
A RAID Reconfiguration Scheme for Gracefully Degraded Operations

Hai Jin1 Kai Hwang2 Jiangling Zhang1

Huazhong University of Science and Technology, Wuhan, 430074, China1

University of Southern California, Los Angeles, California, 900892

Abstract

One distinct advantage of Redundant Array of
Independent Disks (RAID) is fault tolerance. But the
performance of a disk array in degraded mode is so poor
that no one uses the RAID after failure. Continuous
operation of RAID in degraded mode is very important in
many real time applications, which can not be interrupted
in providing continuous services.

In this paper, we propose an efficient architectural
reconfiguration scheme to enhance the performance of
RAID-5 in degraded mode, called reconfigurable RAID-5.
It reconfigures RAID-5 to RAID-0 in degraded mode.
Using this scheme, the calculation of the failure data and
the generation of parity in writing the new data to the
failed disk can be reduced. It also alleviates the small
write problem for RAID-5 in degraded mode.

We use the phase parallel model to analyze the total
execution time of the RAID-5 and of the reconfigurable
RAID-5. Through theoretical analysis and benchmark test,
we find the performance of the reconfigurable RAID-5 can
be 200 times better than conventional RAID-5.

1 Introduction

Redundant Arrays of Independent Disks (RAID)[3][6]
are capable of providing improved levels of reliability,
availability, and performance over single disk. A disk
array usually provides protection against loss of data from
one or more disk failures by maintaining redundant
information within the array. Moreover, data availability
can be maintained on one or more disk failures by using
the redundant information to reconstruct data stored on the
failed disk in real time. The design challenge of disk array
is that the disk failure should be isolated at the level of
redundant disk array controller[4]. Thereby can
transparently handle a large class of errors.

Figure 1 shows two typical redundancy scheme of
RAID. Data units represent the unit of data access
supported by the array. Parity units represent redundancy
information generated from the bitwise exclusive-or
(parity) of the collection of data units. Using the redundant
scheme of parity can only tolerant single disk failure.
Other redundant schemes include using Reed-Solomon
code or EVENODD code[2][5] for tolerating up to two

disk failures, information dispersal based method DATUM
for tolerating multiple disk failures in the disk arrays[1].
The redundancy group formed by a parity unit and the data
units it protects is called parity group.

D0

D4

D8

D12

D1

D5

D9

D13

D2

D6

D10

D14 D15

D3
D7

D11

Disk

Data Unit

RAID Level 0

D0

D4

D8

D1

D5

D9

D2

D6

D10

D3
D7

D11

P0

P1

P2

P3

Parity Unit

Parity Group

Left-Symmetric RAID Level 5

Figure 1. Data Layout for RAID-0 and RAID-5

RAID-0 offers no redundancy so it is not fault tolerant.
Data is block-interleaved for optimizing small transfer size
with each request being serviced by a single drive. Data
may also be bit interleaved, optimizing performance for
large transfer sizes, such as VOD application, by using
every drive to transfer data in parallel. The main
advantages of RAID-0 are highest disk I/O performance,
easy to manage and without extra write overhead.

RAID-5 is block interleaved to optimize bandwidth and
relies on parity-based redundancy. Both data and parity are
evenly distributed throughout the array. There exist a
variety of strategies to evenly distribute the data units and
parity units[11]. This illustration uses the left-symmetric
layout. Parity is the bitwise exclusive-or of all data units in
the parity group. A disk array of RAID-5 can continue its
operation in degraded mode with one failed disk, but its
performance is poor. But in some application, such as
multimedia system, the performance of continuous
operation of disk array in degraded mode is very critical.

In this paper, we first study some related research
background of the architecture of RAID-5 in degraded

mode and then propose a new architecture reconfiguration
scheme to improve the performance of RAID-5 in
degraded mode. The main idea is based on the fact that in
degraded mode the fault tolerant ability of RAID-5 is the
same as that of RAID-0. There is no need to keep parity
information in degraded mode of RAID-5. The best disk
array organization in this case is RAID-0.

2 Background and Motivation

Typically, a disk array operates in the following three
modes: normal mode, degraded mode and rebuild mode.

