

A Programmable Event-based Middleware
for Pervasive Mobile Agent Organizations

Matteo Gazzotti, Marco Mamei, Franco Zambonelli

Dipartimento di Scienze e Metodi dell’Ingegneria – Università di Modena e Reggio Emilia

Via Allegri 13 – 42100 Reggio Emilia – ITALY

matteo_gazzotti@libero.it
{ mamei.marco, franco.zambonelli}@unimo.it

Abstract
This paper firstly introduces a conceptual framework for
the effective design and development of distributed
pervasive applications based on mobile agents. The
framework, based on the definition of active
organizational contexts, promotes an engineered and
modular approach to application design by introducing
the notion of active organizational contexts. Then, the
paper describes the architecture and the implementation
of a re-configurable event-based micro-kernel
implementing active organizational context, suitable as a
supporting middleware for pervasive applications based
on mobile agents. An application example in the area of
urban traffic control shows the effectiveness of the
approach.

1. Introduction
Computing is becoming pervasive. Autonomous
computer-based systems are going to be embedded in all
our everyday objects and in our physical environment,
and they are going to interact with each other in a
globally connected network, possibly making use of
wireless communication technologies [4, 15]. In such a
scenario, mobility too, in different forms, will be
pervasive [1]. Mobile users, mobile devices,
transportable computer-based objects, as well as mobile
software components, define an open and dynamic
networked world, in which the topology of interactions
change with time. As a consequence, the effects of
computation and coordination activities are likely to
dramatically change depending on the location, i.e., the
context, in which they occur.

Defining suitable models and infrastructures for the
design and development of distributed applications in
such pervasive and mobile scenario is indeed an open
research challenge. Nevertheless, it is being widely
recognized that, in order to limit complexity of

application design and development it is necessary to
define models and infrastructures enabling to (i) handle
mobility in a natural and uniform way and (ii) support
effective and flexible coordination despite the dynamics
of interaction networks.

With regard to the former issue, a promising approach
is to model application components, as well as physical
mobile devices and computer-based systems, in terms of
autonomous mobile agents [18]. In fact, the observable
behavior of a software process running on a computer-
based mobile device is that of an autonomous mobile
component having local control over its activities. With
regard to the latter issue, we propose extending the notion
of “sociality” intrinsic in agent-based computing by
explicitly modeling agents in terms of “organizational”
entities. In particular, we consider mobility as a
movement across organizations, more than simply across
locations: the coordination activities of mobile agents
change not only due to the different entities that they find
in different locations, but also due to the different
coordination laws to which they must obey in different
organizations. Such a conceptualization considers the
context in which an agent executes as an active context,
capable of influencing agents’ coordination activities. As
described in Section 2, this can promote a clean
separation of concerns between computation and
coordination [6], simplifying and making more modular
application design.

Starting from the above conceptual organizational
framework, the paper shows how it can be supported, in
application development, by a programmable event-based
middleware infrastructures, in which all interactions can
be expressed in terms of event generations and
subscriptions, and in which the effect of an event can be
properly programmed to enact specific coordination laws
and influence local coordination activities. The general
concepts underlying such event-based infrastructure are
described in Section 3. A light micro-kernel based

implementation of the infrastructure, easy to use and also
suitable for resource limited devices (as those that can be
found in pervasive scenarios) is presented in Section 4.
An application example in the area of traffic management
is described in Section 5 to clarify the concepts expressed
and to show the effectiveness of our approach.

Eventually, Section 6 discusses related work and
Section 7 concludes the paper.

2. The Conceptual Framework

2.1. Local Interaction Context

As far as the high-level issues related to the modeling,
design and development of complex pervasive
applications are concerned, handling mobility is basically
a problem of managing the coordination activities of
application agents, i.e., all the activities of agents that
may influence the surrounding computational world or,
which is the same, all of the events during the execution
of agents that can be perceived from the external. These
events may include the arrival/departure of an agent from
a given location (computational, as a Web site, or
physical, as a building), the accesses by agents to the
local resources, and the communication and
synchronization activities with the other agents of the
location, whether of the same application or foreign
agents.

