
Optimal number of nodes for computation in grid environments

Lorenzo Muttoni, Giuliano Casale, Federico Granata, Stefano Zanero
Politecnico di Milano

Dipartimento di Elettronica ed Informazione
Via Ponzio 34/5, 20133 Milano (Italy)

Tel: +39 (0)2 2399-3660; Fax: +39 (0)2 2399-3411
{muttoni, casale, granata, zanero}@elet.polimi.it

Abstract

In this paper we show that there exists an optimal num-
ber of nodes to be assigned to jobs for execution in grid
systems, which depends on the distributions of computation
and communication service times. We also show that the an-
alytical models proposed for parallel computers are not ac-
curate for grid systems. We therefore extend to grid envi-
ronment the definitions of speedup, efficiency and efficacy
that are usually given for parallel systems. We also adopt a
queueing network model with three different types of work-
load to prove that in every case an optimal number of nodes
exists and that the mean value of CPU and communication
service times is just a scale factor for this optimum.

1. Introduction

Computational grids are increasingly becoming reliable
and powerful platforms, which allow researchers to access
the resources they need for the execution of computation in-
tensive applications. Tapping fully into the potential of such
systems to achieve good performance is still an open and
challenging problem.

Towards this direction, the adoption of a well-designed
scheduler is a fundamental step for any grid infrastructure.
Many researchers in the last few years have proposed vari-
ous scheduling algorithms for grid systems [7], [26], [16],
[9], [24], [10]. Unfortunately the search for an efficient so-
lution is made more complex by the difficulty of evaluating
the performance of scheduling algorithms using large-scale
benchmarks with reproducible results [25].

In this paper we focus on a specific topic: the issues re-
lated with the identification of the optimal number of nodes
to involve in a computation in order to minimize the exe-
cution time of the application. This number depends on the
characteristics of the executed task in terms of computation
and communication requirements. Our aim is to show that

the assumption of different statistical distributions to model
execution and communication times leads to very different
results.

We suggest how an analytical model proposed and used
for evaluating the performance of parallel computers can be
extended, under some assumptions, to grid systems. We also
show how the variability of the characteristics of the nodes
(computational power, I/O performance, load, . . .) affects
the equations of the model. A similar issue was recently in-
vestigated in [6].

To analyze the effects of these variations, we simulated
the behavior of three different applications, each represen-
tative of a particular workload, by the means of a simpli-
fied queueing network model of a grid system. For each
application, we show the existence of an optimal number
of nodes, such that the allocation of additional resources
does not produce any valuable increase of the overall per-
formance. Moreover, we remark that an excessive fragmen-
tation of the computation usually yields additional commu-
nication costs that increases total execution time if not bal-
anced by an equal decrease of computation time.

We also show that the optimal number of nodes depends
on the assumed distribution of the computation and com-
munication times. This suggests that the results obtained
for parallel systems are not fit for a grid environment, since
the communication among nodes cannot be modeled any
more by an exponential distribution [22, 14]. Indeed, as
pointed out by [5], transfer times over the Internet are bet-
ter modeled by heavy-tail distributions. This suggests that a
deep understanding of the underlying distribution of Inter-
net traffic is required, in order to design and evaluate effi-
cient scheduling algorithms.

This paper is organized as follows: in section 2 we extend
to grid systems a workload characterization method pro-
posed for parallel system. The problems which arise while
adapting this method are discussed. In section 2.3 we intro-
duce a queueing network model for grid environment and
we describe the simplifications needed to actually simulate

it. In section 3 the simulation environment (3), the parame-
ters of the model (3.1), the results of the simulation (3.2)
and some validation tasks (3.3) are presented. Section 4
draws the conclusions of this paper and outlines some pos-
sible future researches in this field.

2. Workload characterization

Let us consider the total execution time of a job T ,
which is dependent on the number of nodes of the grid
that are scheduled to execute it, thus T = T (n). T can be
thought as the sum of two components: the total computa-
tion time Tcomp and the total time Tcomm spent on com-
munication and synchronizations between nodes: T (n) =
Tcomp(n) + Tcomm(n).