Degraded mode refers to the situation that in the case of
one disk failure and no attempt has been made to rebuild
the data to place it on another drive, disk array system can
still work without interrupted[13]. There is a significant
increase in the system load. Since reads targeted to the
failed disk cause N-1 read accesses to the corresponding
blocks on surviving disks to reconstruct lost data block.
Writes access targeted to the failure disk cause N-1 read
accesses to the corresponding blocks on surviving disks to
compute the parity block and one write access to write the
newly generate parity information to the block of the
corresponding disk drive. The array is said to be in rebuild
mode during the time that data on the failed drive is being
rebuilt and places on another drive.

The main research on improving the performance of
RAID-5 in degraded mode is sparing technique. It is used
to reduce the time of disk array in degraded mode and
change to the rebuilt mode as quick as possible[3][15]. It
can minimize the probability of losing data and the
duration of degraded mode operation.

The main problem existing in the sparing technique is
the extra space overhead. For a disk array with sparing
technique, there are N+2 disks with a fraction
(N+1)/(N+2) of the space dedicated to data and parity
blocks and 1/(N+2) to space blocks.

For a disk array of RAID-5, it can only tolerate single
disk failure. Any disk failure when disk array in degraded
mode will cause the loss of data. This is the same situation
with the disk array of RAID-0 in normal mode, where any
single error will cause the loss of data. That implicates that
even we provide the parity information in the disk array of
RAID-5 in degraded mode, there is actually no any benefit
for the future fault tolerant of disk failure. The only usage
of such parity information is used to reconstruct the failure
data. For the sparing technique, it uses spare disk space to
store this failure data. As there is no use of the parity
information for the fault tolerant for the disk array of
RAID-5 in degraded mode, it is possible to store the
reconstructed failure data in the place where the parity
information should store in stead of in the spare disk
space. This is the basic point of our new reconfiguration
architecture scheme. We call it reconfigurable RAID-5.

3 The Basic Reconfiguration Scheme of
Reconfigurable RAID-5 Architecture

3.1 Definition

We first give some definitions used in our scheme.
Reconfigurable RAID-5 We call architecture of RAID-
5 in degraded mode using our proposed new
reconfiguration scheme reconfigurable RAID-5. This is
because in this new architecture, disk array in degraded
mode is not fully RAID-5, it is a combination of RAID-5
and RAID-0.
Real parity group vs. pseudo parity group The
redundancy scheme in reconfigurable RAID-5 architecture
is parity group related. Some parity groups of disk array
are RAID-5 structure while the other parity groups are
RAID-0 structure. The parity group with RAID-5 structure
is called real parity group, while the parity group with
RAID-0 structure is called pseudo parity group. Whether
the parity group is real parity group or pseudo parity group
depends on whether this failure data block in this parity
group has been accessed in degraded mode. If the failure
data block in one parity group is accessed in degraded
mode, this parity group is reconfigured to RAID-0
structure and becomes pseudo parity group, otherwise the
parity group remains RAID-5 structure, be it real parity
group. From the viewpoint of redundancy scheme, real
parity group maintains the parity information, while
pseudo parity group keeps no redundant information.
Pseudo normal mode In reconfigurable RAID-5
architecture, except the three working modes, there exists
another working mode, called pseudo normal mode. If the
access is referring to the failure data block in pseudo
parity group, we call the operation is in pseudo normal
mode. This is quite different from normal mode or
degraded mode. In normal mode, data access is refer to the
normal data block without failure data reference, while in
degraded mode, data access is refer to the failure data
block in real parity group. Both data accesses in normal
mode and degraded mode are with respect to the disk array
structure of RAID-5. In pseudo normal mode, data access
is to the disk array structure of RAID-0.
ParityLocationMap There is a bit map stored on the
non-volatile storage in reconfigurable RAID-5
architecture, called ParityLocationMap. In this map, each
bit corresponds to one location of parity information in
RAID-5. The content of each bit indicates whether the
location is stored as parity information or data. We use
logical “1” to indicate the location of storing parity
information, while logical “0” indicate the data.
ParityLocationMap is a dedicate data structure in
reconfigurable RAID-5.

