
A Comparison Study of the HLRC-DU Protocol versus a HLRC Hardware
Assisted Protocol

Salvador Petit, Julio Sahuquillo, and Ana Pont
Departamento de Informática de Sistemas y Computadores

Universidad Politécnica de Valencia, Cno. de Vera s/n 46071, Valencia (Spain)
{spetit, jsahuqui, apont}@disca.upv.es

Abstract

SVM systems are a cheaper and flexible way to
implement the shared memory programming paradigm.
Their huge flexibility is due to their software
implementation; however, this is also the main
responsible of their performance drawbacks with respect
to hardware systems.

In this paper we compare a pure software HLRC
protocol called the HLRC-DU, versus an improved
version of the HLRC protocol that uses hardware support
to reduce asynchronous communication. Performances of
both protocols are compared over a baseline HLRC
protocol. Results show that, by on the half of the
benchmarks, our protocol performs better than the
hardware approach, even more, in some cases our
protocol reaches a speedup higher than 22% with respect
to the baseline protocol.

Keywords—Shared Virtual Memory Systems, Memory
Consistency Models, Memory Consistency Protocols,
Asyncrhonous Communication.

1. Introduction

Li and Hudak introduced the SVM system
concept [1] and their implementation details [2].
Four main features define an SVM system: i) nodes
share a common virtual memory address space, by
using the virtual memory system provided by the
supporting OS; ii) the page is the sharing unit; iii)
the supporting software (OS, libraries, etc.) takes
charge of guaranteeing coherence maintenance of
the shared pages; and iv) the parallel workload is
independent of the interconnection network and the
hardware supporting it. These features make SVM
systems especially attractive because they allow the
use of shared memory code without modifications in
heterogeneous and decoupled networks.

SVM systems are usually composed by several
inexpensive nodes (single processors or SMP

systems) connected by a commodity network, which
makes these systems cheaper than other hardware
based alternatives. Since nodes are physically
independent this approach offers both good
flexibility when maintaining and upgrading the
processing nodes of the systems.

Although these advantages, SVM systems suffer
performance limitations due to their software
implementation as well as the parallel workload
behavior: critical section dilation [3] and sharing
pattern conversion [4]. By one hand, most current
parallel workloads have been optimized to run on
distributed hardware systems (e.g., SMP or
supercomputers). On the other hand, SVM systems
lack hardware support for a lot of tasks supported by
these hardware systems. Therefore, SVM systems
experience performance losses because they
implement these tasks by using software
asynchronous communication [5].

Some SVM incorporate hardware mechanisms to
mitigate performances losses due to asynchronous
communication. In this paper we propose a new pure
software SVM multiple -writer protocol which
achieves better performance than a protocol using
hardware mechanism to reduce asynchronous
communication.

The remainder of this paper is organized as
follows. Section 2 discusses the background
regarding workload studies aimed to SVM systems
and asynchronous communication. Section 3
explains the performance problems that current
SVM systems suffer. Section 4 discusses the
motivation of this work. Section 5 presents the
simulation environment as well as the baseline and
HLRC-DU protocols. Section 6 details step by step
the design process we followed till obtain a protocol
which achieves better performance that some recent
protocols proposed in the open literature. Finally,
section 7 presents some concluding remarks.

Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing (Euromicro-PDP’05)
1066-6192/05 $ 20.00 IEEE

2. Background

Previous research has explored the behavior of
parallel workloads running on SVM systems
[4][3][6]. Iftode et al. [4] established a workload
taxonomy based on sharing patterns and the
granularity of sharing. Jiang et al. [3] modified
source code based on the described axes to improve
the performance of SVM systems. Zhou et al. [6]
studied the behavior of workloads running on
several protocols and systems, establishing a number
of rules about the optimal granularity of sharing. In
their workload taxonomy, they also studied the
frequency of synchronization.

Recent research also has been addressed to reduce
the impact of asynchronous communication in SVM
systems, which is a key factor in improving their
performance and one of the most problematic points
in their design. Some mechanisms include hardware
support that partially, or totally, avoids this kind of
communication [7][5][8][9]. Others try to reduce
this communication or hide its latency using
software techniques [11][10][12].

Software techniques can avoid asynchronous data
requests by updating the correspondent data. The
Quarks system [12] uses a pure update protocol,
while other systems use a hybrid protocol, which
updates when certain conditions occur. The Brazos
system [10] uses multicast to update other nodes in
the copyset of the page if they have a data request
for the same page, as well as to update predicted
clients before they leave the barriers. Stets et al. [9]
measure the performance of a multicast protocol
based on a history record.