Looking at this model, we can say that in most cases
Tcomp(n) is a monotonically non-increasing function of n,
since the addition of a new node provides new computa-
tional resources, while Tcomm(n) is monotonically non-
decreasing because of the additional communication over-
head imposed by the new node. However, the shape of these
functions is strongly dependent on the kind of application
and in some cases can even fall out of these rules. What we
can usually see is that the application switches from com-
putation bound to communication bound as n increases.

This model extends a similar model presented for paral-
lel systems [15] with the only difference of using n (num-
ber of nodes) instead of p (number of processors on a ma-
chine).

Also, in parallel systems analysis the concept of speedup
S is commonly used, defined as the ratio of the execution
time of the job when executed on one processor to that when
executed on p processors: S(p) = T (1)/T (p).

Typical speedup curves for various types of applications
running on parallel machines are shown in Figure 1. In gen-
eral, the shape of the speedup curves is dependent on the
characteristics of the load generated by the execution of the
considered application [2].

2.1. Speedup, efficiency and efficacy in grid envi-
ronments

We now give a first definition of the speedup in a grid
environment as the gain in time of the job when executed
on a partition of n nodes instead than on a single machine:
S(n) = T (1)/T (n). The problem with this extension to the
grid environment is that S(n) is not as effective in describ-
ing grid workload as S(p) is for parallel workload, since
parallel machines are composed of a number of identical
CPUs, while on the grid there are heterogeneous machines.

In order to provide a better definition of the speedup,
we now introduce the concept of power units, defined in

1 16 32
Number of Processors

S
p

ee
d

u
p

Low Scalability App
Medium Scalability App
High Scalability App
Linear Scalability App

Figure 1. Representative speedup curves on
parallel machines for various applications

a generic manner as a measure of atomic units of compu-
tation power available in the grid. This opens up the large
problem of choosing the metric beneath this concept. It has
been demonstrated many times [20] that neither the CPU
clock frequency nor the megaflops are effective when com-
paring performance among different applications running
on different architectures. Any measure of computational
power, then, has to compare the effective performance of
different machines on the actual application under consid-
eration, taking into account its distinctive features. This is
not easy to do, but could be conceptually achieved in the
following way: for each node and each different workloads,
we could define a coefficient l that, working as a weight
for the CPU clock speed, can give a value of the computa-
tional power of that particular node, under that particular
workload, with respect to the node architecture (x86, Sparc,
PPC,...) taken as reference. Without any doubt this is not
very practical, but on this common scale we could calcu-
late the power units of each machine on the grid. So, let
PU be the aggregated computational power (expressed in
terms of power units) of a partition to which a single appli-
cation has been scheduled. It is clear that PU depends on
n somehow, but this relation changes with the type of the n
machines that are partitioned together: thus it is not, in gen-
eral, a single-valued function of n. Symbolically, let PU i

be the power of the i-th machine on the grid, if the parti-
tion is defined by the set A = { x | the x-th machine is on
the grid }, then PU =

∑
iεA PUi and n = |A|.

We can also observe that Tcomp is actually dependent on
PU , as opposed to Tcomm which is dependent only on n and
not on PU . So, T is a function of both n and PU and can be
expressed as T = T (n, PU) = Tcomp(PU) + Tcomm(n).
The shape of these two functions is still dependent on the
application we are considering: in other terms, this is still
the workload characterization of each job. However, if the

application workload is correctly characterized, it is valid
the relation Tcomp(PU) = k/PU , where k is a proportion-
ality constant.

We can now extend all the results on the speedup to the
grid environment by considering a different definition of the
speedup:

S(n, PU) =
T (1, 1)

T (n, PU)
=

Tcomp(1) + Tcomm(1)
Tcomp(PU) + Tcomm(n)

=

=
Tcomp(1)

Tcomp(PU) + Tcomm(n)

It is easy to see that for n = 1 this new definition is reduced
to the traditional one since Tcomm(1) = 0.

Besides this, a definition of efficiency is also usually
given for parallel systems: this is the ratio of the actual
speedup versus the maximum theoretical speedup [8] and
is given by the expression:

E(p) =
S(p)

p
=

T (1)
T (p)

· 1
p

=
Topt(p)
T (p)

where Topt(p) is optimal execution time for p processors,
while T (p) is the measured execution time. It is important
to remark that Topt(p) is T (1)/p in the best-case with lin-
ear speedup and with no memory constraints.