3.2 Basic Reconfiguration Scheme of
Reconfigurable RAID-5 Architecture

The reconfiguration scheme of reconfigurable RAID-5
consists of two parts, one part for the data access in
degraded mode (including the data access in pseudo
normal mode), the other for the data access in rebuild
mode.

1. Data Access in Degraded Mode

We first discuss the data access of reconfigurable
RAID-5 architecture in degraded mode. Suppose the total
disks in the array is N, the failure disk is diski. We only
concern about the data accessing of failure data block Di

on diski.
For the read operation from failure data block Di, the

ParityLocationMap is first searched to find out the data
type Bi of parity location Pi with the same parity group.

If the data type Bi of Pi is parity, then this parity group
is real parity group and is in degraded mode. In this case,
N-1 accesses to the corresponding blocks on surviving
disks to reconstruct Di. At the same time Di is copied to
the location of Pi, and the corresponding bit in the
ParityLocationMap should be reset to indicate the data
type as data. The data layout in this parity group is RAID-
0. This procedure can be illustrated in figure 2.

Failure Disk

D0

D4

D8

D1

D5

D9

D2

D6

D10

D3

D7

D11

P0

P1

P2

P3

Read Request

D5
D5

Figure 2. Read failure data from the real
parity group in degraded mode

If the data type Bi of Pi is 0, then this parity group is
pseudo parity group and is in pseudo normal mode. In this
case, failure data block Di can be read out directly from
the place where parity information Pi should reside. As
there is no procedure of reconstruct failure data, the read
operation is just the same as the one in RAID-0 just one
extra search of ParityLocationMap. This procedure is
shown in figure 3.

For the write operation to failure data block Di, whether
parity group is real parity group or pseudo parity group,
the new data block D’ i should write to the location of Pi.
The corresponding bit in the ParityLocationMap should be
reset to indicate the data type as reconstructed failure data.

The procedure of generate parity is avoided. This
procedure is illustrated in figure 4.

D0

D4

D8

D1

D5

D9

D2

D6

D10

D3

D7

D11

P0

P2

P3

Read Request

D5
D5 pseudo

parity
group

Failure Disk

D5

Figure 3. Read failure data from the pseudo
parity group in pseudo normal mode

D0

D4

D8

D1

D5

D9

D2

D6

D10

D3

D7

D11

P0

P2

P3

Write Request

D'5
D'5 real/pseu

 parity
 group

P1/D5

Failure Disk
D'5

Figure 4. Write data block to the failure disk

2. Data Access in Rebuild Mode

Before discussing the data access operation in rebuild
mode, we will first introduce an important concept which
used in the process of rebuild operation.
Rebuild line Rebuild line refers to the parity group
location where the current rebuild operation is performed.
All the data accesses below this rebuild line should
perform normal data access operation just as in normal
mode, while the data accesses above this rebuild line
should perform degraded mode operation.

Let us consider the rebuild operation in reconfigurable
RAID-5 system. Suppose the failure disk diski is replaced
by a new disk drive disk’i, the current rebuild line is Li.
The parity information of this parity group should be Pi if
it still preserves. Before the rebuild process begins, the
PaityLocationMap should be checked to find out the data
type Bi of current parity group.

If the data type Bi indicates the content of current parity
information location is parity, that means the rebuild line
is of real parity group, the rebuild operation should be
performed as the ordinary rebuild operation in traditional
RAID-5 system. That is, all the corresponding blocks on
surviving disks should be read out to reconstruct failure
data Di and then copy Di to the corresponding location of

newly replaced disk drive. Figure 5 shows the procedure
of rebuild in this case.

If the data type Bi indicates the content of current
parity information location is data, that means the rebuild
line is of pseudo parity group. In this case, rebuild
operation should be performed in two parallel steps. On
one hand, the data Di in the position of Pi should be copied
to the corresponding position of newly replaced disk. On
the other hand, all the corresponding blocks on surviving
disks should be read out to generate parity information Pi

and copy Pi to the location where the former Di reside. At
the same time, the data type of this parity location in
ParityLocationMap should be set. Figure 6 shows the
procedure of rebuild in this case.