In general mobility can be modeled in terms of
movements across local interaction contexts. A local
interaction context defines the agents’ perceivable world,
which changes depending on the agent position, and
which represents the logical place in which all agents’
coordination activities occur. What is the interaction
model to be actually exploited by agents for modeling
interaction in a context is not of primary influence for the
sakes of application modeling. Interactions may occur via
message passing and ACLs [5], via meetings [16], or via
shared dataspaces [1]. The two key points that really
matters from the software engineering perspective are
that:
• the enforced-locality-model reflects, at the level of

application modeling, a notion of context intrinsic in
mobility and embedded-pervasive computing.

• the notion of local interaction context provides a
useful conceptual abstraction for analyzing the
interactions between a set of agents in a local site in
terms of the observable behavior of the agents
activities, i.e., in terms of all the interaction events
occurring locally to a site.

2.2. Local Organizations

Movements across local interaction contexts may
impact on agents’ coordination activities. In fact,
coordination activities are likely to be strictly ruled by
proper security and resource control policies, which may
be different from location to location, i.e., from a local
interaction context to another. In such a scenario, the
local interaction context cannot be simply considered as
the place in which coordination activities occur. Instead,
a local interaction context has to be considered an active
context (or active environment), capable of enacting
specific local coordination laws to rule and support the
agents’ coordination activities.

By assuming an organizational perspective [17], one
can consider the local interaction context in terms of an
organizational context: an agent, by entering via a
movement in an interaction context, enters a foreign
organization where specific organizational rules are likely
to be enacted in the form of coordination laws. Thus, for
the sake of conceptual simplicity, one must consider the
interaction context as the locus in which the
organizational laws ruling the activities of the local
organization reside [17]. For example, when new kinds of
application agents are going to be deployed on a local
interaction context, the administrator of that
organizational context can analyze which local
coordination laws that (s)he may find it necessary to
locally enforce. These can be used both to facilitate the
execution of the agents on a site and to protect it from
improper exploitation of the local interaction context.

2.3. Application-Specific Organizations

The above is not the full picture. In fact, agents may
be part of a cooperative multi-agent application, and
move in a pervasive network to cooperatively achieve,
according to specific protocols and patterns, specific
application goals. Given that, it is clear that agents’
coordination activities within a multi-agent application
may be required to occur accordingly to specific laws
ruling the whole application and ensuring the proper
achievement of the application goals. In other words
agents belonging to a specific application logically
constitute an application-specific organizational context
on their own.

Within the organizational perspective, this implies that
the context in which an agent executes and interacts is not
only the one identified by the local organizational
context, but is also the one of its own multiagent
organization. As that, a local organizational context
should not only be thought as the place in which local
organizational rules reside, but also as the active context
in which application agents may enact their own,

application-specific, organizational rules in the form of
coordination laws. These application-specific
coordination laws, are not located in a single local
interaction context, but are in principle spread (i.e.
replicated) through all local interaction contexts interest
to the application, to be enforced independently form
agents’ current location.

2.4. Impact on Application Design

The above analysis suggests modeling and designing
applications in terms of agents interacting via active
organizational contexts (see Figure 1).

Agent app1
Agent app1Agent app1 Agent app2

Agent app2
Agent app2

Local Interaction Context Local Interaction Context

Context A-specific laws Context B-specific laws

App 1 – specific laws App 1 – specific laws App 2 – specific laws App 2 – specific laws

Context A Context B

Fig. 1. Local Organizational Contexts.

The adoption of such a conceptual framework – that
we call context-dependent coordination [1] – can have a
very positive impact on the engineering of mobile agent
applications. From the point of view of application
designers, the framework naturally invites in designing an
application by clearly separating the intra-agent aspects
and inter-agent (organizational) ones. The formers define
the internal behavior of agents and their observable
behavior. The latters define the application-specific
organizational laws according to which agents should
interact with each other and with external entities for the
global application goal to be coherently achieved, and
lead to the identification of the coordination laws that
agents should spread on the visited organizational
contexts. This separation of concerns is likely to reduce
the complexity of application design, and can make it
more modular and easy to be maintained (design-for-
change perspective).

3. Towards a Programmable Event-based
Middleware

The separation of concerns promoted during design
can be preserved during the development and
maintenance phases too if a proper coordination
middleware infrastructure is available that somehow
reflects the concepts and the abstractions of context-

dependent coordination. In that case, the code of the
agents can be clearly separated from the code
implementing the coordination laws (whether local
organizational laws or application-specific ones). Thus,
agents and coordination laws can be coded, changed, and
re-used, independently of each other.

