not coinpensate for the reduction in vector reg-
ister length. This will be further analyzed in the fol-
lou7ing section.

7 Limits on performance

In what ways does reduciiig the vector register
I(wgt1i limit per€ormance ? As we have seen in the pre-
vious section, vector length reductio11 can no be com-
1)ensated increasing the depth of the queues or trying
to augiiieiit the ILP inside the computation processor.
‘rhis section will analyze the causes of this behavior.

Latency Masking

The most important effect of reducing the vector
length is that many latencies that were previously hid-
den uiiderneath the execution of vector code are now
exposed in the critical path of the program. This ef-
fect is represented in figure 3 . On the left, we present a
fraction of code from the most important loop of pro-
gram su2or. This loop presents a true dependency
from iiistruction 3 into instruction 4. Let’s assume
that the latency for performing an addition on our ar-
chit8ecture is 3 cycles. The schematic code sequence
shown in (a) displays the behavior of this loop under
the DVA12P model. Each vector instruction performs
128 operations and there is a 3 cycle stall between
t#he start o f iiistruction 3 and instruction 4. We note
that this 3 cycle stall is in the critical path of the
loop. Under this model, ea.ch iteration of the loop
~ ~ o u l d take 128 x 3 + 2 + 3 = 389 cycles, assuming
I#liat the two sca1a.r operations are executed in a single
cj.cle each. Therefore, the percentage of wasted cycles
(3/389) is very small (0.77%). Executing the same
loop under the DVA64 model (example shown in (b)),
w e will still pay the same 3 cycles of stall, but they
will be miortized over less elements. The percentage

I LOOP:

128 0 64 Q 0
C E I D Q ax?@@

1 ADD.w al,s5

2 MUL.w vl,s7,v4 . - - - - - - - _ _ _ _ _ _ _

Figure 4: Effects of dependences for different vector
register lengths.

of wasted cycles will be 3/(64 x 3 + 2 + 3) = 1.5%.
Finally, in the extreme case, corresponding to a scalar
machine (vector length = 1) shown in (c) , we would
pay 3 stall cycles every 8-cycle iteration, yielding a
waste of 37.5%.

Another way of loolting at figure 4 is to consider
that the 3 cycles of stall involved in the dependency
will have to be payed for each data item processed in
loop (c), for every 64 data items processed in loop (b)
or for every 128 items processed in loop (a). Thus, in
order to execute a given amount of work architecture
(a) will take less time than architecture (c) .

The overall lesson is that the more the vector reg-
ister length is reduced, the more this small latencies
are exposed to total execution time. In a vector ar-
chitecture having 128 elements per register, a 3 cycle
latency is almost hiclden, whereas on a scalar machine
this latency is exposed on every single iteration.

Note thai we are not claiming here that the scalar
execution model is necessarily worse than the vector
model. There are many techniques (loop unrolling,
software pipelining, etc.) that could help improve the
performance oi the loop as executed on (c) . We are
simply pointing out that , given the binaries as they
are, a decrease in vector length will expose more la-
tencies (both from main memory and from functional
units) and will increase a program’s critical path. The
increase in total execution time is proportional to the
decrease in vector register length.

Gather- Scatter inst ructions

Another very important limitation to performance
in a decoupled vector architecture is the amount of
gather/scatter instructions in the code. A gather in-
struction can not he characterized with a memory
range, and thus imposes a sequential bottleneck in
the otherwise out-of-order execution of load/store in-
structions. Moreover, a gather instruction requires a
vector from the VP before being able to proceed to
the memory system. Thus, each time a gather has
to be executed, a loss of decoupling appears: the VP
and the A P have to synchronize to launch the gather
instruction. No inatter how inuch ahead the A P was
from the VP it will have to wait until the VP provides
the vector register with the required addresses.