New Disk

D0

D4

D8

D2

D6

D10

D3

D7

D11

P0

P1

P3

D5

Rebuild Line
D1

Real
parity
group

Figure 5. Rebuild failure data when the
rebuild line is of real parity group

New Disk

D0

D4

D8

D2

D6

D10

D3

D7

D11

P0

D5

P3

D5

Rebuild Line
D1

P1

Pseudo
parity
group

Figure 6. Rebuild failure data when the
rebuild line is of pseudo parity group

4 Space Overhead Consideration and
Performance Evaluation

In this section, we will discuss two performance topics
related to the reconfigurable RAID-5 architecture.

4.1 Space Overhead Consideration

In reconfigurable RAID-5 disk array system, an
important data structure is ParityLocationMap, which used
to store the status of each parity location to indicate
whether it is parity information or data. According to the

status of parity location, we can judge whether the parity
group is real parity group or pseudo parity group, therefore
we can determine the data access in this parity group is in
degraded mode or pseudo normal mode.

Because ParityLocationMap should be kept in a non-
volatile permanent storage, this causes extra space
overhead compared with traditional RAID-5 system. Let
us estimate how much the extra space a reconfigurable
RAID-5 system needs so that we can determine whether
this extra space overhead is a heavy burden to the users.

Suppose the actual capacity of disk array of
reconfigurable RAID-5 system is M, that is the capacity
user can actually use without including the capacity parity
information occupies. In the other word, if there are N
disks in the RAID-5 system, the capacity of each disk is
M1, the actual capacity of RAID-5 disk array system is
M=(N-1)× M1. Suppose the stripe block size is B. Then the
extra space overhead to maintain the ParityLocationMap
is:

bytes
B

MN

B

M

×
−

=
× 8

)1(

8
1 (1)

Let us give a concrete example to show the extra space
overhead of a reconfigurable RAID-5 system. Suppose the
scale of a reconfigurable RAID-5 system is 11 disk drives.
10 disk spaces for data and 1 disk spaces for parity
information. The capacity of each disk is 10GB. The stripe
block size is 32KB, which is often used in the disk array in
the environment of UNIX operating system. Then
according to the above equation, we can get the extra
space overhead to maintain the ParityLocationMap in such
reconfigurable RAID-5 system is 391KB. For the disk
array with 100GB capacity to have extra space overhead
of 391KB to maintain ParityLocationMap is acceptable.
Compared with sparing technique, the space overhead in
reconfigurable RAID-5 is nominal.

4.2 Basic Phase Parallel Model of Parallel
Storage System

In this section, we will apply the phase parallel
model[8] to the performance evaluation of storage system.

Phase parallel model is used for the modeling of
parallel computation. It divides the execution of a parallel
program into a sequence of phases. The next phase begins
only after all operations in the current phase have finished.
There are three different phase types, parallelism phase,
computation phase, and interaction phase. The execution
time of the superstep on n processors is[8]:

TTTT pareractcompn ++= int (2)

According to the principle of phase parallel model, we
propose a scheme to evaluate the storage system using the
phase parallel model. The phases in parallel storage
system are classified as following different types:

(1) CPU working phase, which performs the process
management in parallel storage controller, such as
command split, optimize and combine; redundancy
information generate; failure data reconstruct and
rebuild; data decomposit and combine.

(2) Disk service phase, which one or more disks in the
parallel storage system each execute a number of local
I/O service operations. “Local” here means that all
data needed by a disk drive are available in its local
memory. Disk service phase of each disk drive
composes of two sequential operations: seek operation
and rotation operation. Therefore, the time for each
disk service phase composes two parts, seek time and
rotation delay.

(3) Data channel interaction phase, which executes
interaction operations between each disk drive and
CPU. It includes data transfer phase and channel delay
phase. Therefore the time for data channel interaction
phase includes two parts, data transfer time and
channel delay time. It is the maximum value of data
transfer time and channel delay time of each disk
drives within per channel.

