
SBASCO: Skeleton-based Scientific Components�

Manuel Dı́az, Bartolom´e Rubio, Enrique Soler and Jos´e M. Troya
Dpto. Lenguajes y Ciencias de la Computaci´on.

Málaga University
29071 Málaga, SPAIN

mdr@lcc.uma.es, tolo@lcc.uma.es, esc@lcc.uma.es, troya@lcc.uma.es

Abstract

SBASCO is a new programming environment for the de-
velopment of parallel and distributed high-performance sci-
entific applications. The approach integrates both skeleton-
based and component technologies. The main goal of the
proposal is to provide a high-level programmability system
for the efficient development of numerical applications with
performance portability on different platforms. This paper
presents the system programming model, which considers
two different views of a component interface: one from the
point of view of the application programmer and another
thought to be used by a configuration tool in order to es-
tablish efficient implementations. This can be achieved due
to the knowledge at the interface level of data distribution
and processor layout inside each component. The program-
ming model borrows from software skeletons a cost model
enhanced by a run-time analysis, which enables to automat-
ically establish a suitable degree of parallelism and replica-
tion of the internal structure of a component.

1. Introduction

A parallel programming environment (PE) can be under-
stood as a set of tools needed to design, code and debug par-
allel and/or distributed applications, according to a given
programming model or language. Traditionally, low-level
communication and synchronization libraries have been in-
tegrated into the base programming language. Well-known
examples are C/MPI, C++/ACE, HPF/MPI. Although very
efficient applications can be developed with this kind of sys-
tems, the provided low-level programming abstraction re-
quires a deep understanding of the communication and syn-
chronization mechanisms [7].

� This work was supported by the Spanish project MICYT TIC 2002-
04309-C02-02

Currently, a significant effort is being carried out on the
design of parallel and distributed PEs that could relieve the
programmer from most of the parallelism exploitation de-
tails, while preserving his/her ability to handle its qualita-
tive aspects. An important research area where this issue
is being explored is that of software skeletons. According
to Cole [6], a software skeleton is a known reusable paral-
lelism exploitation pattern. In [18] a methodology for struc-
tured development of parallel software is proposed. This
methodology is based on the establishment of a fixed set
of software skeletons or parallelism constructors, which are
the only way to express the parallel structure of the pro-
gram. This is justified by the experience, as real parallel pro-
grams rarely consist of random collections of processes in-
teracting in an unpredictable way, but these interactions are
usually well structured and fit a set of patterns. The low-
level aspects of parallelism exploitation are managed by ei-
ther the skeleton compilers or the runtime support. Starting
from this idea, some PEs were developed, such as P3L [1]
and SkIE [2]. The skeleton technology has some very in-
teresting features for high-performance computing in terms
of high-level programmability, compositionality, and per-
formance portability owing to the existence of a cost model.

On the other hand, component software technology, ini-
tially applied to the business world, is coming to the high-
performance parallel and distributed computing scene, af-
fecting the development of PEs. They get a feature that was
not formerly present, namely interoperability: on the one
hand, by making parallel application to look like standard
components, the parallel application code become usable
outside its development environment; on the other hand, by
allowing to import external components, the development
of new applications can be performed faster.

Component standards and implementations, such as
OMG CORBA [17], Microsoft DCOM [13], Sun Java
Beans and Enterprise Java Beans [10] [16], share seri-
ous shortcomings for parallel and distributed scientific ap-
plications, due to the lack of the abstraction needed by par-
allel and distributed programming and poor performance.



They also have trouble with the mechanism for encap-
sulating an existing scientific application (which might
itself be a parallel-distributed application) into a compo-
nent. A large effort is currently devoted to define a standard
component architecture for high-performance comput-
ing in the context of the Common Component Architecture
(CCA) Forum [15]. CORBA itself has been used as the ba-
sic component mechanism in different projects aimed at
providing advanced parallel PEs [14] [4].