3.1. Programmable Coordination Media

A coordination infrastructure for context-dependent
coordination must be based on an architecture relying on
a multiplicity of independent interaction abstractions,
each implementing the notion of active organizational
contexts. Such interaction abstractions can be effectively
implemented in terms of programmable coordination
media [3]: a software in charge of monitoring, mediating
and ruling all coordination activities of application agents
within a locality, accordingly to local (or application-
specific) coordination laws, embedded into the medium
itself. Whatever the interaction model it relies upon, a
coordination medium is generally characterized by:
(i) a set of primitive operations to let agents access it;
(ii) an internal behavior, intended as the computational

activity performed inside the coordination medium
in response to interactions events, i.e., in response
to the invocation of a specific primitive performed
by an agent.

Most of the existing coordination infrastructures fix
the internal behavior of coordination media once and for
all: the behavior of a coordination medium in response to
a given interaction event is always the same. An
infrastructure based on programmable coordination
media [3, 10] makes it possible – without changing the
set of primitive operations used by agents to access the
coordination media – to program the internal behavior of
a coordination medium and override its default behavior
so as to adapt it to the specific needs of applications or of
the local environment. To this end, one must:
(i) fully characterize the kind of access event of

interest, in terms of the identity of the agent
performing it, the primitive used to access the
coordination medium, and the parameters possibly
supplied in the invocation of the primitive;

(ii) express the new behavior (we usually called it
“reaction”) to be assumed by the coordination
medium in response to this kind of access event, and
have this behavior override the default one.

3.2. Programmable Event-based Media

From the above characterization of programmable
coordination media, it should be clear that it does not
really matter what are the specific primitives used by
agents to access the media. From a conceptual point of

view, a programmable coordination media can be
realized upon any given interaction model. However,
neither message-passing not shared dataspace models
appears suitable for mobile and pervasive scenarios: the
former lacks the necessary uncoupling required to deal
with the dynamics of the scenario, the latter may require
too large memories for resource limited devices, as those
that may be found in pervasive scenarios. Event-based
models, being able to put entities in indirect contact
without requiring large memory spaces, appears a good
trade-off for adoption in pervasive and mobile scenarios,
as testified by several recent proposals in the field [2,
14]. Moreover, as formally described in [20] the publish-
subscribe event-based interaction model, despite its
simplicity, has the full expressive power of more complex
interaction models. Thus, it is always possible to exploit
an event-based coordination media to build an additional
layer above it, to let agents interact accordingly to, say, a
shared data space or a message-passing interaction
model.

Therefore, we propose having agents interact in a
context by generating events and by subscribing to
events. A local event-based programmable coordination
media is in charge of receiving events, re-distributing
them, and performing computations accordingly to the
specific behavior programmed in it (expressing either
application-specific or local organizational laws).

The first basic functionality provided by the

coordination media is to act as an event dispatcher for the
interaction context. Following the traditional
publish/subscribe event model [2], we characterize an
event by a set of parameters, using the following
notation: E(par1,…,parn). Events can be generated by
agents either explicitly (by specific instructions in the
executing code) or implicitly (due to the occurrence of
specific condition, as detailed in the following).
Subscriptions are issued by agents to express their
interest in particular (class of) events and we indicate
them with the notation Ê(E(par1,…,parn),null): to specify
that the agent is interested to events matching the event
signature within the subscription. Once the agent is
notified by the event-kernel about the occurrence of an
event it can react accordingly, as prescribed in its internal
code. Moreover, agents and site administrators can
implant coordination laws in the coordination media.
Exploiting the semantic of the event-model, this can be
done by performing the following kind of subscription:
Ê(E(par1,…,parn),Rct): that means that the reaction Rct
(which can be an arbitrary piece of code) will be
executed by the middleware when the event
E(par1,…,parn) is fired. The middleware acts simply as
another component capable of reacting to the events
produced. From a conceptual point of view, the

middleware can be thought as a passive component
whose subscriptions and reactions are decided by others
(agents or administrators).

To provide flexibility to the event model, we finally
specified the use of wild-cards (star values) within events
and subscriptions descriptions. For example, the
subscription Ê(E(*,y,*),null) specifies an interest to all
the events described by three parameters, having y as
second parameter. Events like E(*,X), and subscriptions
like Ê(E(A,*),null) match, because the star value in the
event is matched with the A value of the subscription,
while the star value of the subscription is matched with
the X value of the event.