Thus, the total execution time for a superstep of I/O on
n disk drives can be calculated as follow:

TTTT servicediskeractionchannelworkingCPUn _int__ ++=
(3)

Suppose the total workload is w. The time of CPU
working phase can be express as two parts, busy time and
control time. Busy time refers to the time of command
split, optimization, and combination, while control time is
the time for disk array controller to process amount of
data, such as data striping and combination, parity
calculation and the recovery of lost data. That is:

TTT controlbusyworkingCPU +=_ (4)

The busy time of CPU can be calculated as [10]:
τ⋅⋅+⋅⋅= wpwT IPSB

I
busy

1)((5)

here, I/B is the average number of instructions for CPU to
process one byte of data. The value of I/B depends upon
the different application environments. 1/IPS is the
average time to execute one instructions. It depends on the
speed of CPU. p is the times to access disk while
exchanging amount of data between CPU and disk. The
value of p varies with the management of device and the
organization of file. τ is the access period of memory.

The control time can be calculated as follow[10]:
() controlcheckstripcontrol twIIT ⋅⋅+= (6)

here, Istrip is the average instruction number for controller

to perform data striping while writing, or to combine the
data while reading for every byte. Icheck is the average

instruction number for controller to calculate parity
information while writing in both normal mode and
degraded mode, or to recovery lost data by using parity
information and other data on surviving disk drive while

reading in degraded mode. tcontrol is the average time for

controller to perform each instruction.
Thus, for read operation of RAID-5 in normal mode:

twIT controlstripcontrol ⋅⋅= (7)

while for the write operation:
() twIIT controlcheckstripcontrol ⋅⋅+= (8)

For read/write operations of RAID-5 in degraded mode:
() twIIT controlcheckstripcontrol ⋅⋅+= (9)

The disk service time of each disk drive in the disk
array can be calculated as follow [10]:

)]()([),(_ yTxTTmkpyxT sservicedisk ++⋅⋅⋅= (10)

here, k is the number of tracks for disk drive to refer
during one disk access. It depends upon the organization
and the amount of data to access in one time. Suppose the
capacity of one track is BT, then k>w/BT. m is the access

times of each disk drive when CPU exchanges amount of
data with that disk drive. It has the relationship with the
amount of data to exchange and the amount of data each
disk drive can access once, suppose Lo. Ts is the time

needed for the head of each disk drive to stall during one
disk access.

T(x) is the time needed for the head of disk drive to
seek x tracks during one disk access. It is the function of
random variable x. That is, the time for the head of disk to
seek is different during each seek operation. We use the
following analytic expression to calculate T(x) [10]:

cxbxaxT +−+−=)1(1)((M>x≥1) (11)

here, x is the seek distance, M is the total track number of
the disk. The coefficients a, b, and c can be gotten using
minimum seek time, Tmin, that is the time to seek one

track (here x=1), maximum seek time, Tmax, that is the

time for head to seek from most inner track to most outer
track (here x=M-1), and the average seek time, Tavg.

T(y) is the time needed for the head of disk drive to
rotate y sectors during one disk access. It is the function of
random variable y. It has the relationship with the rotation
speed of disk drive and the angles needed to rotate in order
to wait for the needed sector after indexed. The way to
calculate T(y) is [10]:

yStyT r)()(= (12)

Here, S is the number of sectors per track of disk. tr is the

one rotation time of disk drive.
The data channel interaction time of each disk drive in

the storage system can be calculated as follow [10]:

oreractiontchannel dTmpT +⋅⋅=int_ (13)

do is the channel delay time. It depends on how many

disk drives will be accessed each time. The more disk
drives involved, the longer the channel delay time. Tr is

the time needed for amount of data to exchange between

CPU and each disk drive at one time. It is the time when
Lo so much data to exchange between CPU and disk drive.

Suppose the data transfer rate for each disk drive in the
disk array is Dr, then Tr can be calculated as follow [10]:

ror DLT 8= (14)

Therefore, we can use the above equations to calculate
the total execution time of storage system.

4.3 Performance Evaluation of
Reconfigurable RAID-5

Using the theoretical method discussed above, we can
discuss the total execution time of traditional RAID-5 and
the reconfigurable RAID-5 in degraded mode respectively.

Among the three phases in above model, disk service
phase and data channel interaction time are much more
time-consuming. They make great contribution to the total
execution time. This is because of the mechanical delay in
the components of disk drives. The magnitude of disk
service time is usually in milliseconds, while the memory
access time is in microseconds and the CPU working time
is in nanoseconds. Therefore, we only discuss the disk
service time and channel interaction time in the total
execution time.