Recently, some efforts are being carried out in or-
der to integrate both software skeletons and compo-
nent technologies to develop parallel and distributed PEs
in a unified approach. In this sense, ASSIST [22] is fo-
cused on high-level programmability and software pro-
ductivity for complex multidisciplinary applications,
including data-intensive and interactive software. Actu-
ally, ASSIST integrates features from two other differ-
ent worlds, coordination languages and design patterns.
These, together with software skeletons, provide suit-
able ways to overcome the main problem in developing
parallel and distributed applications with classical commu-
nication libraries, middleware or operating system mech-
anisms, which consists of writing all the low-level code
needed to set up an effective application.

SBASCO (Skeleton-BAsed Scientific COmponents) is a
proposal of a new PE oriented to the efficient development
of parallel and distributed numerical applications also inte-
grating both technologies: skeletons and components. This
unified approach provides interoperability, high-level pro-
grammability, compositionality, and performance portabil-
ity. The last term makes reference to the capability of pre-
dicting performance on different platforms for a concrete
component. In a first approach, three kinds of skeletons
have been considered for the development of components:
multi-block, pipe andfarm skeletons. They are an evolution
from those of DIP [9], a high-level skeleton-based coordi-
nation language to integrate task and data parallelism.

In SBASCO, there are two views of a component inter-
face. Theapplication view contains information related to
data types of component input/output. This view is used by
the programmer in order to develop his/her applications by
means of a composition language. Theconfiguration view
extends the application view with information about input
and output data distribution, processor layout and compo-
nent internal structure (in terms of skeleton composition
scheme).

A configuration tool uses the latter view to obtain
an efficient implementation of the application on paral-
lel/distributed platforms. The knowledge at the component
interface level of data distribution and processor layout al-
lows the system to obtain an efficient implementation of
the communication and synchronization among compo-
nents.

This approach has also been taken into account in other
systems, such as Pardis [14], where a CORBA-based ar-
chitecture for application-level parallel distributed compu-
tation is developed, in such a way that the ORB can transfer
distributed arguments directly between the corresponding
threads of client and server. Unlike SBASCO, Pardis is not
based on skeletons, so that it lacks the performance portabil-
ity feature provided by the cost model generally present at
a skeleton-based system. Moreover, the client-server model
of Pardis may not be the most suitable for the establishe-
ment of communication protocols in parallel and distributed
scientific applications [12].

On the other hand, in SBASCO the cost model associ-
ated to each skeleton is enhanced by a run-time analysis
by means of the configuration tool, which enables to au-
tomatically establish a suitable degree of parallelism and
replication of the internal structure of a component. This
is a contribution with respect to other environments such
as ASSIST, where its configuration tool requires the man-
ual establishment of these aspects [3]. Actually, although
it is also a skeleton-based system, it does not have a cost
model due to the generality of theparmod construct it is
based on. However, this generic construct allows ASSIST
to face complex multidisciplinary applications. In addition,
in the ASSIST model, there is no knowledge at the inter-
face level of data distribution and processor layout, and so,
it is required a major effort to optimize the run-time sup-
port.

In this paper we present the SBASCO programming
model, showing the different aspects concerning the skele-
tons used in the system to construct components, includ-
ing their associated cost models. The way the two views of
a component interface are established and used is also ex-
posed. By means of some examples, the expressiveness and
suitability of the programming model are shown.

The rest of the paper is structured as follows. Next sec-
tion describes the scientific components considered in our
approach. Section 3 explains the two different views of a
component interface. A general SBASCO program scheme
is shown in section 4. Finally, some conclusions and future
work are sketched in section 5.

2. Scientific Components

The internal structure of a scientific component can be
established by means of the utilization of the different skele-
tons defined in the SBASCO programming model. So, the
interaction among the different tasks integrating the com-
ponent is expressed in a high-level and declarative way, ac-
cording to static and predictable patterns. A skeleton defi-
nition is based on the concept ofdomain attribute, an evo-
lution of the domain type introduced in [8]. Basically, a do-



main consists of the Cartesian points establishing a region
and some interaction information such as region borders.

