Effective Usage of Vector Registers in Decoupled Vector
Architectures

Luis Villa *

Roger Espasal

Mateo Valero

Departament d’Arquitectura de Computadors,
Universitat Politécnica de Catalunya—Barcelona
{luisv.roger,mateo}@ac.upc.es
http://www.ac.upc.es/hpc

Abstract

This paper presents a study of the impact of reduc-
mng the vector register size mn a decoupled vector archi-
tecture. In traditional in-order vector architectures,
long vector registers have typically been the norm. We
start presenting data that shows that, even for highly
vectorizable codes, only a small fraction of all elements
of a long vector reqister are actually used. We also
show that reducing the register size wn a traditronal
vector architecture in an attempt to reduce hardware
cost and maximaze register utilization results in a se-
vere performance degradation. However, we combine
the decoupling technique with the vector register re-
duction and show that the resulting architecture toler-
ates very well the regqister size cuts. We sumulate @
selection of Perfect Club and Specfp92 programs us-
mg a trace driwven approach and compare the execu-
tron time i a conventional vector architecture with a
decoupled vector architecture using different reqisters
sizes. Halving the regqister size and using decoupling
provides speedups between 1.04-1.49 over a traditional
in-order vector machines. Fven reducing the reqister
length to 1/4 the original size (and, in some cases,
to 1/8) the performance of the decoupled machine s
better than a conventional vector model. Moreover, we
observe that the resulting decoupled machine with short
reqisters tolerates very well long memory latencies.

1 Introduction

Vector architectures have been used for many years
for high performance numerical applications ~ an area
where they still excel.

The traditional approach to vector processor de-
sign has been to use an in-order execution engine and
aclueve high performance exploiting the natural data-
level parallelism embedded in each vector instruction.

*On leave from the Centro de Investigacién en Cémputo, In-
stituto Politécnico Nacional — México D.F. This work was sup-
ported by the Instituto de Cooperacion Iberoamericana (ICI),
Consejo Nacional de Ciencia y Tecnologia (CONACYT).

1 This work was supported by the Ministry of Education of
Spain under contract 0429/95, and by the CEPBA.

0-8186-8332-5/98 $10.00 © 1998 IEEE

Typically, traditional vector architectures have used
very limited forms of ILP techniques, only allowing
some overlapping of vector and scalar instructions
but keeping the scalar and vector instruction streams
strictly ordered. To achieve good performance and to
be able to tolerate the large latencies associated with
supercomputer main memory systems, vector design-
ers have exploited the large number of independent
operations present in each vector instruction. When
a vector instruction is started, it pays for some ini-
tial (potentially long) latency, but then it works on a
long stream of elements and effectively amortizes this
latency across all elements. A few of these vector in-
structions running concurrently can yield a very good
usage of the available hardware resources.

In this context, it is natural that vector processor
designers have striven to implement vector registers
as large as budget and technology constraints would
allow. Nonetheless, in today’s environment where ILP
techniques such as out-of-order execution, decoupling,
multithreading, branch prediction, speculation, etc,
have proved their value as latency tolerance mecha-
nisms, it is less clear that the best way to invest the
available register space consists in having only few
very large registers.

Large registers have several drawbacks. First, if
an application can not make full use of each register,
then a precious hardware resource is being wasted.
Second, given a certain budget in terms of transistors,
large registers imply that only a few of them can be
implemented. A small number of logical registers has
a direct impact on the amount of spill code that the
compiler and/or programmer must introduce to fit all
live variables in the limited register file. Third, in-
troducing ILP techniques in a processor having a few
very large logical registers is difficult. For example,
out-of-order execution without renaming with only 8
logical vector registers provides little benefit. On the
other hand, introducing register renaming can be very
costly since many copies of registers that are very large
have to be provided.

Reducing the vector registers length is certainly a
solution to the problems just outlined. If most applica-
tions can not fully use all elements present in each vec-
tor register, then reducing the vector register length
will reduce cost and increase the fraction of usage of

http:/fwww.ac.upc.es/hpc

registers The drawback of register length reduction is
the associated performance penalty. Each time a vec-
tor instruction is executed, its associated latencies are
amortized over a smaller number of elements. This
can have a significant impact on performance, espe-
cially for memory accesses. Moreover, more instruc-
tions have to be executed each with a shorter effective
length, and, therefore, the number of times that la-
tencies must be payed is larger.