Let us first calculate the disk service time and channel
interaction time of traditional RAID-5 in degraded mode.
For the read access of failure data block, N-1 accesses to
the corresponding blocks on the surviving disks have to be
performed to reconstruct lost data block. The disk service
time of the storage system should be the maximum value
of the disk service time of each disk drives in the array.
Suppose there are c disk drives in each channel. The
longest channel delay time should be c times of channel
delay of single disk drive. Then the total execution time
not including CPU working time in this case is:

oservicedisk
N

jii
readRAID dcyxiTMAXT ⋅+=

≠=
)),,((_

)(1
5 (15)

j is the disk number of failure disk.
For the write access of failure data block, N-1 accesses

to the corresponding blocks on the surviving disks have to
be performed to reconstruct lost data block first. Then the
new parity information is generated by performing
exclusive OR operation on the newly reconstructed lost
data block, the new data block should be written to the
failure disk, and the old parity. The newly calculated
parity information should be written to the corresponding
disk. The longest channel delay consists two parts, one is
the longest channel delay while N-1 data blocks are read
out from the disk array, the other is the channel delay
while the new parity information is writing to the parity
disk block. The total execution time in this case is:

oparityservicedisk

servicedisk
N

i
writeRAID

dcyxdiskT

yxiTMAXT

⋅+++

=
=

)1(),,(

)),,((

_

_
1

5
 (16)

Turn back to the data access of reconfigurable RAID-5
architecture. For simplicity, we only discuss the situation
of the data access in pseudo normal mode. Because only in
pseudo normal mode, the advantages of reconfigurable
RAID-5 architecture can be illustrated completely, while
in degraded mode reconfigurable RAID-5 has the same
characteristics as traditional RAID-5 system. For the read
access of failure data in pseudo normal mode, failure data
block can be read out directly from the place which parity
information should reside. The only extra operation is
performed by CPU in the controller to search the
ParityLocationMap to find out the physical address where
parity information should reside. Compared with the
exclusive OR operation of reconstructing the failure data
in RAID-5, the time to search ParityLocationMap is much
less. As there is only one disk drive involved in the read
access, the channel delay is only one disk drive channel
delay. The total execution time of read operation for
reconfigurable RAID-5 architecture is the same as single
disk drive execution time. That is:

oparityservicediskreadRAIDVariant dyxdiskTT +=),,(__5__

(17)
For the write access of failure data in the pseudo

normal mode, the new data block is just written to the
location where parity information should reside. It avoids
the generation of new parity information. Thus, the total
execution time is the same as the read access of
reconfigurable RAID-5 architecture in pseudo normal
mode. That is:

oparityservicediskwriteRAIDVariant dyxdiskTT +=),,(__5__

(18)
In order to indicate the performance gain in the

reconfigurable RAID-5 architecture, we define
Performance Improvement Ratio (PIR) as the ratio of the
total execution time of RAID-5 to that of reconfigurable
RAID-5 system. That is:

readRAIDVariant

readRAID
read T

T
PIR

_5__

5= (19)

writeRAIDVariant

writeRAID
write T

T
PIR

_5__

5= (20)

From the above discussion, we find the disk service
time and channel interaction time of reconfigurable RAID-
5 architecture is greatly reduced compared with that of
RAID-5. The other advantage is that for the write access in
reconfigurable RAID-5, it also delimitates the small write
problem in degraded mode, which is the severe problem in
RAID-5.

5 Simulation Results

We have already implemented the reconfigurable
RAID-5 architecture on the platform of HUST_RAID. It is
a complete experimental platform of disk array subsystem
with two string, each string connected three 540MB
Quantum hard disk drives. Totally, there are six disk
drives in the system. We use Qbench designed by
Quantum Co. as the benchmark to test the performance of
disk array subsystem under the different schemes.