We have defined three skeletons:

� The multi-block skeleton is focused on the solution
of multi-block and domain decomposition-based prob-
lems, which conform an important kind of problems in
the high performance computing area.

� The farm skeleton improves a task throughput as dif-
ferent data sets can be computed in parallel on differ-
ent sets of processors.

� Problem solutions that have a communication pattern
based on array interchange and may take advantage
of integrating task and data parallelism, can be de-
fined and solved in an easy and clear way by using the
pipeline skeleton, which pipelines sequences of tasks
in a primitive way.

Besides that, components which internal structure does
not fit these skeletons are also considered. In this case, they
will be dealt as sequential or data parallel black boxes where
the only available information is related to input/output ar-
guments.

The following three sections outline the main character-
istics of these skeletons. The section 2.4 shows their associ-
ated cost model.

2.1. The MULTIBLOCK Skeleton

Domain decomposition methods are successfully being
used for the solution of linear and non-linear algebraic equa-
tions that arise upon the discretization of partial differential
equations (PDEs) [20]. Programming such applications is a
difficult task because we have to take into account many dif-
ferent aspects, such as: the physics of each domain; the dif-
ferent numerical methods applied; the conditions imposed
at the borders; the equations used to solve them; overlap-
ping or non-overlapping techniques; the geometry of the
problem, which may be complex and irregular and, finally,
the possible integration of task and data parallelism.

In order to express this kind of problems in an easy, el-
egant and declarative way, theMULTIBLOCK skeleton has
been defined. The following code shows the general scheme
of this skeleton:

MULTIBLOCK skeleton_name
task1(arguments) processor layout
task2(arguments) processor layout
.....
taskm(arguments) processor layout
WITH BORDERS
border definitions
END

(1,1)

u

(Nxu,Nyu)

(1,1)

(Nxv,Nyv)

v

(Nxu,Ny1)

(Nxu,Ny2)

Figure 1. Communication between two tasks

Tasks solve the different domains the problem has been
decomposed in. This way, a task array argument may have
theDOMAINxD attribute (where1 � x � 4). This means
that this array contains the data belonging to a problem do-
main. For example,

complex, DOMAIN2D :: u/1,1,Nxu,Nyu/

declares a two-dimensional arrayu that contains data for
the region of the plane that extends from the point(1,1)
to the point(Nxu,Nyu).

In general, the problem is solved iteratively, so that
for each iteration a communication of the different bor-
ders is needed. These borders are defined among the spec-
ified domains. For example, ifu andv are two domain-
attributed arrays, the expressionu(Nxu,Ny1,Nxu,Ny2)
<- v(2,1,2,Nyv) indicates that the zone ofu delim-
ited by points(Nxu,Ny1) and(Nxu,Ny2) will be up-
dated by the values belonging to the zone ofv delimited by
points(2,1) and(2,Nyv) (see Figure 1).

A task may be sequential or data parallel. In the latter
case, the data and task parallelism integration is achieved in
an elegant, simple and efficient way. Each task is solved by
a disjoint set of processors. In the example of Figure 1, the
task in charge of solving domainu is executed on a4 � 4

mesh of processors while the task for domainv, on an ar-
ray of 2 processors (denoted by dotted lines).

2.2. The FARM Skeleton

TheFARM skeleton replicates a task in order to improve
its throughput as different data sets can be computed in par-
allel on different sets of processors. The stream of input data
for the task is accepted by a special process called emitter
which schedules them to each replica. On the other hand, a
collector process collects the results from each replica and
merges them into the stream of output data from the task
(Figure 2).

This skeleton is specified as follows:

FARM skeleton_name (R) task(arguments)
processor layout



replica 1

e
replica 2

replica R

......

c

Figure 2. Structure of a farm with R replicas

where R establishes the number of replicas and proces-
sor layout indicates the number of processors where each
replica is going to be executed.