Also the definition of efficiency can be extended to grid
systems. Let Topt be the optimal execution time using a sin-
gle machine with the whole computation power of the grid
partition: Topt(1, PU) = Topt(PU). As said before, Topt is
in the best case Topt(1, PU) = T (1, 1)/PU (again, we are
ignoring here any effect given by the additional availabil-
ity of memory). We could say, thus, that:

E(n, PU) =
Topt(PU)
T (n, PU)

=
T (1, 1)

PU · T (n, PU)
=

S(n, PU)
PU

Following [11] we can also extend the definition of effi-
cacy, η(p), which is the ratio of the speedup versus the cost,
defined as C(p) = 1/E(p):

η(p) =
S(p)
C(p)

=
S(p)

1
E(p)

= E(p) · S(p)

This formula seamlessly translates to:

η(n, PU) = E(n, PU) · S(n, PU) =

=
S(n, PU)

PU
· S(n, PU) =

S(n, PU)2

PU

The interest for these extensions is clarified in the fol-
lowing subsection, in which we discuss if some of the pre-
vious results on speedup and efficacy for parallel machines
can be extended to grid systems.

2.2. Analytical derivation of optimal performance
metrics

It has been shown in [11] that for parallel systems max-
imizing η(p) (defined with the cost function noted above)
yields the maximum performance index power, which is the
ratio of the system throughput to the response time [13].

In parallel environments we can calculate an analytical
expression for this optimum as follows:

dη(p)
dp

=
d

dp

[
S(p)2

p

]
=

1
p

[
2S(p)

dS(p)
dp

− η(p)
]

So, there is a stationary point (a maximum) for

dη(p)
dp

= 0 ⇒ 2S(p)
dS(p)

dp
− η(p) = 0 ⇒

⇒ dS(p)
dp

=
1

2S(p)
· η(p) =

1
2

S(p)
p

This means that η(p) achieves a relative maximum when
the slope of S(p) is 1

2
S(p)

p (and thus positive). Let p be the
maximum of η(p). Assuming that S(p) is a convex func-
tion, it follows that if it has a maximum, it achieves it in
p > p. So, choosing the number of processor as the opti-
mum of S(p) or as that of η(p) leads to very different be-
haviors for the system: in the former, we optimize the re-
sponse time; in the latter, we choose to maximize the per-
formance index power (the ratio of throughput to response
time).

As said before, it is of interest to verify if similar results
hold for grid environments and if this information could be
integrated into the scheduler to improve the overall perfor-
mance of the system. Unfortunately, a number of questions
arise when trying to derive similar equations for our model.

The expressions of η(n, PU) and S(n, PU) do not let
us have simple results in terms of maxima and minima:
a first reason is that it is only an approximation that dif-
ferent subsets of the grid of equal computing power PU
and cardinality n yield the same speedup S. So, S(n, PU)
and η(n, PU) are not, in general, single-valued functions.
In addition, since the machines on the grid are not dedi-
cated, the resources are not necessarily available for grid
computations at all times; so, the available computational
power in the partition is actually a stochastic process. Since
the task of deriving an exact formulation for PU cannot be
done easily, we leave it as a future work and we simply
remark that probably, as can be seen from the experimen-
tal results reported in section 3, there should exist a cou-
ple (n, PU) which maximizes η(n, PU). Adding nodes to
the partition beyond this point yields benefits, expressed in
terms of S(n, PU), that are marginal with respect to the
cost and we could even reach a point where S(n, PU) ac-
tually decreases, since the decrease of Tcomp can be lower
than the corresponding increase of Tcomm.

We observe that in general finding the optimum for our
model leads to a difficult mixed, in the worst case even non-
linear, integer optimization problem.

In the following sections, we propose a model of a grid
computing environment and we use this model to show that
an optimal number of processors indeed exists, in good
analogy with what happens for parallel systems. We also
show by simulation how this optimal point depends on
workload and system characteristics.