The event-based media can serve not only as a place to
catch interaction events occurred due to the explicit
invocation of an event-generation primitive, but also to
deal with implicitly generated events. In fact, agents can
generate events (i.e., can be made observable from the
external) also due to specific lifecycle changes. In the
presence of mobility, the arrival and the departure of
agents to/from interaction contexts typically generate
events that may be in need to be managed. Also in these
cases, these events can be characterized by different
parameters (e.g., specifying the identity and the nature of
the agent, its budget, etc.), and it is possible to program
the event-kernel so as to react to them with specific
actions. However, it is worth emphasizing that modeling
the arrival/departure of an agent in an interaction context
in terms of events once again enforces a uniform and
general way of handling mobility. In fact, from the point
of view of the interaction context and of the events it
perceives, there is no difference between, e.g., the arrival
of a mobile wireless device in the transmissions range of
the kernel access point and the arrival of a mobile Java
thread in the computer hosting the kernel. If necessary,
specific event parameters can be used to associate
different event handlers for different types of mobility.

4. Implementation of a Programmable
Event-based Micro Kernel

Accordingly to the event-based model described in the
previous section, we have implemented an event-based
programmable coordination media in terms of a
programmable micro event-based kernel. The kernel acts
as an engine to process the events occurring in a local
interaction context accordingly with the programmed
behavior, as resulting from the inserted subscriptions.
The implementation is fully in Java, executable with
Personal Java [13], and currently supporting IEEE
802.11b wireless connections.

4.1. The Architecture

The duty of the kernel is to process events and, via
pattern matching, to check subscriptions and execute the
associated reactions. To obtain this behavior, the kernel
implements a simple and intuitive architecture entirely
developed in Java (Figure 2). The dramatic simplicity of
the architecture, and the consequent very light load (in
terms of both storage space and computational activity)
imposed on the hosting computers, makes it very suitable
for pervasive computing scenarios. The event kernel can
be installed in almost every type of embedded or wireless
mobile computing device supporting Personal Java.

The events caught in the local context are stored in an
input FCFS event queue. A thread called puller thread
constantly examines the state of the queue and, if there is
at least one event, it passes the event to kernel engine.
The kernel engine kernel implements a pattern-matching
operation for all processed event, to check for
subscription matching the event. All active subscriptions
are registered in the subscription list. It is worth to
remember that due to star-values that event parameters
can assume, a reaction inserted in a subscription could be
triggered by a classes of events as well as specific events.

When a matching is verified, the associated reaction
(or reactions) has to be performed. The kernel engine is
devoted to spawn a thread perform the code of the
reaction. The code of a reaction is not limited to operate
outside the kernel, but it is also enabled to operate on the
internal subscription list, inserting or removing
subscriptions. Furthermore the code of a reaction can
generate other events that are inserted in the event queue.

Fig. 2. The architecture of the Micro-kernel

4.2. Implementation of events and reactions

The structure of the events manageable of a kernel is a
key concept: it is important to realize a light and flexible
kernel, which must be able to accept any kinds of
application-specific events.

Accordingly to the OO paradigm, all events are
objects instances of some classes; the Java package that
contains the core kernel classes defines only a simple
hierarchy of events classes. Any application in need to

use the kernel can extend event classes to obtain specific
and suitable event types, inserting new parameter and/or
methods. Because all the structures of kernel (queue,
engine, subscription list) are designed to work with
references to superclasses of these application-event,
there are no problems to manage these references;
moreover the polymorphism of Java permits at the
specific methods of the event subclasses to be called
directly and automatically from super-classes references.

Also the concept of reaction has been well defined: a
reaction can be an arbitrary piece of code, enabled to
interact with kernel programmed behavior. The kernel
defines a generic reaction in terms of an abstract class
declaring an abstract method with a known name
(performReaction); the subclasses of this class
implements this method, realizing a specific and arbitrary
type of reaction. Such a constrained interface allows the
kernel to perform the code of any reaction, by invoking
the known method when the reaction is triggered.

4.3. Using the Event-based Kernel

To use the event-based kernel, a dramatically simple
yet effective interface is provided. Only two basic
operations are provided to generate an event to be caught
by the kernel and to subscribe to an event (thus possibly
programming the event kernel), respectively.