2.3. The PIPE Skeleton

The PIPE skeleton pipelines sequences of tasks. Fig-
ure 3 depicts the structure of the general n-stage pipeline
corresponding to thePIPE skeleton shown in the follow-
ing code:

PIPE skeleton_name
stage1
stage2
.....
stagen

END

Each stage in the pipeline consumes and produces a data
stream, except the first and the last stages that may only pro-
duce and consume, respectively. The data stream consists of
a number of elements. This number, i.e. the stream length,
may or may not be statically known. A stage of the pipeline
can be one of the following:

� A task call, which has a similar form to the task call
specification in theMULTIBLOCK skeleton.

� A pipeline call, i.e. the name of a nestedPIPE skele-
ton together with the arguments it needs.

� A FARM skeleton that is used to replicate a non-
scalable stage, which can be a task call or a pipeline
call.

The communication between two pipe stages is speci-
fied by using the same domain-attributed array as argument
in both stages, unlike in theMULTIBLOCK skeleton, where

stage
1

stage
2 . . . stage

n

Figure 3. Structure of the n-stage pipeline

border definitions are used. The stage where this array first
appears is considered the one that generates its data. If the
same array appears in several stages, it means that the in-
termediate stages, i.e. those different from the first and the
last, not only receive data from the previous stage but also
send them (usually after some computation) to the follow-
ing stage. The first/last stage where an array appears may
also receive/send the data if it is specified as input/output
component argument.

2.4. Cost Model

In this section, we discuss a possible cost model for
SBASCO skeletons described above. The cost of each
skeleton is an estimation of its execution time, which de-
pends on hardware architecture parameters, such as
processor and channel speed and the system number of pro-
cessors. Due to the fast evolution of hardware of both
processors and inter-processor communication sys-
tems, an accurate estimation is quite difficult. So, our
cost model is divided into two parts: the first one, follow-
ing other approaches such as [19], establishes an analytical
scheme where some parameters (as the number of pro-
cessors used for each task and the number of replicas in
a farm) are established by the second part, that is car-
ried out by means of a run-time analysis.

For the MULTIBLOCK skeleton, the execution time per
iteration is estimated as follows:

maxfTtig+ Tcf (1)

whereTti is the execution time fortaski, andTcf is the
time required to communicate the different borders estab-
lished in the skeleton. This communication time depends
on the number of borders, their size and the data distribu-
tion and processor layout related to each border.

As FARM and PIPE skeletons exploit parallelism for a
stream of independent data, we can define two different
costs: execution time and service time. Execution time is
the latency experimented to run a single stream item. Ser-
vice time is the average time taken to run one item in a long
stream. Formulae 2 and 3 show the execution time and the
service time for the FARM skeleton, respectively.

Tsch + Tce + Tr + Tcc (2)

maxfTsch + Tce + Tcc; Sr=Rg (3)

Tsch is the time required for the appropriate scheduling
and possible rearranging carried out by the emitter and col-
lector, respectively.Tce andTcc are the mean time needed to
send the data from the emitter to a replica and from a replica
to the collector, respectively.Tr is the mean time taken to



compute a stream item by a replica. If a good load balanc-
ing is ensured,R replicas with a service timeSr can com-
puteR items in timeSr, yielding a global service time of
Sr=R for a single item. Thus, the total service time of the
farm is given by the slowest betweenTsch + Tce + Tcc and
Sr=R.

Finally, formulae 4 and 5 establish the execution time
and the service time for the PIPE skeleton, respectively.

Ts1 + Tc1;2 + Ts2 + Tc2;3 + : : :+ Tsn (4)

maxfSsig (5)

In a PIPE, the execution time is the sum of the execution
times of each stage (Tsi) and the communication times be-
tween two stages (Tci;i+1). The service time is given by the
service time of the slowest stage (Ssi).