Unless some extra latency tolerance mechanism is
introduced in a vector architecture, vector length can
not be reduced without a severe performance penalty.
While many techniques have been developed to toler-
ate memory latency in superscalar processors, only a
few studies have considered the same problem in the
context of vector architectures [1, 2, 3].

This paper will present data confirming the fact
that traditional vector architectures can not reduce
their vector register length without suffering a severe
performance penalty. However, we will show that by
combining the vector register length reduction with an
ILP technique, decoupling, the performance penalty
can be made very small. We will show that result-
ing architecture tolerates very well long memory la-
tencies and also makes a better usage of the avail-
able storage space 1n each vector register. Not only
the performance impact of reducing the vector length
1s small, but when our architecture with short vec-
tor registers are compared against a traditional vector
machine with large vector registers, performance is in
most cases far better across a large memory latency
range.

2 Vector Length usage

The usage of the vector register file elements is de-
termined by both the degree of vectorization of a pro-
gram and the natural vector lengths associated with
the data structures of an application. Many applica-
tions have small data sets or iterate over a particular
dimension of an iteration space which is smaller than
the vector register length. In [4] we evaluated a set
of highly vectorizable applications in order to know
whicl was the vector length used by these programs.

The first thing to note 1s that, even though these
set of programs are highly vectorizable, their average
vector lengths are not very high. Investigation of the
programs reveals that often times this is due to the
natural shape of the application data space. In other
cases, it 1s due to the nature of the algorithm, i.e., a
triangular matrix operation tends to have many small
vector lengths.

Which will be the effective register length use if we
vary the vector register size 77 In [4] answered this
yuestion showing how the application vector length
and the hardware vector register length are related.
We noted that in order to augment the percentage of
]l stripes we would have to choose a relatively small
vector register size. Next sections will look into the
performance implications of choosing a small vector
register size.

496

DO 40 ¥=2JL

DW(I.J.1) =DW(.J.1) +FW(I.J.1)
DW(I.J.2) = DW({LJ.2) +FW(I.J.1)
DW((I.J.3) = DW(LJ.3) +FW({.J.3)
DWA.J.4) = DW(LJ.4) +FW(.J.4)

40 CONTINUE

DO 40 IJ=2.JL.
DO 40 STRIPV=2 IL.VILZ

CSDIR MAX _TRIPS(32)
DO 40 I=STRIPVMINIL.STRIPV+VL.Z)
DWIJ.1) = DW(L.J.1) +FW({.J.1)

) +FW(I.7.2)

) +EW(L.J.3)

) +FW(.,J.4)

Figure 1: (a) Flo52 loop without Strip-Mining, (b)
Adding Strip-mining.

3 Compiling for smaller vector lengths

In order to investigate the effects of reducing the
hardware vector register length we need a set of bench-
marks compiled assuming different vector lengths.
Unfortunately, no public domain vectorizing compiler
is available and, therefore, we are forced to artificially
fool the Convex compiler [5] to generate code “as if”
the vector length was 16, 32 or 64 (instead of the real
128). To obtain the desired binaries we modified the
source benchmarks as follows. Using the vectorization
information produced by the Convex compiler, we lo-
cated in the source code each vectorized loop. For
each loop nest, and taking into account loop transfor-
mations such as peeling, interchange and skewing, we
manually strip-mined the loop heing vectorized. This
manual strip-mining consisted in adding a strip mine
loop performing steps of length VLZ and modifying
the original vectorized loop to do at most VLZ itera-
tions (see figure 1). To prevent the compiler from gen-
erating a doubly strip-mined loop {our strip-mining
plus the natural strip mining introduced by the com-
piler) we used the MAXTRIPS directive [5]. This di-
rective informed the compiler that the inner loop was
performing less than 128 trips and thus no extra strip-
mining was generated.

Using such a procedure we strip-mined most (but
not all) vectorized loops present in our ten bench-
marks. Loops that escaped from this strip-mining
where vector loops that are in libraries and loops
where introducing one extra level of strip-mining
stopped vectorization. Moreover, due to the large
number of loops to strip-mine, we first selected those
that accumulate 95% of all execution time. The re-
maining loops that form the other 5% of execution
time were not instrumented. For each program, we
generated four different binaries, assuming that the
maximum hardware vector length was 16, 32, 64 and
128. For each register length, the percentage of opera-
tions that escaped our strip-mining procedure varied,
but was below 4% for all programs except arc2d and
1052 where it was close to 10%.