2.3. The proposed model

For the sake of clarity we now briefly describe the com-
ponents and the features of the ideal grid system we are go-
ing to model.

A grid system is basically a set of N computing nodes,
interconnected by a network, which usually is the Internet.
Between these nodes a number of different jobs circulates,
dynamically allocated by a scheduler to each node.

The scheduler operates by knowing the static features of
each node on the grid and also by forecasting local load
conditions. The two most widely used grid resource infor-
mation systems are the Metacomputing Directory Service
(MDS) and the Network Weather Service (NWS). MDS is
a grid information management system that is used to col-
lect and publish system configuration, capability, and status
information. Examples of the information that can be re-
trieved from an MDS server include operating system, pro-
cessor type and speed, the number of available CPUs and
software availability as well as their installation locations.
NWS, instead, is a distributed monitoring system designed
to track and forecast resource conditions. Examples of the
information that can be retrieved from an NWS server in-
clude the fraction of CPU available to a newly created pro-
cess, the amount of currently unused memory and the band-
width with which data can be sent to remote hosts. As re-
marked before, each node of the grid can run also local ap-
plications, since it’s not necessary for it to be dedicated.

In order to model this system, we need some assump-
tions. We will model a single application, scheduled to run
on a subset of the grid (with n nodes, n � N).

The n tasks can obviously intercommunicate. A general
model should take into consideration that the communica-
tion phase can happen at any time. However, it has been
shown [23] that a wide family of parallel applications show
computation phases alternated to I/O phases. Similarly, a
lot of distributed computing applications have a comput-
ing phase, followed by either a communication phase (with
probability q) or by another computation phase. This loop
repeats a number of times: the probability that after a com-
putation phase the loop ends and the calculation is com-
plete is p. The diagram for this model is shown in Figure 2.

Fork Join

Communication burst sub-model

Computation burst sub-model

ForkJoin

1-
p

1-q

q

p

Node 1

Node n

Comm. 1

Comm. m

Scheduler

Figure 2. The proposed model for a grid com-
puting system

A similar model for parallel MIMD architectures is shown
in [4].

Since we do not model directly neither other applications
on the grid that may be scheduled on the same processors,
nor the computational load from local processes, we need
a way to express these effects. So, we introduced then the
concept of residual power on a node, that is simply its PU
at any given instant. For this reason, we will model the ser-
vice time of each node (i.e. its residual power) with an expo-
nential distribution, which has a characteristically high vari-
ance. If the nodes were dedicated processors with no exter-
nal load, a distribution with a lower variance (e.g. a uniform
distribution) should be used instead.

Let be m the number of intercommunications between
nodes, with m < n · (n − 1). We model the communica-
tion system by defining a factor of intercommunication f
which expresses the likelihood that one of the n processes
needs to communicate with another: m = f · [n · (n − 1)].
Each communication can be modeled as a pure delay with
no queue, following a heavy-tail distribution, for instance
a Pareto [5]. It is self-evident, however, that m delays be-
tween a fork and a join are exactly equivalent to the maxi-
mum of the m times of the delay, since, in any case, the join
must wait for the slowest job.

To further simplify the simulation, we suppose to have
an ideal scheduler that can allocate properly every task on
the node, which is both best-suited to execute it and with the
lowest possible load. Under this assumption, we can trans-
form the nodes in pure delays with no queue, and elimi-
nate the fork-and-join structure around the processor array,
as we did with the Pareto delays of communication: the to-
tal delay is the equivalent to the maximum of the n proces-
sor delays. The schema of the resulting queueing network is
shown in Figure 3.

1-
p

p
Scheduler

Pareto
delay

Exponential
delay

Figure 3. A simplified version of the model in
Figure 2

3. Simulating the model

In order to solve our model we used a simulator for queu-
ing networks, based on a discrete event paradigm applying
the well-known method of Monte Carlo simulations. The
experiment was repeated many times and the random num-
ber generator (Mersenne-Twister [17]) was re-initialized at
each step with a different seed. We estimated all measures
with a confidence interval of 95% and a precision of 5%.

We considered both the problems of correlation and ini-
tial transient: we solved the first problem using a spectral
method to estimate the confidence intervals of the mean
value of the desired performance measures[12].