Hardware techniques can update data like
software techniques as well as serve data requests
automatically without processor intervention [7][5].
In [7], a hardware support that serves data requests
is proposed, but the processor is already interrupted
to perform protocol tasks. In [5] the NI processor of
the Myrinet is used to serve pages automatically.

3. Asynchronous Communication

Basically, in all asynchronous communication, a
client node initiates a request and a server node
services the request. For example, the client node
asynchronously communicates with the server node
to read a given page or to lock a given semaphore.
This communication involves a context switch in the
server node, which implies high service latencies

and wastes precious computing time in the server
[7].

In SVM systems, the asynchronous
communication that mainly impacts on performance
is produced by data requests. When a client node
tries to access an invalid page, it starts an
asynchronous communication with the server to
fetch the data. The server answers by submitting the
whole page.

Two main effects increase asynchronous
communication: critical section dilation and sharing
pattern conversion. These effects are strongly
related with the workload behaviour. Therefore, to
discuss them we need to introduce first three
workload characterization metrics: the frequency of
sharing, the granularity of sharing, and the sharing
pattern.

Frequency of Sharing: Coherence actions in
SVM systems are carried out at synchronization
points; therefore, the frequency of the
synchronization operations matches the frequency of
sharing. The frequency of sharing metric is
calculated as the average computation time between
synchronization events [6]. We assume there is fine-
grained synchronization (FGS) if the average
computation time is close to the average
synchronization time. Otherwise, the
synchronization is coarse-grained (CGS).

Granularity of Sharing: This characteristic
quantifies the mean amount of data transferred when
an update occurs. It is computed with regard to the
granularity of the system (i.e., the page size, which
is typically 4 or 8 Kbytes). The granularity of
sharing is classified as fine-grained (FG) when only
a few words (less than 30%) of the page are shared,
medium-grained (MG) when at least 30% of the
page is shared, and coarse-grained (CG) if more
than 60% of the page is shared. The granularity of
sharing can be further broken down depending on
the type of memory operation performed on the
shared data (i.e., granularity of reading and
granularity of writing). Both granularities are
commonly present in different sizes.

Sharing Pattern: During workload execution
data sharing follows a given pattern. This sharing
pattern can be stable throughout the workload
execution or can dynamically change. According to
the number of producers and consumers of data, the
sharing pattern for a given instance of data can be
classified in one of four categories: i) 1P-1C, there is
only one producer (P) and one consumer (C). This

Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing (Euromicro-PDP’05)
1066-6192/05 $ 20.00 IEEE

category includes the case known as migratory
sharing, where the consumer becomes the producer
of the same data in the future; ii) 1P-MC, there is
just one producer and multiple (M) consumers; iii)
MP-1C, there are multiple producers and only one
consumer; and iv) MP-MC, there are both multiple
producers and consumers. In addition, we consider
the patterns 0P-1C and 0P-MC, which refer to one
and multiple consumers of the first-loaded data,
respectively.

Now we are going discuss the critical section
dilation and sharing pattern conversion effects, from
the last three metrics point of view.

3.1. Critical Section Dilation

Hardware systems usually support FGS
synchronization and workloads are optimized to
minimize the communication to computation ratio.
In systems supporting this granularity of
synchronization, the cost of synchronization events
is small with respect to a SVM system, which allows
short critical sections to be frequently executed.
Critical sections are used to protect shared data or to
implement shared task queues.

The time that parallel workloads spend in critical
sections increases when running in SVM systems
because of two main reasons. By one hand, SVM
systems do not support FGS synchronization; thus,
the synchronization primitives such as locks or
barriers are mapped to a distributed set of software
queues. On the other hand, some SVM systems carry
out invalidations at synchronization points; thus,
increasing the probability that a page fault occurs
while executing the critical section. Both situations
introduce latency due to software message passing
and asynchronous communication with other nodes.
In addition, the software management of the SVM
protocol adds more latency.

The sum of the mentioned latencies implies that
the total time that workloads spend in the critical
sections is much higher in SVM systems than in
hardware systems. Since critical sections are
frequently executed, the contention increases, which
also results in lower performance. This effect is so
important than some sections of code, which
represent a very small percentage of the total
execution time in hardware systems, may become
performance bottlenecks in SVM systems.

3.2. Sharing Pattern Conversion

The execution of each parallel workload follows a
given pattern we will refer to as the inherent sharing
pattern. This pattern can be static or can change
dynamically throughout workload execution. Since
data instances are shared at a given granularity, this
granule size can be carefully optimized to map
efficiently onto specific hardware systems. We will
refer to this granularity as workload granularity ,
while we will refer to the sharing unit granularity
supported by the system as system granularity. In
general, the workload granule size is small (less than
64 bytes, FG) but it can change with the problem
size, while the granularity of the SVM system is
usually CG.