To generate an event, one has to generate an object of
an event class, e.g.,

FooEvent fe = new FooEvent(par1, …, parn);
and then send this event to the kernel via the notifyEvent
primitive:

kernel.notifyEvent(fe);
Where it is assumed that the Kernel reference always
points to the kernel of the current interaction context (this
is simply achieved via a Jini-like discovery process [7]).
As already discussed, other types of events may be
generated in an implicit way and automatically notified to
the kernel.

To subscribe to an event one has to generate a
reaction object, e.g.,

FooReaction fr = new CrashReaction();
a template event, with possibly some non defined
parameters, e.g.,

FooEvent fe = new FooEvent(par1,*, *, …, parn);
and eventually invoke the addSubscription primitive:

kernel.addSubscription(fe, fr);
Where the second parameter could also be null, to have a
simple expression of interest rather than a programming
of the event kernel.

4.4. Providing a State to the Micro Kernel

The only persistent stateful component of the kernel is
the subscription list containing only the couples

(event�reaction). Such architecture implies a generally
stateless behavior of the coordination laws programmed
in the form of reactions. This kind of behavior is enough,
for example, for event dispatching among agents living in
the same interaction context. However, for others types of
applications there may be the need of a persistent state
for historical events or for data.

In our implementation, exploiting the versatility of the
reaction mechanism, which can access any object outside
the kernel, can easily satisfy this need. Thus, a data/state
space can be implemented outside the kernel in terms of
an object, and made it accessible from a generic reaction
(e.g., by providing the reaction object with the reference
to the state object).

From a different viewpoint, the data state can also be
considered a non-mobile agent, near the kernel; this point
of view has at least two advantages: (i) the kernel can
treat all external entities in a uniform way, as agents.; (ii)
the state can be itself “active”: is possible for it to send
events to kernel or insert/remove subscriptions.

5. Application Example: Traffic
Management

5.1. Scenario

The growth of motor traffic, especially in metropolitan
areas, calls for effective ways to control and support to
traffic circulation, and aimed both at obtaining a rational
use of roads and infrastructures (e.g., traffic lights,
tunnel, roundabout, etc..) and at giving drivers prompt,
useful and personalized information. GPS gives users the
capabilities to dynamically obtain traffic information.
However, to realize an optimized use of traffic
infrastructures, GPS isn’t enough. For example, a traffic
light must know the real-time situation of vehicles near
the cross to calculate dynamically the optimal
temporization time that ensures the maximum flow of
traffic trough the cross. Also, there is need for bi-
directional exchange of information between vehicles and
traffic infrastructures, to provide dynamic and informed
coordination among vehicles.

In this scenario, when developing an application for
traffic control, wireless-enabled computers on vehicles
play the role of mobile agents. From the infrastructure
point of view, we can assume the presence of computer-
and wireless- enriched traffic-lights, roundabout, etc., and
we can think to allocating a kernel in these computer
nodes, to act as the organizational context in which the
agents/vehicles in their proximities (i.e., in their
connection range) execute, and via which they coordinate
with each other (Figure 3-a).

In extra-urban context, the lack of infrastructure

elements of reference where to allocate kernels may
require a different solution. Agents have to interact with
each other directly, in an ad-hoc network: each agent
must host an own version of the kernel, to filter and react
to events coming from the other vehicles/agents in the
connection range, and to distributed them the event it
generates (Figure 3-b).

Fig. 3. Kernel-based Coordination for Traffic
Control

Fig. 4. Intelligent Traffic Lights

5.2. Programming Intelligent Traffic Lights

Putting attention to the urban case, where
infrastructure reference elements are available, we have
developed a prototypal model of an intelligent traffic
light (Figure 4), and simulated its behavior in the
presence of different traffic conditions. In this application
is necessary for a kernel to have a persistent state to
perform parametric reactions, for example it must be able
to discriminate among the states of traffic light: how we
previously discussed, a persistent state is outside a kernel,
but it can be accessed from his reactions.