We first test the sequential access of RAID-5 in
degraded mode and reconfigurable RAID-5 in pseudo
normal mode, respectively. Using the equations (19) and
(20), we can get the performance improvement ratio for
sequential read and sequential. The result is shown in
figure 7. It is very easy to get the data of RAID-5 in
degraded mode using Qbench. In order to test the true
performance of reconfigurable RAID-5, that is to
guarantee the data access of failure disk is in pseudo
normal mode, we first run Qbench in degraded mode of
reconfigurable RAID-5 without recording the data several
times. This can guarantee the later data access of failure
disk is referring to the location of parity information via
searching the ParityLocationMap. In this way, we can get
the approximate true performance data of reconfigurable
RAID-5 in degraded mode.

PIR of Sequential Access in Degrade Mode

0

5

10

15

20

25

1 2 4 8 16 32 64
Data Size (sectors)

P
IR

Write
Read

Figure 7. Service time of sequential access
in degraded mode

Using the same scheme, we get the data of disk
service time and channel interaction time for random
access of RAID-5 in degraded mode and reconfigurable
RAID-5 in pseudo normal mode, respectively. The result
is shown in figure 8.

From the test result, we can see that using
reconfigurable RAID-5 scheme for the disk array in
degraded mode can greatly enhance the on-line
performance. For the data access to the failure disk of
RAID-5 in degraded mode, all the surviving disk drives

should be accessed to reconstruct the failure data. Thus,
greatly reduce the performance of storage system. Because
in this case, RAID-5 system has no contribution to the
fault tolerant, maintaining the parity information becomes
a burden of the storage system. For the reconfigurable
RAID-5 architecture, for sequential access the
performance improvement ratio can achieve up to more
than 20. For random access, the performance improvement
ratio is even large, up to more than 200.

The great difference between the performance
improvement ratio for the different access pattern relies on
the fact that for the sequential access the data locality is
much higher than random access. The prefetching of data
from disk drives in the array greatly reduced the disk
service time and channel delay time.

PIR of Random Access in Degrade Mode

0

50

100

150

200

250

1 2 4 8 16 32 64

Data Size (sectors)

P
IR

Read

Write

Figure 8. Service time of random access in
degraded mode

From the above test result, we also find that channel
delay time still occupy the very large portion in the data
channel interaction phase. In our platform, there are only
two channels and each channel connected three disk
drives. Therefore, these three disk drives will have a
contention for data channel for the data transferring. In the
degraded mode of RAID-5 in our platform, the longest
channel delay are three times of single disk drive, because
there exist one data channel that the data from the three
disk drives should be read out to reconstruct the failure
data. In reconfigurable RAID-5 architecture scheme, as
there is no need to maintain the parity information, the
failure data can be accessed directly from the location of
parity information should reside. In most storage system,
the number of data channel is limited due to the
complexity of design, but the scale of storage system can
be very large. The more disk drives in on string, the longer
channel delay for the data access in RAID-5 system. From
this point of view, reconfigurable RAID-5 architecture
scheme is very attractive.

6 Future Work and Conclusions

In this paper, we propose a new and efficient
architecture reconfiguration scheme to enhance the
performance of RAID-5 in degraded mode. The main idea
is based on the fact that in degraded mode of RAID-5
parity information has no contribution to the fault tolerant
to the extra disk failure, in this case the fault tolerant
ability of RAID-5 is the same as that of RAID-0. There is
no need to keep parity information in degraded mode of
RAID-5 at all. The best disk array organization in this case
is RAID-0. Reconfigurable RAID-5 is the best candidate
architecture scheme for RAID-5 to enhance the on-line
performance in degraded mode. It reconfigures RAID-5 to
somewhat like RAID-0 in degraded mode. Using this
scheme, we reduce the calculation of the failure during
each read operation and the generation of parity
information when operating the data to the failure disk.

The other advantage is that for the write access in
reconfigurable RAID-5, it also delimitates the small write
problem in degraded mode. We also implemented the
reconfigurable RAID-5 architecture scheme on the
platform of HUST_RAID. From theoretical analysis and
the benchmark test, we find the performance improvement
ratio (PIR) of reconfigurable RAID-5 to RAID-5 in
degraded mode can be more than 200 fold in the best case.
Therefore using reconfigurable RAID-5 architecture
scheme can enhance the performance of RAID-5 in
degraded mode greatly.