Figure 5 shows a typical example of gather/scatter
code from program su2cor. The gather instruc-

499

6
< 6000 s
M
'3 4000
2
e
0

5 2000

A

x
v

.-
c1

a,

I I I I I I

Queue size = 4 latency 50
Queue size = 8 "

Queue size = 16 'I

Queue size = 32 'I

Same queue lengh at latency 100

Figure 3 : Performance of the DVA16 architecture for different queue sizes (4,8,16,32) and two memory latencies
(50 and I00 cycles)

LOOP :

1 L0AD.w ' tal,vl
2 MUL-w "lg7,"z
3 ADD.w e v 3
4 GATHER a 5 , v d I

9 c r . w S Z , S l , C C 3
BRCOND CC3

Figure 5: Structure of gather-scatter code.

t,ioii requires the computations carried out by instruc-
tions 2 and 3 before being able to proceed. Unfor-
tunately, instruction 2 requires a register (v i) which
must be loaded from memory. The time diagram in
the lower part of figure 5 shows the latency exposure
introduced by the gather instruction. A full memory
1a.tency plus the latency of an add and a mu1 oper-
a.tion must elapse before the g a t h e r instruction can
proceed. This full memory latency can not be used
to dispatch other loads because the decoupled archi-
tecture executes loads in-order. It can not be used
to clispatch younger stores precisely because a gather
instruction can not be characterized with a memory
range a,nd thus, the hardware must conservatively as-
sume a dependency between a gather and all following
store instructions.

As already mentioned in the previous case, the
number of tiimes that this full memory latency is ex-
posed is proportional to the length of the vector reg-
iskrs. In the DVAlG model, this memory latency will
be exposed 8 tiines inore than in the DVA128 model,
thus partially contributing to the slowdowns of the
DVAlii machine. The longer the memory latency, the
worse is this effect in the DVA16 case.

Programs 1 1 128 I 64 1 Ratio
SWM256 1 1 3.7 I 3.7 I 1.0
HYDR02D
ARC2D
FLOW52
NASA7
SU2COR
TOMCATV
BDNA
TRFD
DYFESM

0.7
2 .0
2.4
7.4

15.5
0.7
6.0
0.9

10.2

11.8
4.3
5.8

10.8
19.5
1.4
6.0

18.9
22.6

16.8
2.2
2.4
1.5
1.3
2.0
1.0

21.0
2.2

Table 1: Absolute number of mispredictions (in mil-
lions) for the 128 to 16 architectures

Branch Penalties

Another effect of reducing the vector register length
is the increase of mispredicted branches. Table 1
presents the total number of mispredicted branches
for each program, for the DVA128 and the DVA16.
Note that the table presents absolute number of mis-
predictions rather than misprediction rate because the
number of branches in each architecture varies (in fact
inisprediction rate is higher for the DVA128 machine
because it executes much fewer branches overall).

As it, can be seen from table 1, the number of mis-
predictions can greatly increase. For most programs,
this effect is due to the following. The number of
branch instructions in the program under either model
is essentially the same. The effect of reducing vec-
tor register length is that each branch is visited more
times. Those branches that were difficult to predict or
that had conflicts with other branches and resulted in
misses in the BTB in the DVA128 model, are executed
many more times under the DVA16 model. Thus, to-
tal number of misprediction increases.

This explanation is clearly not enough in the case of
t r f d and hydro2d, which have an increase of mispre-
dictions of 21.0 and 16.8 respectively. We investigated

500

the two programs and found that the increase was clue
to a combination of our strip-mining and short vector
t r ips . The real vector length register in the C3 ma-
chine morlm in such a way that, if a value larger than
128 i s written to i t , it is automatically chopped down
to 128. Tlie compiler relies on this hardware behav-
ior to save one test in its strip-mined code. By con-
trast, our manual strip-mining, although achieved the
desired effect of emulating a machine with a smaller
ha . rd~are vector length, can not rely on this effect and
requires an extra comparison and jump to implement
a MIIT(I6, J) operation. In t r f d , the variable J takes
values from 10 to 40 in steps of 5, causing the two-bit
satmilrating counter to inispredict the jump most of the
t, i in (2 .

8 Suiiiiiiary

'This paper has presented data on tlie tradeoffs in-
volved in choosing an adequate vector register size for
vector ISAS. Traditionally. very large vector registers
have been chosen to maximize the amount of latency
a.inortized per vector instruction. Nonetheless, this
rlectioii was made in an environment where almost
all vector architectures executed instructions in strict
prograin order (with some minor overlapping between
vector and scalar instructions). Despite the need for
very long registers, many highly vectorizable programs
c m not, inalie full use of every single element in a regis-
t,er. Our measurements show how in many programs,
less than 30% of all register being used are completely
filled with 128 elements of data. Unfortunately, our
simulations confirm that it is not possible to reduce
ishe 1-ector register length in a traditional vector archi-
tecture without severely affecting performance: halv-
ing the register length, for example, yields slowdowns
in t,lie range 1.05-1.8.