3. Component Interface Views

In our approach, a scientific component interface has two
different views. On the one hand, theapplication view is the
typical component interface that describes the component
as a black box. It contains information related to data types
of component input/output. This view is used by the pro-
grammer in order to develop his/her applications by means
of the composition language. On the other hand, thecon-
figuration view establishes information about input and out-
put data distribution and, if possible, processor layout and
component internal structure (in terms of skeleton composi-
tion scheme). A configuration tool uses this view to obtain
an efficient allocation of the different application compo-
nents on parallel/distributed platforms. The following sec-
tions describe both views, showing some examples in order
to clarify their establishment and utilization.

It must be noted that a sequential component has neither
internal structure nor data distribution and so, only its ap-
plication view has to be specified.

3.1. Application View

The application view of a component interface will be
used by a programmer together with the composition lan-
guage described in section 4 in order to design his/her ap-
plications.

The following code shows the general scheme of the ap-
plication view:

APPLICATION INTERFACE component_name
[STREAM,] type, direction,

[DOMAINxD] :: data
.....

END

The interface will use as many lines as necessary in or-
der to describe the component input/output. Each line es-
tablishes:

� type: data type.

� direction: IN, OUT, INOUT

� DOMAINxD: the optional domain attribute.

� data: the name of the component argument. In case of
an array declaration, its dimensionality and size are
also specified. The size can be a constant value, the
name of another argument, or it can be established
at composition time. In the latter case, for domain-
attributed arrays this establishment is made by means
of the domain, while the: notation is used otherwise.

� STREAM: a component argument may be declared as
a stream, which means that the component receives
and/or generates an ordered sequence, possibly of un-
limited length, of the described data.

As an example, let us consider a component that im-
plements the Fast Fourier Transform (FFT) for a stream
of two-dimensional arrays. The component receives the ar-
ray stream and it generates a stream of the FFT of each in-
put array. The array size is specified at composition time
by means of the domain attribute. The component applica-
tion view is the following:

APPLICATION INTERFACE fft_2d
STREAM, complex, INOUT, DOMAIN2D :: a

END

3.2. Configuration View

Basically, the configuration view of a component inter-
face is the application view described in the previous sec-
tion together with some useful information to achieve ef-
ficient implementations of target applications. This infor-
mation appears in the component argument declaration and
in the skeleton describing the component internal struc-
ture. The knowledge at the interface level of input/output
data distribution and processor layout belonging to a com-
ponent allows the configuration tool to obtain an efficient
implementation of the communication and synchronization
among components. This characteristic has been proved
in [9], where efficient implementations of applications that
integrated task parallelism among a collection of data par-
allel HPF tasks were achieved.

On the other hand, the processor layout and the (farm)
replication degree inside a component may be also config-
urable. In this case, an appropriate configuration will be de-
cided by the tool, attending to the skeleton cost models de-
scribed in section 2 enhanced by a run-time analysis.

The general scheme of the configuration view is the fol-
lowing:



CONFIGURATION INTERFACE component_name
[STREAM,] type, direction,

[DOMAINxD] :: data
DISTRIBUTE [direction]

data distribution
.....
[STRUCTURE

internal structure declarations
skeleton-based internal structure

END]
END

The data distribution types are the typical ones used in
data parallelism. When a data direction is declared asIN-
OUT, different distribution may be specified for each direc-
tion, as we will see in the example bellow.

The fft 2d component of the example described
above, can be structured as a pipeline of two stages
in order to increase its efficiency, as proved in differ-
ent works [11][5]. The first one performs independent
one-dimensional FFTs on the columns of the input ar-
rays. Then, the second stage carries out independent
one-dimensional FFTs on the rows of the resulting ar-
rays from the previous stage. Dotted lines in Figure 4 show
the array distributions needed for that scheme.