The problem of the initial transient, instead, was ad-
dressed by removing just the most biased part of the data,
since removing all would only increase the variance. To do
so, we used the procedure presented in [21], that is based
on the Shruben Test, but it’s preceded by an heuristic algo-
rithm that selects the length of the sequence to be tested for
the steady state condition.

3.1. Definition of the model parameters

In order to define the parameters for the service cen-
ters of the model, we had to choose three applications rep-
resentative of typical workloads. Using the data presented
in [1, 18], we verified that three kernels of the NPB [19]
benchmark suite (Class A) fit the speedup curves of figure
1: MG (Multi Grid) as representative of low scalable appli-
cations, SP (Pentadiagonal Solver) for medium scalable and
LU (LU Matrix Factorization) for high scalable. We con-
sidered data presented in [1, 18] well suited to describe a
grid environment since the experiments involved heteroge-
neous machines with different CPUs and amounts of mem-
ory. These conditions are much more similar to grid envi-
ronments than a beowulf cluster or a supercomputer can be.

Since on the NPB web site there are no recent data for
clusters with a significant number of nodes (from 1 to at
least 32), the service time of CPU and communication sys-
tem for all the proposed test cases were estimated by fitting

n TCPU TComm T S(n)
1 1743,03 0,00 1743,03 1,00
2 871,51 22,35 893,86 1,95
4 435,76 34,08 469,83 3,71
8 217,88 41,05 258,93 6,73
16 108,94 46,72 155,66 11,20
32 54,47 53,62 108,09 16,13

Table 1. Mean values of the service time (in
seconds) and speedup for the high scalable
workload, LU

n TCPU TComm T S(n)
1 2534,80 0,00 2534,80 1,00
2 1267,40 80,90 1348,30 1,90
4 126,16 759,86 633,70 3,44
8 316,85 158,15 475,00 5,70

16 158,42 190,94 349,36 8,15
32 79,21 230,14 309,35 9,66

Table 2. Mean values of the service time (in
seconds) and speedup for the medium scal-
able workload, SP

the measured values reported in [18]. The difference be-
tween the measured and estimated values is less than 10%.
The NAS benchmarks report only the total execution time;
since for our model we need a value for both CPU time and
communication time, we estimated these values. According
to [3], TCPU is proportional to 1/n, where n is the number
of processors involved in the computation; clearly the com-
munication time, TComm, is the difference between the to-
tal execution time, T , and TCPU .

Tables 1, 2 and 3 report the mean values used in the sim-
ulation.

It has to be remarked that the TComm value is an over-
estimate for the bandwidth available in a grid system, since
it represents the communication time on a dedicated 100
Mbps Ethernet Switch. However, we decided to use this
value since we want to show that our conclusions are true
in the best case: it is straightforward that our results are true
also in less optimistic situations.

We considered the following statistical distribu-
tions: uniform, exponential and Pareto. We recall that a
Pareto distribution has a pdf given by

p(x) = αkαx−α−1 α, k > 0 x ≥ k

and, in general, it does not have all moments. For instance,
if α ≤ 2 the distribution has infinite variance; if α ≤ 1 also

n TCPU TComm T S(n)
1 74,97 0,00 74,97 1,00
2 37,49 5,36 42,84 1,75
4 18,74 8,68 27,42 2,73
8 9,37 11,46 20,83 3,60
16 4,69 14,25 18,93 3,96
32 2,34 16,40 18,74 4,00

Table 3. Mean values of the service time (in
seconds) and speedup for the low scalable
workload, MG

the mean is infinite. It is clear that not all the permutations
make sense. We chose to consider the following:

• SCPU ∼ uniform and SComm ∼ exponential: this
is the model of a traditional beowulf cluster with ho-
mogeneous dedicated nodes and a dedicated commu-
nication system (e.g. 100 Mbps switched Ethernet);

• SCPU ∼ uniform and SComm ∼ Pareto: this case
could model a distributed system in which the nodes
are still homogeneous and dedicated with Internet as
the interconnection system;

• SCPU ∼ exponential and SComm ∼ exponential:
this is the model of a system in which heterogeneous
nodes are shared among the parallel application and
local processes: this fact increases by a significant
amount the variability of CPU service time; the com-
munication system is a light load communication sys-
tem (e.g. 100 Mbps switched Ethernet);

• SCPU ∼ exponential and SComm ∼ Pareto: this
is the case of heterogeneous nodes with local load and
distributed over the Internet.