The programmable event-kernel enhances the
functionality of a simple traffic light: for instance it can
be programmed to dynamically calculate a temporization
in function the traffic condition. Moreover, it enables
vehicles to subscribe to specific traffic conditions and to
enable a vehicle to signal its presence to other vehicles in
the proximities. As a very simple example, when a
vehicle crash occurs, it could be useful to alert other
vehicles in the proximities. This goal can be reached
defining a simple reaction class, CrashReaction, whose

code is shown in figure 5.
Let us suppose that, when a vehicle crashes, it

generates an event of the type VehicleEvent with a
specific “Crash” string in its second field, and that is
event is sent to the traffic light in reach (or, in the case of
a Mobile Ad-hoc NETwork – MANET, to all reachable
agents). Such an event generation and notification could
be implemented by the following code:

VehicleEvent event = new VehicleEvent (myId, "Crash",
vehicleType,currentSpeed,position);
kernel.notifyEvent(event);

In order to trigger this code when an event crash
occurs, an object of the CrashReaction has to be created
and a proper subscription of such a reaction can added to
the event kernel via, e.g., the following code:

CrashReaction crashReaction = new CrashReaction();
kernel.addSubscription(new
VehicleEvent(*,"Crash",*,*,*,*), crashReaction);

which specify to that the execution code of the
crashReaction code has to be associated whenever a
VehicEvent occurs that, in its second field, matched the
string “Crash”. Such a subscription can be added to a
traffic light by any authorized agent, i.e., from a
policeman or by the urban traffic administrators, thus
assuming the form of local organizational laws of the
traffic light. However, it is also possible to think at
having similar application-specific laws, specific for, say,
a local taxi company, which prefer to handle in a
different way (i.e., with additional reactions) a crash
event and the notification for its taxies.

public class CrashReaction extends Reaction{
 public CrashReaction()
 {super();}

 public void performReaction(BasicEvent e, Kernel k) {
 //gain all agent references to perform event broadcast
 ArrayList al = k.getAllAgentInterfaces();
 for (int i=0;i<al.size();i++)
 try
 {//send event to all agents in local context
 ((RemoteEventListener)al.get(i)).notify(e);
 }catch (Exception exc)
 {System.out.println("ERROR: agent not found");}
 }
}

Fig. 5. The CrashReaction code.

Of course, the event kernel can also be enriched by a
simple graphical interface to add subscription and to
monitor current and past events. Figure 6 shows the
special-purpose graphical interface provided with the
intelligent traffic light application, with which to monitor
and program the traffic light kernel. Such interface has
been defined as a simple extension of a general-purpose
interface provided with the kernel.

Fig. 6. Traffic Control Graphical Interface

6. Related Work
Coordination middleware based on a variety of

programmable coordination media can be found in the
literature. Tucson [11] and MARS [1], developed in the
context of an affiliated project, exploits programmable
tuple spaces as coordination media. However, they lack
the identification of the organizational approach, and,
being based on rather heavy architectures, are not
suitable for pervasive computing scenarios. The LGI
model [10] proposes influencing the behavior of agents
by dynamically attaching coordination laws to agents
interacting via message-passing, thus defining some sorts
of message-based coordination media. However, LGI
does not take into account mobility at all. LIME [12]
defines an interesting and peculiar tuple-based
architecture for handling in a uniform way both physical
and actual agent mobility, also in the context of
MANETs. However, LIME integrates only very limited
forms of reactivity: in fact, LIME does not reach the full
programmability required for context-dependent
coordination and does not promote in any case an
organizational perspective. A more recent proposals for
MANETs scenario, XMIDDLE [9], rely on shared
accesses to tree-like distributed data structures where a
limited form of programmability is defined only to
enforce consistency in disconnected operations over the
data structure.

Coming to event-based infrastructures, most of the
recent proposals in the area focus on large-scale
distributed applications with the main aim of providing
suitable distributed architecture for wide-scale event and
subscription dispatching. A notable example is the JEDI
system, described in [2], and where an extensive
discussion of other event-based architectures can be

found. However, the few proposals specifically focusing
on mobility aims only at enabling event dispatching in the
presence of mobility, rather than at defining
programming models enforcing locality and suitable for
mobility. In addition, to our knowledge, none of them
identify the need for programmability. In our approach,
we can exploit the programmability of the kernel to
implement, as a high-level service, any algorithm for
wide-area dispatching of events and subscriptions. A
different category of event-based middleware proposals
focus on content-based networking [14], with the aim of
providing a model of dispatching of event and
subscription relying on the content of events rather than
on the identities of the involved processes. Again, in our
approach, programmability can be exploited to
implement any needed context-based dispatching policy.

7. Conclusions and Future Work
The paper has introduced a conceptual organization-
oriented framework for the design of mobile agents
application in pervasive computing scenarios. On this
basis, it has described the architecture of an event-based
programmable architecture, based on the definition of a
minimal event-kernel, thus suitable for deployment also
in resource-constrained devices.