This mixed task and data parallelism scheme is ex-
pressed in the component interface configuration view as
follows:

CONFIGURATION INTERFACE fft_2d
STREAM, complex, INOUT, DOMAIN2D :: a
DISTRIBUTE IN a(*,BLOCK)
DISTRIBUTE OUT a(BLOCK,*)
STRUCTURE

PIPE FFT2D
cfft(a) ON PROCS(?P1)
rfft(a) ON PROCS(?P2)

END
END

END

In this example, only one domain-attributed array is
used in the pipe skeleton describing the component inter-
nal structure. The data distribution for the component input
is different(*,BLOCK) from that for the component out-

stream
input output

stream

Figure 4. Array distributions for 2-D FFT (4
processors per stage).

put(BLOCK,*). This information is important in order to
establish an efficient communication between a component
providing data andfft 2d and between this and a com-
ponent consuming resulting data. The notations?P1 and
?P2 indicate that the number of processors for both stages
is configurable.

4. SBASCO Program Scheme

The SBASCO composition language is used for both sci-
entific component and application construction. The ”build-
ing blocks” are the scientific components previously de-
scribed.

The language syntax for component composition is the
same used for skeleton definition and component inter-
face description established in previous sections. Actually,
for component construction, the composition scheme is the
same that the configuration view of a component. How-
ever, in case of application design, there are not input/output
arguments. In addition, no data distribution is declared at
the composition level, as this information will be obtained
from the configuration view of the different involved com-
ponents.

The general scheme of a program in SBASCO is the fol-
lowing:

PROGRAM program_name
declarations
STRUCTURE

skeleton-based internal structure
END

END

In order to illustrate the way the composition language is
used, a simple example already presented in literature [21]
and that represents the structure of a large class of image
and signal processing applications is shown. The kernel
application isfft-hist, where a stream of two-dimensional
complex matrices is processed sequentially by a pipeline
of three components. The first one,inpm, reads the ma-
trices from I/O, and forwards them to componentfft 2d,
which performs FFT of each matrix. Finally, matrices pro-
duced byfft 2d are sent to componenthist, which col-
lects and analyzes them, and writes the results to an output
file.

The problem solution using our composition language
is the following. Thefft 2d component was described in
the previous section, whileinpm andhist are sequential
components.

PROGRAM fft_hist
integer :: nrow=100, ncol=100
STREAM, complex,

DOMAIN2D :: a/1,1,nrow,ncol/
STRUCTURE



PIPE fft_hist_pipe
inpm(a) ON PROCS(1)
fft_2d(a) ON PROCS(?P)
hist(a) ON PROCS (1)

END
END

END

5. Conclusions and Future Work

The programming model of SBASCO, a new program-
ming environment for the development of parallel and dis-
tributed high-performance scientific applications, has been
presented. By means of the integration of skeleton-based
and component technologies, numerical applications can be
designed and built using scientific components, whose in-
ternal structure is provided in order to obtain efficient im-
plementations. The characteristics of the different skeletons
used in the approach have been shown, including their as-
sociated cost model. The way the two different views of a
component interface are specified and used was also pre-
sented. The expressiveness and suitability of the program-
ming model have been shown by means of some examples.

As future work, we are currently developing the config-
uration tool that uses the configuration view of a compo-
nent interface in order to establish efficient allocations of
application components. This can be achieved due to both
the knowledge at the interface level of data distribution and
processor layout inside each component, and the run-time
analysis of the cost model associated to the component in-
ternal structure. The latter enables to automatically estab-
lish a suitable degree of parallelism and replication inside
the component.

References

[1] Bacci, B., Danelutto, M., Pelagatti, S., Vanneschi, M., P3L:
A Structured High Level Programming Language and its
Structured Support,Concurrency: Practice and Experience,
7 (1995), 225–255.

[2] Bacci, B., Danelutto, M., Pelagatti, S., Vanneschi, M., SkIE:
A Heterogeneous Environment for HPC Applications,Par-
allel Computing, 25, 13-14 (1999), 1827–1852.

[3] Baraglia, R., Danelutto, M., Laforenza, D., Orlando, S.,
Palmerini, P., Pesciullesi, P., Perego, R., Vanneschi, M., As-
sistConf: a Grid configurantion tool for the ASSIST paral-
lel programming model, in ”Proceedings of 11th Euromicro
Conference on Parallel Distributed and Network based Pro-
cessing ”, pp. 193–200, IEEE, Genova, Italy, 2003.