4 Short Vectors Performance

We gtart by analyzing the performance of a tra-
ditional in-order vector machine when the hardware
veetor length is varied. We are interested in the effect
that different memory latencies have on performance
and how it interacts with vector register length.

Performance on the Reference Archi-
tecture

4.1

Our reference machine is loosely based on a Convex
(23400. The essential characteristics of the reference
architecture are a single memory port, two functional
units and 8 vector register. In [6] we give a detailed
explanation of this reference architecture. In [4] we
studied four different variants of this reference ma-
chine. The four models under study was referred to as
the REF128, REF64, REF32 and REF16 architectures
with a vector length of 128, 64, 32 and 16 elements re-
spectively.

We noted that the impact of memory latency is very
significant. For our unmodified model (REF128) we
observed that execution time 1s degraded by factors of
1.2-1.4 in most programs when we vary the latency
from 1 to 100 cycles.

We observed that reducing the vector register
length performance degradation is very high. Our con-
clusion were that, reducing the vector register length
m a traditional vector machine results in a remarkable
loss of performance. The cost savings are clearly out-
weighted by the execution time degradation. Unless
some latency tolerance technique is added to a tradi-
tional vector machine, vector register length should be
kept as long as possible. In the next section we will
see how decoupling can compensate this performance
loss.

5 Combining short vectors and decou-

pling

In this section we will study how the combination of
a latency tolerance technique such as decoupling can
be combined with a vector architecture having short
registers to overcome the performance degradation
seen 1n the previous section. As we will see, decou-
pling with short registers can even provide speedups
with respect to a traditional in-order machine.

5.1 Decoupled Vector Architecture

For ours simulations we used the decoupled vector
architecture introduced in [1]. The main idea in this
architecture is to use a fetch processor to split the in-
coming, non-decoupled, instruction stream into three
different, decoupled streams. The translation is such
that each processor can proceed independently and,
vet, synchronizes through the communication queues
when needed. Each of these three streams goes to a

497

different processor: the address processor (A P), that
performs all memory accesses on behalf of the other
two processors, the scalar processor (SP), that per-
forms all scalar computations and the vector proces-
sor (VP), that performs all vector computations. The
three processors communicate through a set of imple-
mentational queues and proceed independently. This
set of queues is akin to the implementational queues
that can be found in the floating point part of the
R8000 microprocessor[7]. The main difference of this
decoupled architecture with previous scalar decoupled
architectures such as the ZS-1 [8] or the MAP-200 [9]
is that it has twe computational processors instead of
just one. These two computation processors, the SP
and the VP, have been split due to the very different
nature of the operands on which they work (scalars
and vectors, respectively).

The main parameters of this architecture are the
length of its queues: the three instruction queues, the
inter-processor queues, the scalar queues and the load
store address queues were set at 16 elements. For the
vector queues (numbers 1 and 2), each slot is a full vec-
tor register and, therefore, their size has to be carefully
considered. We start with 4 slots in each of them, as
suggested in [1]. Reducing the vector register length
benefits a decoupled implementation since each slot in
the extra queues required to decouple the machine can
be smaller than in the original machine.

The key points in this architecture will be to achieve
good performance with relatively few slots in these
two queues. This is another point where reducing the
vector register length can be very helpful.

5.2 Performance of the DVA

What is the performance of the decoupled machine
using different vector register lengths 7 Figure 2 plots
the simulated performance for the decoupled and non-
decoupled machines for several memory latencies. For
each program, we plot the baseline performance of the
non-decoupled machine with a register length of 128
and the performance of the decoupled versions using
register lengths of 16, 32, 64 and 128. Note that the
Y-axis plots the relative performance of each config-
uration relative to the non-decoupled machine with
length 128 and memory latency of 1 cycle. Thus, in
figure 2 numbers above 1.0 indicate a slowdown and
numbers below 1.0 indicate speedups.