Since Internet file transfer times are distributed accord-
ing to a heavy-tailed distribution [5], we chose a Pareto dis-
tribution with α = 1.8 and mean µ; k can be calculated
from this two parameters as k = µ(α − 1)/α. The pa-
rameter α is independent from the specific size of the file.
α = 1.8 is not a pessimistic value: in general, as α goes
down to a threshold (α = 1.3), the commmunication per-
formances quickly degenerate. Our choice, instead, repre-
sents an Internet connection with low to medium load.

The computation time was modeled with a uniform dis-
tribution when we did not consider the effect of residual
power. The parameters are the mean and the variance, the
first is equal to the values in tables 1, 2, 3 and the second
was chosen equal to 5% of the mean, which was the mea-
sured value on our heterogeneous cluster. The choice of pa-
rameter λ of the exponential distribution is straightforward:
it’s equal to the reciprocal of the values in tables 1, 2, 3.

1 2 4 8 16 32
0

0.5

1

1.5

Number of Nodes

N
o

rm
al

iz
ed

 R
es

p
o

n
se

 T
im

e

S
CPU

~Uni; S
COMM

~Exp
S

CPU
~Uni; S

COMM
~Par

S
CPU

~Exp; S
COMM

~Exp
S

CPU
~Exp; S

COMM
~Par

IDEAL

Figure 4. Experimental results with a low
scalable application (MG)

The last parameter of our model that has to be de-
fined is p, the probability that a job leaves the system hav-
ing completed its computation and communication phases.
The parameter p is determined by the average num-
ber of “loops”, L, performed by the application.
Let L be the average number of loops of an applica-
tion. Then L = p + 2p(1 − p) + 3p(1 − p)2 + ... =
∞∑

k=1

kp(1 − p)k−1 = p
1−p

∞∑
k=1

k(1 − p)k = 1/p which im-

plies p = 1/L.
Since a parallel application typically alternates vari-
ous computation and communication phases, for each of
the considered applications we calculated the mean num-
ber of loops necessary for an execution (Class A) and
we set the probability p to this value. The mean ser-
vice times of both CPU and communication system were
scaled by the number of loops. For what concerns the
scheduler service time, it was overestimated in 1 second in-
cluding the scheduling computation time and the time to
query the grid information services like MDS and NWS.

3.2. Results and interpretation

Several simulations were executed for the three appli-
cations representative of each workload. For each of them
we varied two parameters: the CPU service time distribu-
tion and the communication service time distribution.

Figures 4, 5 and 6 present the simulation results for the
low scalable, medium scalable and high scalable applica-
tions respectively. In order to compare the results, the val-
ues were normalized to 1. It is important to remember that
all the distributions have the same mean.

It is clear from the plots that, depending on the choice
of the distributions, the optimal number of nodes changes
(4-8 for low scalable applications, 8-16 for medium scal-

1 2 4 8 16 32
0

0.5

1

1.5

Number of Nodes

N
o

rm
al

iz
ed

 R
es

p
o

n
se

 T
im

e

S
CPU

~Uni; S
COMM

~Exp
S

CPU
~Uni; S

COMM
~Par

S
CPU

~Exp; S
COMM

~Exp
S

CPU
~Exp; S

COMM
~Par

IDEAL

Figure 5. Experimental results with a medium
scalable application (SP)

1 2 4 8 16 32
0

0.5

1

1.5

Number of Nodes

N
o

rm
al

iz
ed

 R
es

p
o

n
se

 T
im

e

S
CPU

~Uni; S
COMM

~Exp
S

CPU
~Uni; S

COMM
~Par

S
CPU

~Exp; S
COMM

~Exp
S

CPU
~Exp; S

COMM
~Par

IDEAL

Figure 6. Experimental results with a high
scalable application (LU)

able applications and 16-32 for high scalable applications).
For a low number of nodes (about 8 nodes) the dominat-
ing parameter is the computation time distribution: the four
curves are virtually the same, since it has to be remembered
that they are simulated values with a confidence interval. In-
stead, as the number of nodes grows, the distribution of the
communication times affects the behavior of the system and
the total response time. This fact is clear in Figures 4 and
5 where for more than 16 nodes the curve uniform-Pareto
intersects and then overtakes the exponential-exponential
curve. It is reasonable to presume to find the same trend
in the high scalable application : this effect is only delayed
(to more than 32 nodes), due to the workload characteris-
tics.