[4] Beaugendre, P., Priol, T., Ren, C., ”Cobra: a CORBA-
compliant programming environment for high-performance
computing”, Technical Report PI 1141, INRIA, 1998.

[5] Ciarpaglini, S., Folchi, L., Orlando, S., Pelagatti, S., Perego,
R., Integrating Task and Data Parallelism with taskHPF,

in ”Proceedings of the International Conference on Paral-
lel and Distributed Processing Techniques and Applications
(PDPTA’2000)”, pp. 2485–2492, CSREA Press, Las Vegas,
Nevada, 2000.

[6] Cole, M., ”Algorithmic Skeletons: Structured Management
of Parallel Computation”, MIT Press, Cambridge, MA, 1989.

[7] D’Ambra, P., Danelutto, M., Serafino, D., Lapegna, M., Ad-
vances Environments for Parallel and Distributed Applica-
tions: a View of Current Status,Parallel Computing, 28, 12
(2002), 1637–1662.

[8] Dı́az, M., Rubio, B., Soler, E., Troya, J.M., A Border-based
Coordination Language for Integrating Task and Data Paral-
lelism, Journal of Parallel and Distributed Computing, 62,
(2002), 715–740, doi:101006/jpdc.2001.1814.

[9] Dı́az, M., Rubio, B., Soler, E., Troya, J.M., Domain Interac-
tion Patterns to Coordinate HPF Tasks,Parallel Computing,
Parallel Computing, 29, 7 (2003), 925–951.

[10] Englander, R., ”Developing Java Beans”,
O’Really&Associates, 1997.

[11] Foster, I., Kohr, D., Krishnaiyer, R., and Choudhary, A., A
library-based approach to task parallelism in a data-parallel
language,J. Parallel and Distrib. Comput., 45, 2 (1997),
148–158, doi:101006/jpdc.1997.1367.

[12] Gannon, D., Bramley, R., Stuckey, T., Villacis, J., Balasubra-
manian, J., Akman, E., Breg, F., diwan, S., Govindaraju, M.,
Developing Component Architectures for Distributed Scien-
tific Problem Solving,IEEE Computational Science and En-
gineering, 5, 2 (1998), 50–63.

[13] Horsmann, M., Kirtland, M., ”DCOM Architec-
ture” Microsoft White Paper, 1997. Available from
http://www.microsoft.com/com/wpaper.

[14] Keahey, K., Gannon, D., PARDIS: a CORBA-based architec-
ture for application-level parallel distributed computation, in
”Proceedings of Supercomputing’97”, 1997.

[15] The Common Component Architecture Forum, home page
http://www.cca-forum.org.

[16] Monson-Haefel, R., ”Enterprise Java Beans 3th edition”,
O’Really&Associates, 2001.

[17] Object Management Group, ”Common Object Request Bro-
ker Architecture”. CORBA page: http://www.corba.org.

[18] Pelagatti, S., ”Structured Development of Parallel Pro-
grams”, Taylor&Francis, London, 1997.

[19] Pelagatti, S., Task and Data Parallelism in P3L, in ”Pat-
terns and Skeletons for Parallel and Distributed Computing,
Rabhi, F.A. and Gorlatch, S. (Eds.)” Springer, London, UK,
2003.

[20] Smith, B., Bjørstard, P., and Gropp, W., ”Domain Decom-
position. Parallel Multilevel Methods for Elliptic P.D.E.’s”,
Cambridge University Press, 1996.

[21] Subhlok, J., Yang, B., A New Model for Integrated Nested
Task and Data Parallel Programming, in ”Proceedings of the
6th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP’97)” (Las Vegas, Nevada,
1997) 1–12.

[22] Vanneschi, M., The Programming Model of ASSIST, an En-
vironment for Parallel and Distributed Portable Applications,
Parallel Computing, 28, 12 (2002), 1709–1732.