We will start comparing the performance of the de-
coupled and non-decoupled machines with the max-
imum vector register length (128). As already pre-
sented in [1], the performance improvements due to
decoupling are quite substantial. Even with a perfect
memory system with latency 1, speedups are in the
range 1.10-1.25. When memory latency is increased
up to 100 cycles, the DVA experiences some slow-
downs, but much smaller than the reference machine.
Comparing both machines at a latency of 100, the
DVA yields speedups in the 1.22-1.52 range.

When the register length is reduced we still obtain
very good results. Halving the register length (64 el-
ements), vields a machine that performs only worse

Relative Time

[

N
o

el

_
N

?
1 50

=
=
<
=
=
=
==
=
=
P
=
= 1.0
=
(==
0o
@
E= —e— REF128
= -m DVAILI2R
= —a— DV AGA
= —e- - IDVAR2
= —- IDVAIG

Figure 2: Effects of memory latency and vector register length on performance when using decoupling.

than the DVA128 by factors of 1.01-1.10 but that,
in all cases performs much better than the reference
machine. Comparing performance at 100 cycles mem-
ory latency, we see speedups of the DVAG64 over the
REF machine in the 1.05-1.49 range. Note that, in
three cases, the performance of the DVA64 at 100 cy-
cles latency is better than the REF machine perfor-
mance at 1 cycle memory latency. In all programs
but trfd and su2cor, if we compare the DVA64 at
100 cvcles and the reference machine at 50 cycles we
see that the decoupled machine performs better (by
factors 1n the range 1.01-1.32). These results suggest
that even halving the register length, a machine with
a slower memory system (thus, a much cheaper mem-
ory system) would perform better than a traditional
machine.

Reducing the register length to 1/4 of the original
length (32 elements). we still see that the performance
of the DVA32 is better than the reference machine.
Except for programs hydro2d, nasa7 and su2cor, the
DVA32 achieves speedups over the REF machine in
the range 1.01-1.25 and goes up to 1.42 for dyfesnm
(at latency b0).

Only when the register length is reduced to 16 el-
ements (1/8 of the original) performance starts to
degradate noticeably. Seven out of ten programs per-
form worse with the DVA16 than with the REF ma-
chine, and only dyfesm and tomcatv maintain a good
performance. This sudden jump in execution tine is
due to the combination of several effects: the number
of scatter/gather operations, the number of outstand-
ing branches and dependencies in scalar code intro-
duce many cycles of stall in a program run. These
three types of hagzards stall the vector processor very
frequently, thereby exposing the full memory latency
at each memory load being executed. This explains

498

the steep slopes of each of the DVA16 curves.

6 Increasing Queue Length

The load and store queue length is a key param-
eter in a decoupled architecture. Tt determines the
amount of data that can be prefetched ahead of time
and, therefore, the queue length puts an upper limit
on the maximum memory latency that can be toler-
ated. For example, a system having 8 slots in the
load queue, each corresponding to a 32 element vec-
tor can request up to 8§ x 32 = 256 data items to the
memory system before blocking. If main memory la-
tency is shorter than 256 cycles, then this decoupled
system can establish a continuous flow of data from
main memory into the processor without stalls (pro-
vided there are enough load instructions to keep the
pipeline fed, of course). On the other hand, if mem-
ory latency (L) is larger than 256 cycles, no matter
how fast we can feed the address processor, the flow
of requests to the memory system will be interrupted
and a fraction of all memory latency (L — 256) will be
exposed to the computation processor.

In this section we will look at the performance im-
provement due to enlarging both the load and store
queue lengths. We expected that, the longer the
queue, the better memory latency will be tolerated.
As we will see, this intuition is wrong and there is
a limit after which increasing queue length does not
yield any significant performance advantage.

Figure 3 presents for our ten benchmark programs
the improvements due to increasing the queue size.
Due to lack of space we present only the data for the
DVA16 model, where each vector register is supposed

to hold 16 elements. For each program we plot 4 dif-
ferent bars, labeled “Q=4" through “Q=32" that in-
dicate the number of slots in the vector load queue
and the vector store queue. For these 4 bars, memory
latency was assumed to be 50 cycles. Moreover, at the
top of each bar there is a white bar representing the
execution time for the same queue size but assuming
a memory latency of 100 cycles.