3.3. Validation of the results

Real experimental data measured for grid performance
are not yet available [19]. For this reason it is not possi-
ble to compare the results of the simulations with real val-
ues. Under the hypothesis that in the system (i.e. the par-
tition of nodes involved in the computation) there is only
one grid application running, the variability of computa-
tional power of the nodes is due only to the local load and
it is possible to simplify our model in order to obtain an
analytical solution. Under this hypothesis, the loop repre-
senting the succession of computation and communication
phases can be eliminated: the service times of the CPU and
the communication system become the aggregated service
time, i.e. the total time used by the application for compu-
tation and communication. Moreover, as said before, the
queueing centers of the two fork/join blocks of the model
become delays and, for this reason, the service time of the
whole blocks are now the maximum of n random variables.
Let Y = max(X1, ..., Xn) be a random variable defined as
the maximum of n random variables and suppose that these
variables Xi represent the service times of the n nodes in-
volved in the computation. Assume also that X i are mutu-
ally independent and with the same distribution. It follows
that

fY (y) =
dFY (y)

dy
=

d[FX(x)]n

dx
= nfX(y)[FX(y)]n−1

is the probability density function of the maximum of n
equidistributed random variables. The mean value of Y is

E[Y] =

∞∫
−∞

n · x · fX(y) · [FX(y)]n−1dx

This value should be calculated for each distribution and for
each number of nodes.

The values calculated in this way are coherent with sim-
ulation results with an accuracy of 5% and a confidence in-
terval of 95%; the errors was less than 2%. These clearly
validate our simulation results.

4. Conclusions and future work

In this paper we showed that the workload characteriza-
tion of the applications running on a grid is fundamental to
predict the expected performance of the system. It was also
pointed out that the statistical distributions used to model
the computation and communication time heavily affect the
response time. For this reason scheduler designers have to
consider that, to guarantee good average performance, it is
crucial to consider both:

1. the characteristics of the workload of the applications
to be scheduled,

2. the statistical model of computation time on non dedi-
cated nodes and of Internet transfer time.

It is straightforward that applications involving no com-
munication or negligible amount of communication (e.g.
SETI@home) are a trivial case in which the response time
is always decreasing when n increases.

One of the possible developments of this work is to find
the number of nodes that actually maximizes the perfor-
mance power index. In order to accomplish that it will be
necessary to use the general model presented in Figure 3,
choose a scheduling algorithm and apply a workload com-
posed by a mix of different applications. Finally it could be
interesting to derive an analytical expression of the PU as a
function of the workload and the hardware and software ar-
chitectures of the grid nodes.

References

[1] G. Alfonsi and L. Muttoni. Performance evaluation of a Win-
dows NT based PC cluster for high performance computing.
Journal of System Architecture, to appear, 2003.

[2] M. Calzarossa and G. Serazzi. Workload characterization: A
survey. Proc. of the IEEE, 81(8):1136–1150, 1993.

[3] F. Cappello and D. Etiemble. MPI versus MPI+OpenMP
on IBM SP for the NAS benchmarks. In Proc. of the
2000 ACM/IEEE Conf. on Supercomputing (CDROM). IEEE
Computer Society Press, 2000.

[4] P. Cremonesi and C. Gennaro. Integrated performance mod-
els for SPMD applications and MIMD architectures. IEEE
Trans. on Parallel and Distributed Systems, 13(12):1320–
1332, 2002.

[5] M. E. Crovella and A. Bestavros. Self-similarity in World
Wide Web traffic: evidence and possible causes. IEEE /ACM
Trans. on Networking, 5(6):835–846, December 1997.