This paper has shown that when TLP is exploited
using decoupling the negative impact of reducing the
register length is substantially reduced. The reduction
111 \.ector register length can be wecl in two different
\rays: either to decrease processor cost by reducing
i2he total amount of storage devoted to register values
or to improve performance by inore effectively using
t,he available storage by adding vector queues in a de-
coupled environment. The overall effect is that very
large registers in the decoupled context are no longer
11eecled.

Simulations show that combining decoupling and
short registers it, i s possible to reduce the size of each
vector register to 1/2 with a good perforimnce im-
provement (speedups of 1.05-1.49) and down to 1/4
at a similar level of performance (speedups of 1.01-
1.25) although some programs might experience small
slowrd0~~11~ (less than 5%). The overall register space
requireinelits for the DVA32 machine is half the orig-
ina.1 non-decoupled reference iliachine.

We have seen that there is a limit to the maxi-
mum possible reduction of the vector register length.
D w to the increase of inispredicted hranches, a.nd the
sclietluliiig limitation imposed by Gather/Scatter op-

erations, if the register length is reduced down to 1 G
elements, many stall cycles appear in the critical path
of a program. Moreover, our simulations have shown
that it is not possible to overcome these effects by
enlarging the vector queues. Nonetheless, we are cur-
rently working in using the dynamic load/store eliin-
ination techniques described in [l] in our decoupled
machine with short registers. Tlie results show that in
inany cases, if bypassing is allowed between the store
and tlie loa,d queue, the performance of tlie DVA16
machine can be greatly improved.

We believe that the results presented in this pa-
per are not only relevant to the vector processor com-
munity but could also be of use in the near term for
designers of multimedia instruction sets [IO] [Ill.

References

[l] Roger Espasa and Mateo Valero. Decoupled vector archi-
tectures. In Proceedziigs of the 2nd International S y m p o -
swim on High Pwformance Computer Architecture, pages
281-290. IEEE Computer Society Press, Feb 1996.

[2] Roger Espasa and Mateo Valero. Multithreaded vector ar-
chitectures. In Proceedzngs of the 3rd Internationul Sympo-
$ k m on High Performance C?omputer Archztecture, pages
237-249. IEEE Computer Society Press, Feb 1997.

[3] Roger Espasa, RIateo Valero, and James E. Smith. Out-
of-order Vector Architectures. In ilIIC'RO-3U. IEEE Press,
1997.

[4] Luis Villa, Roger Espasa, aiid Mateo Valero. Effective us-
age of vector registers in advanced vector architectures.
In International Conference on Parallel Architectures and
Compilation Techniques (PA4CT97), San Francisco Cal.,
1997.

[5] C'oiivex Press, Richardson, Texas, U.S.A. CONVEX Archi-
tecture Reference M u n uul (C .Series), sixth edition, April
1992.

[C;] R. Espasa, M. Valero, D. Padua, M. Ji inhez, and
E. AyguadC. Quantitative analysis of vector code. In EZL-
romicro Wo,rLshop on Paralltl und Dzstrzbuttd Processing.
IEEE Computer Society Press, January 1995.

[7] P.Y.T Hsu. Desigiiiiig the TFP microprocessor. IEEE
Afzcro, 14(2):23-33, April 1994.

[8] James E. Smith, G.E. Dermer, B.D. Vanderwarn, S.D.
Klinger, C. M. Rozewski, D. L. Fowler, I<. R. Scidmore,
and J. P. Laudon. The ZS-1 Central Processor. In 2nd In-
ternationul Conferrncr o n Architect?ara~ Support J O T Pro-
yrammzny Languayts und Operuting Systems, pages 199-
204. CS press, 1987.

[9] E. U. Cohler aiid J. E. Storer. Fuiictioiially parallel archi-
tectures for array processors. CO nzp ater, 11:28- 36, Septem-
ber 1981.

[lo] Ales Peleg and Uri Weiser. MMX Technology Estension to
the Intel Architecture. IEEE Micro, pages 42-50, August
1996.

[I11 Krste Asanovic, .James Beck, Bel-trand Irissou. Brian
Kingsbury, Nelson Morgan, and John Wawrzyiiek. The TO
Vector Microprocessor. In Hot Chrps VII, pages 187-196,
August 199.5.

501