As it can be seen from this figure, increasing from
4 slots to 8 slots does provide some performance im-
provement, especially at 100 cycles memory latency,
hut further increasing the queue to 16 or 32 slots
does not provide any additional benefits. The result
is striking if we compare the total area requirements
of the DVA128 and DVA16 architectures. For exam-
ple, the DVA128 architecture holds a total of 128 x 4
items in each of its load and store queues. Similarly,
the DVAL16 architecture with 32 slots in the queues
can potentially hold exactly the same amount of data
(16 x 32), and yet it achieves a much worse perfor-
mance. Although not presented here, a similar effect
Lhappens with the DVA32 and DVA64 architectures.

The overall conclusion is that increasing queue size
does not compensate for the reduction in vector reg-
ister length. This will be further analyzed in the fol-
lowing section.

7 Limits on performance

In what ways does reducing the vector register
length hmit performance 7 As we have seen in the pre-
vious section, vector length reduction can no be com-
pensated increasing the depth of the queues or trying
to augment the ILP inside the computation processor.
This section will analyze the causes of this behavior.

Latency Masking

The most important effect of reducing the vector
length is that many latencies that were previously hid-
den underneath the execution of vector code are now
exposed in the critical path of the program. This ef-
fect 1s represented in figure 4. On the left, we present a
fraction of code from the most important loop of pro-
gram su2or. This loop presents a true dependency
from instruction 3 into instruction 4. Let’s assume
that the latency for performing an addition on our ar-
chitecture is 3 cycles. The schematic code sequence
shown in (a) displays the behavior of this loop under
the DVA128 model. Each vector instruction performs
128 operations and there is a 3 cycle stall between
the start of instruction 3 and instruction 4. We note
that this 3 cycle stall is in the critical path of the
loop. Under this model, each iteration of the loop
would take 128 x 3 +2 4 3 = 389 cycles, assuming
that the two scalar operations are executed in a single
eyele each. Therefore, the percentage of wasted cycles
(3/389) is very small (0.77%). Executing the same
loop under the DVA64 model (example shown in (b)),
we will still pay the same 3 cycles of stall, but they
will be amortized over less elements. The percentage

499

LOOP
1 ADD.w al,ss 128 @ @
ML s QSRS RS O
3 ADD.w V4,553 - . I a
VAMULy, 3l A O 6
5LT.w $2,51,0C3 ® ® ®
BRCOND cC3 (a) (b) (©)

Figure 4: Effects of dependences for different vector
register lengths.

of wasted cycles will be 3/(64 x 3 + 2 + 3) = 1.5%.
Fmally, in the extreme case, corresponding to a scalar
machine (vector length = 1) shown in (c), we would
pay 3 stall cycles every 8-cycle iteration, yielding a
waste of 37.5%.

Another way of looking at figure 4 is to consider
that the 3 cycles of stall involved in the dependency
will have to be payed for each data item processed in
loop (c¢), for every 64 data itemns processed in loop (b)
or for every 128 items processed m loop (a). Thus, in
order to execute a given amount of work architecture
(a) will take less time than architecture (¢).

The overall lesson is that the more the vector reg-
ister length is reduced, the more this small latencies
are exposed to total execution time. In a vector ar-
chitecture having 128 elements per register, a 3 cycle
latency is almost hidden, whereas on a scalar machine
this latency is exposed on every single iteration.

Note that we are not claiming here that the scalar
execution model is necessarily worse than the vector
model. There are many techniques (loop unrolling,
software pipelining, etc.) that could help improve the
performance of the loop as executed on (¢). We are
simply pointing out that, given the binaries as they
are, a decrease in vector length will expose more la-
tencies (both from main memory and from functional
units) and will increase a program’s critical path. The
increase in total execution time is proportional to the
decrease in vector register length.

Gather-Scatter instructions

Another very important hmitation to performance
in a decoupled vector architecture is the amount of
gather/scatter instructions in the code. A gather in-
struction can not be characterized with a memory
range, and thus imposes a sequential bottleneck in
the otherwise out-of-order execution of load/store in-
structions. Moreover, a gather instruction requires a
vector from the VP before being able to proceed to
the memory system. Thus, each time a gather has
to be executed, a loss of decoupling appears: the VP
and the AP have to synchronize to launch the gather
instruction. No matter how much ahead the AP was
from the VP it will have to wait until the VP provides
the vector register with the required addresses.
Figure b shows a typical example of gather/scatter
code from program su2cor. The gather instruc-

6000

& Queue size =4 latency 50
8 Queue size=8 "

"

& Queue size = 16
Queue size = 32
O Same queue lengh at latency 100

"

Execution cycles (x10/6)

(50 and 100 cycles).