[6] J. Cuenca, D. Giménez, J. González, J. Dongarra, and
K. Roche. Automatic optimisation of parallel linear alge-
bra routines in systems with variable load.

[7] H. Dail, H. Casanova, and F. Berman. A modular schedul-
ing approach for grid application development environments.
Technical Report CS2002-0708, UCSD CSE, 2002. submit-
ted to Journal of Parallel and Distributed Computing.

[8] D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup ver-
sus efficiency in parallel systems. IEEE Trans. on Comput-
ers, 38(3):408–423, March 1989.

[9] C. Ernemann, V. Hamscher, U. Schwiegelshohn,
R. Yahyapour, and A. Streit. On advantages of grid com-
puting for parallel job scheduling. In Proc. of the 2nd
IEEE/ACM Int’l Symp. on Cluster Computing and the Grid
(CCGRID’02), May 2002.

[10] C. Ernemann, V. Hamscher, and R. Yahyapour. Economic
scheduling in grid computing. In Job Scheduling Strategies
for Parallel Processing, volume 2537 of LNCS.

[11] D. Ghosal, G. Serazzi, and S. K. Tripathi. The processor
working set and its use in scheduling multiprocessor sys-
tems. IEEE Trans. on Software Engineering, 17(5):443–453,
May 1991.

[12] P. Heidelberger and P. D. Welch. A spectral method for con-
fidence interval generation and run length control in simula-
tions. Communications of the ACM, 24(4):233–245, 1981.

[13] L. Kleinrock. Power and deterministic rules of thumb for
probabilistic problems in computer communications. In
Proc. of the Int’l Conference on Communications (ICC), vol-
ume 43, pages 1–10, Boston, MA, 1979. IEEE.

[14] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson.
On the Self-Similar Nature of Ethernet Traffic . IEEE/ACM
Trans. on Networking, 1994.

[15] M. R. Leuze, L. W. Dowdy, and K.-H. Park. Multiprogram-
ming a distributed-memory multiprocessor. Concurrency -
Practice and Experience, 1(1):19–34, 1989.

[16] C. Liu, L. Yang, I. Foster, and D. Angulo. Design and evalu-
ation of a resource selection framework for grid applications.
In Proc. of the 11th IEEE Symp. on High-Performance Dis-
tributed Computing, July 2002.

[17] M. Matsumoto and T. Nishimura. Mersenne Twister: a 623-
dimensionally equidistributed uniform pseudo-random num-
ber generator. ACM Trans. on Modeling and Computer Sim-
ulation (TOMACS), 8(1):3–30, 1998.

[18] L. Muttoni and P. Tonazzo. Cluster di PC in ambiente Win-
dows NT. Master’s thesis, Politecnico di Milano, Oct. 2000.

[19] NAS. NAS Parallel Benchmark.
http://www.nas.nasa.gov/Software/NPB.

[20] A. Patterson and J. Hennessy. Computer Organization and
Design - The Hardware/Software Interface. Morgan Kauf-
mann Publishers, 1998.

[21] K. Pawlikowski. Steady-state simulation of queueing pro-
cesses: survey of problems and solutions. ACM Computing
Surveys (CSUR), 22(2):123–170, 1990.

[22] V. Paxson and S. Floyd. Wide area traffic: the failure of Pois-
son modeling. IEEE /ACM Trans. on Networking, 3(3):226–
244, 1995.

[23] E. Rosti, G. Serazzi, E. Smirni, and M. S. Squillante. Models
of parallel applications with large computation and I/O re-
quirements. IEEE Trans. on Software Engineering, 28:286–
307, March 2002.

[24] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayap-
pan. Design and evaluation of a resource selection frame-
work for grid applications. In Proc. of the 11th IEEE Symp.
on High-Performance Distributed Computing, July 2002.

[25] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and U. Na-
gashima. Overview of a performance evaluation system
for global computing scheduling algorithms. In Proc. of
8th IEEE Int’l Symposium on High Performance Distributed
Computing, august 1999.

[26] S. Vadhiyar and J. Dongarra. A metascheduler for the grid.
In Proc. of the 11th IEEE Symp. on High-Performance Dis-
tributed Computing, July 2002.