From the study of reconfigurable RAID-5 architecture
scheme, we can extend our architecture reconfiguration
scheme from tolerating single disk failure to tolerating
multiple disk failures. If disk array subsystem have the
ability of fault tolerant of two disk failures in the system,
we usually use Reed-Solomon code or EVENODD
code[2][5]. In the case of one disk failure, the fault
tolerant of storage system can only tolerate one extra disk
failure. The reliability in this case is the same as that of
RAID-5. Thus, we can reconfigure the disk array
architecture using complex redundant scheme of Reed-
Solomon code or EVENODD code to the simple parity
code. Thus greatly reduce the complexity of the
procedures of encoding and decoding. The performance in
this degraded mode will improve.

Continue with this procedure, if there is another disk
failure, we will reconfigure the disk array architecture
from RAID-5 to reconfigurable RAID-5.

Same reconfiguration scheme can also applied to the
method of DATUM [1] for tolerating multiple disk
failures in the disk arrays. The architecture reconfiguration
scheme for this multi-level mapping from different disk
array architecture to reconfigurable RAID-5 architecture in
degraded mode while keeping the on-line performance is
still an open problem.

References

[1] G. A. Alvarez, W. A. Burkhard, and F. Cristian, “Tolerating
Multiple Failures in RAID Architectures with Optimal
Storage and Uniform Declustering”, Proceedings of the 24th

Annual ACM/IEEE International Symposium on Computer
Architecture, 1997, pp.62-72

[2] M. Blaum, J. Brady, J. Bruck, and J. Menon; "EVENODD:
An Optimal Scheme for Tolerating Double Disk Failures in
RAID Architectures," Proceedings of 21st Annual
International Symposium on Computer Architecture, 1994,
pp.245-254

[3] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson; “RAID: High-Performance, Reliable Secondary
Storage”, ACM Computing Surveys, Vol.26, No.2, June
1994, pp.145-185

[4] W. V. Courtright II, and G. A. Gibson; “Backward Error
Recovery in Redundant Disk Arrays”, Proceedings of the
1994 Computer Measurement Group Conference (CMG),
Vol.1, 1994, pp.63-74

[5] D. Feng, H. Jin, and J. L. Zhang; “Improved EVENODD
Code”, Proceedings of 1997 IEEE International Symposium
on Information Theory, 1997, p.261

[6] G. A. Gibson; "Redundant Disk Arrays: Reliable, Parallel
Secondary Storage”, MIT Press, 1992

[7] J. L. Hennessy, and D. A. Patterson; “Computer
Architecture: A Quantitative Approach”, Second Edition,
Morgan Kaufmann, 1996

[8] K. Hwang, Z. Xu; “Scalable Parallel Computing:
Technology, Architecture, programming”, WCB/McGraw-
Hill Co., 1998

[9] R. Jain, J. Werth, and J. C. Browne; “Input/Output in
Parallel and Distributed Computer Systems”, Kluwer
Academic Publishers, 1996

[10] H. Jin, H. Yang, and J. L. Zhang; “On-line Performance
Evaluation of RAID 5 using CPU Utilization”, Proceedings
of Signal and Data Processing of Small Targets 1998, SPIE,
Vol. 3373, 1998, pp. 498-509

[11] Hai Jin, and Kai Hwang, “Reconfigurable RAID
Architectures for Designing Workstation Clusters with a
Single I/O Space”, Technical Report, The University of
Hong Kong, November 1998

[12] E. Lee, and R. Katz; “The Performance of Parity Placement
in Disk Arrays”, IEEE Transactions on Computers, Vol.C-
42, No.6, 1993, pp.651-664

[13] J. Memon, and D. Mattson; “Comparison of Sparing
Alternatives for Disk Arrays”, Proceedings of the 19th

Annual International Symposium on Computer Architecture,
1992, pp.318-329

[14] A. L. N. Reddy, J. Chandy, and P. Banerjee; “Design and
Evaluation of Gracefully Degradable Disk Arrays”, Journal
of Parallel and Distributed Computing, Vol.17, No.1, 1993,
pp.28-40

[15] A. Thomasian, and J. Menon; “RAID5 Performance with
Distributed Sparing”, IEEE Transactions on Parallel and
Distributed Systems, Vol.8, No.6, June 1997, pp.640-657