LOOP :
1 LOAD.w al,vl
2 MUL.w v1,s7,v2
3 ADD.w v2,s5,v3
4 GATHER as,v3,vi1
9LT.w 52,51, CC3
BRCOND CcC3
L *
H—H-H'|+|'H++H4W/\/\M/\,\NI+H-H+HHHH1
LOAD HHHHHHHHIH
latency L
-
Assuming : VL =16

Figure 5: Structure of gather-scatter code.

tion requires the computations carried out by instruc-
tions 2 and 3 before being able to proceed. Unfor-
tunately, instruction 2 requires a register (v1) which
must be loaded from memory. The time diagram in
the lower part of figure 5 shows the latency exposure
introduced by the gather instruction. A full memory
latency plus the latency of an add and a mul oper-
ation must elapse before the gather instruction can
proceed. This full memory latency can not be used
to dispatch other loads because the decoupled archi-
tecture executes loads in-order. It can not be used
to dispatch younger stores precisely because a gather
instruction can not be characterized with a memory
range and thus, the hardware must conservatively as-
sume a dependency between a gather and all following
store instructions.

As already mentioned in the previous case, the
number of times that this full memory latency is ex-
posed is proportional to the length of the vector reg-
isters. In the DVA16 model, this memory latency will
be exposed 8 times more than in the DVA128 model,
thus partially contributing to the slowdowns of the
DVA16 machine. The longer the memory latency, the
worge ig this effect in the DVA16 case.

500

Figure 3: Performance of the DVA16 architecture for different queue sizes (4,8,16,32) and two memory latencies

I Programs || 128 | 64] Ratio |
SWH256 3.7 3.7 1.0
HYDRO2D 0.7 | 11.8 16.8
ARC2D 2.0 4.3 2.2
FLOW52 2.4 5.8 2.4
NWASA7 7.4 10.8 1.5
SU2COR 15.5 19.5 1.3
TOMCATY 0.7 1.4 2.0
BDNA 6.0 6.0 1.0
TRFD 0.9 | 189 21.0
DYFESH 10.2 22.6 2.2

Table 1: Absolute number of mispredictions (in mil-
lions) for the 128 to 16 architectures

Branch Penalties

Another effect of reducing the vector register length
1s the increase of mispredicted branches. Table 1
presents the total number of mispredicted branches
for each program, for the DVA128 and the DVAIL6.
Note that the table presents absolute number of mis-
predictions rather than misprediction rate because the
number of branches in each architecture varies (in fact
misprediction rate is higher for the DVA128 machine
because it executes much fewer branches overall).

As it can be seen from table 1, the number of mis-
predictions can greatly increase. For most programs,
this effect is due to the following. The number of
branch instructions in the program under either model
is essentially the same. The effect of reducing vec-
tor register length is that each branch is visited more
times. Those branches that were difficult to predict or
that had conflicts with other branches and resulted in
misses in the BTB in the DVA128 model, are executed
many more times under the DVA16 model. Thus, to-
tal number of misprediction increases.

This explanation is clearly not enough in the case of
trfd and hydro2d, which have an increase of mispre-
dictions of 21.0 and 16.8 respectively. We investigated

the two programs and found that the increase was due
to a combination of our strip-mining and short vector
trips. The real vector length register in the C3 ma-
chine works in such a way that, if a value larger than
128 is written to 1it, it is automatically chopped down
to 128. The compiler relies on this hardware behav-
1or to save one test in its strip-mined code. By con-
trast, our manual strip-mining, although achieved the
desired effect of emulating a machine with a smaller
hardware vector length, can not rely on this effect and
requires an extra comparison and jump to implement
a MIN(16,J) operation. In trid, the variable J takes
values from 10 to 40 in steps of 5, causing the two-bit
saturating counter to mispredict the jump most of the
time.