Our current research work has two objectives. On the
one hand, we are studying high-level coordination model,
to be provided in terms of special-purpose services
programmed into the event-based kernel, for the global
orchestration of the movements in a workgroup (e.g., in
a rescue team) [8]. On the other hand, we are
investigating the effectiveness of the proposed model in
ruling and controlling coordination activities in systems
with a massive number of agents/components [19].

Acknowledgments. Work partially supported by Nokia
Research Center Boston and by MIUR Project
“MUSIQUE”.

References
[1] G. Cabri, L. Leonardi, F. Zambonelli, “Engineering

Mobile Agent Applications via Context-Dependent
Coordination”, IEEE Transactions on Software
Engineering, 28(9), September 2002.

[2] G. Cugola, A. Fuggetta, E. De Nitto, “The JEDI
Event-based Infrastructure”, IEEE Transactions on
Software Engineering, 27(8), August 2001.

[3] E. Denti, A. Natali, A. Omicini, “On the Expressive
Power of a Language for Programmable
Coordination Media”, Proceedings of the 10th ACM
Symposium on Applied Computing, ACM, 1998.

[4] D. Estrin, D. Culler, K. Pister, G. Sukjatme,
“Connecting the Physical World with Pervasive
Networks”, IEEE Pervasive Computing, 1(1), Jan.
2002.

[5] T. Finin at al., “KQML as an Agent
Communication Language”, 3rd International
Conference on Information Knowledge and
Management”, November 1994.

[6] D. Gelernter, N.Carriero “Coordination Languages
and Their Significance”, Communication of the
ACM, Vol. 35, No. 2, pp. 96-107, February 1992.

[7] http://www.jini.org.
[8] M. Mamei, L. Leonardi, F. Zambonelli, “A

Physically Grounded Approach to Coordinate
Movements in a Team”, 1st International Workshop
on Mobile Teamwork, Vienna (A), July 2002.

[9] C. Mascolo, L. Capra, W. Emmerich, “An XML
based Middleware for Peer-to-Peer Computing”, In
Proc. of the International Conference of Peer-to-
Peer Computing, IEEE CS Press.

[10] N.H. Minsky, V. Ungureanu, “Law-Governed
Interaction: A Coordination & Control Mechanism
for Heterogeneous Distributed Systems”, ACM
Transactions on Software Engineering and
Methodology, 9(3), 2000.

[11] A. Omicini, F. Zambonelli, “Coordination for
Internet Application Development”, Autonomous
Agents and Multiagent Systems, 2(3), Sept. 1999.

[12] G.P. Picco, A.M. Murphy, G. -C. Roman, “LIME:
A Middleware for Logical and Physical Mobility”,
13th International Conference on Distributed
Computing Systems, Linda Meets Mobility”, July
2001.

[13] http://java.sun.com/products/personaljava
[14] A. Rowstron, P. Druschel, "Pastry: Scalable,

Decentralized Object Location and Routing for
Large-Scale Peer-to-Peer Systems", 18th ACM
Conference on Distributed Systems Platforms,
Heidelberg (D), Nov. 2001.

[15] D. Tennenhouse, “Proactive Computing”,
Communications of the ACM, 43(5), May 2000.

[16] J. White, “Mobile Agents”, in Software Agents, J.
Bradshaw (Ed.), AAAI Press, pp. 437-472, 1997.

[17] F. Zambonelli, N. R. Jennings, M. J. Wooldridge,
“Organizational Abstractions for the Analysis and
Design of Multi-agent Systems”, in Agent-Oriented
Software Engineering, LNCS No. 1947, 2001.

[18] F. Zambonelli, V. Parunak, “From Design to
Intentions: Sign of a Revolution”, 1st International
Joint Conference on Autonomous Agents and
Multi-agent Systems, Bologna (I), July 2002.

[19] F. Zambonelli, A. Roli, M. Mamei, “Dissipative
Cellular Automata As Minimalist Distributed
Systems: A Study On Emergent Behaviors”, 11th
Euromicro Conference on Parallel Distributed and
Network based Processing, Genoa (I), Feb 2003.

[20] G. Zavattaro, N. Busi, “Publish/Subscribe vs.
Shared Dataspace Coordination
Infrastructures”, 10th IEEE Workshops on Enabling
Technologies: Infrastructures for Collaborative
Enterprises, Boston (MA), June 2001.