& Summary

This paper has presented data on the tradeoffs in-
volved in choosing an adequate vector register size for
vector ISAs. Traditionally, very large vector registers
have been chosen to maximize the amount of latency
amortized per vector instruction. Nonetheless, this
election was made in an environment where almost
all vector architectures executed instructions in strict
program order (with some minor overlapping between
vector and scalar instructions). Despite the need for
very long registers, many highly vectorizable programs
can not make full use of every single element in a regis-
ter. Our measurements show how in many programes,
less than 40% of all register being used are completely
filled with 128 elements of data. Unfortunately, our
simulations confirm that it is not possible to reduce
the vector register length in a traditional vector archi-
tecture without severely affecting performance: halv-
ing the register length, for example, yields slowdowns
in the range 1.05-1.8.

This paper has shown that when ILP is exploited
using decoupling the negative impact of reducing the
register length is substantially reduced. The reduction
m vector register length can be used in two different
ways: either to decrease processor cost by reducing
the total amount of storage devoted to register values
or to improve performance by more effectively using
the available storage by adding vector queues in a de-
coupled environment. The overall effect is that very
large registers in the decoupled context are no longer
needed.

Simulations show that combining decoupling and
short registers it is possible to reduce the size of each
vector register to 1/2 with a good performance im-
provement (speedups of 1.05-1.49) and down to 1/4
al a similar level of performance (speedups of 1.01-
1.25) although some programs might experience small
slowdowns (less than 5%). The overall register space
regquirements for the DVA32 machine is half the orig-
1nal non-decoupled reference machine.

We have seen that there is a limit to the maxi-
mumn possible reduction of the vector register length.
Due to the increase of mispredicted branches, and the
scheduling limitation imposed by Gather/Scatter op-

501

erations, if the register length is reduced down to 16
elements, many stall cycles appear in the critical path
of a program. Moreover, our simulations have shown
that it 1s not possible to overcome these effects by
enlarging the vector queues. Nonetheless, we are cur-
rently working in using the dynamic load/store elim-
ination techniques described in [1] in our decoupled
machine with short registers. The results show that in
many cases, if bypassing is allowed between the store
and the load queue, the performance of the DVA16
machine can be greatly improved.

We believe that the results presented in this pa-
per are not only relevant to the vector processor com-
munity but could also be of use in the near term for
designers of multimedia instruction sets [10] [11].

References

[1] Roger Espasa and Mateo Valero. Decoupled vector archi-
tectures. In Proceedings of the 2nd International Sympo-
suuwm on High Performance Computer Architecture, pages
281-290. IEEE Computer Society Press, Feb 1996.

Roger Espasa and Mateo Valero. Multithreaded vector ar-
chitectures. In Proceedings of the 3rd International Sympo-
sium on High Performance Computer Architecture, pages
237-249. IEEE Computer Society Press, Feb 1997.

Roger Espasa, Mateo Valero, and James E. Smith. Out-
of-order Vector Architectures. In MIC'RO-30. TEEE Press,
1997.

Luis Villa, Roger Espasa, and Mateo Valero. Effective us-
age of vector registers in advanced vector architectures.
In International Conference on Parallel Architectures and
Compilation Technigues (PACT97), San Francisco Cal.,,
1997.

C'onvex Press, Richardson, Texas, U.S.A. CONVEX Arch:-
tecture Reference Muanual (C' Series), sixth edition, April
1992.

R. Espasa, M. Valero, D. Padua, M. Jiménez, and
E. Ayguadé. Quantitative analysis of vector code. In Fu-
romicro Workshop on Parallel und Distributed Processing.
IEEE Computer Society Press, January 1995.

P.Y.T Hsu. Designing the TFP microprocessor.
Miero, 14(2):23-33, April 1994.

James E. Smith, G.E. Dermer, B.D. Vanderwarn, S.D.
Klinger, C. M. Rozewski, D. L. Fowler, K. R. Scidmore,
and J. P. Laudon. The ZS-1 Central Processor. In 2nd In-
ternational Conference on Architectural Support for Pro-
grammang Languages and Operating Systems, pages 199—
204. CS press, 1987.

L. U. Cobler and J. E. Storer. Functionally parallel archi-

tectures for array processors. Computer, 14:28-36, Septem-

ber 1981.

Alex Peleg and Uri Weiser. MMX Technology Extension to
the Intel Architecture. IEEE Micro, pages 42-50, August
1996.

IEEE

10]

[11] Krste Asanovic, James Beck, Bertrand Irissou, Brian
Kingsbury, Nelson Morgan, and John Wawrzynek. The TO
Vector Microprocessor. In Hot Chips VII, pages 187-196,

August 1995.