When the workload granularity is smaller than the
system granularity, it is probable that a new induced
sharing pattern appears. The chance of this new
pattern arise depends upon the characteristics of the
workload and is a function of the disparity between
granularity sizes. There are two main effects that can
produce sharing pattern conversion: false sharing
and fragmentation. Both can appear simultaneously.

False sharing appears when the write granularity
of the workload is smaller than the system
granularity. In this case, the producer only writes a
fraction of the whole sharing unit, so several
producers could write data to the same sharing unit.
Thus, the inherent sharing pattern with one producer
(1P) becomes an induced sharing pattern with
multiple producers (MP).

Fragmentation appears when the read granularity
of the workload is smaller than the system
granularity. In this case, the consumer only reads a
fraction of the whole sharing unit, so several
consumers could read data from the same sharing
unit. Thus, the inherent sharing pattern with one
consumer (1C) becomes an induced sharing pattern
with multiple consumers (MC).

4. Motivation

In a previous work [13], we performed a
characterization study of the discussed phenomena
on several parallel workloads. We concluded that i)
asynchronous communication occurs in bursts,
producing critical section dilation; ii) due to the
large granularity supported by SVM systems sharing
pattern transformation appears, considerably
increasing the amount of asynchronous page

Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing (Euromicro-PDP’05)
1066-6192/05 $ 20.00 IEEE

requests, which is one metric directly related with
performance losses. Therefore, one can deduce that
performance will improve by reducing such amount.

From this characterization study, we proposed the
HLRC Diff Update (HLRC-DU) protocol [14] ,
which is an improvement over the Home Lazy
Release Consistency (HLRC) protocol [15]. The
HLRC-DU protocol updates selectively because the
key to achieve good performance is to update data
without increasing excessively the network traffic.

In this work we will compare the HLRC-DU
protocol, which is a pure software protocol with a
hardware technique to avoid asynchronous
communication from the recent literature [5]. Next
sections will describe how our protocol works and
study the performance of it with respect to a baseline
and the hardware technique.

5. Simulation Environment

To check the impact on performance of write
updates we use the LIDE execution driven simulator
[16]. The simulator uses a modified version of the
GCC v2.6.3 compiler using the -O2 optimization
flag. Table 1 lists the problem size used for each
benchmark. Every benchmark was executed
considering 16 processes.

Table 1. Benchmark problem sizes
Benchmark Problem Size

Barnes 2K particles
FFT 256K points
LU 512x512 points

LU-CONT 512x512 points
Ocean 130x130 ocean
Radix 1M integers

Water-NSQ 512 molecules
Water SP 512 molecules

The modeled system consists of a single cluster
composed of 16 nodes connected through an
overclocked 1 Gb/s Ethernet network. The network
contention is also modeled. Each node contains a
single 1GHz processor.

The load in each node includes both the parallel
application plus the operating system overhead
introduced by the memory consistency model. Each
node has two-cache levels: a direct mapped 64KB
L1 cache and a direct mapped 1 MB L2 cache. The
latencies of both caches were assumed 1 and 8
cycles, respectively, while when both caches miss

(access to main memory) the latency is 20 cycles
long. When a page fault or a remote request occurs,
the operating system takes 100 ?sec to change the
context. Before returning to the parallel application,
the system checks if there is any request pending
from a remote processor. If so, the system attends
those requests, and each one takes 10 µsec.

In SVM systems, updates are performed using
diffs, as described in [17]. Diff creation and
application time grows linearly with the page size (4
cycles per word). As page size is assumed to be 4KB
and word size 4B, all protocols take 4096
nanoseconds in either creating or applying the diff.
This overhead is not present when copying a single
page because the model assumes that a DMA device
performs this task.

5.1. The Baseline HLRC Protocol

In the HLRC protocol, each page has associated a
home node that concentrates all the diffs. For this
purpose, when a node writes in a page it supplies the
diffs only to the home node. Once supplied, diffs are
removed from the writing node. The remaining
nodes invalidate the written pages when receive the
write notices associated to the diffs. When a node
has a page fault the OS asks the home node for an
updated page. Due to network delays, the needed
diffs may have not already arrived at the home node.
In this case, the request is queued until the diffs
arrive.

Figure 1 shows how modifications of the writer
node (node A) on given page arrive at the home node
of the page (node B) before the invalidated node
(node C) asks for an up-to-date copy from the home
node (node B).

NODE A

NODE B

NODE C

LOCK WRITE X UNLOCK

COMPUTE
DIFF

APPLY
DIFF

LOCK READ X

FETCH
PAGE P

WRITE
NOTICES

Figure 1. HLRC protocol example

Of course, for a given page, processes running in
the home node never have a page fault. Therefore if
the home is properly chosen (e.g., by profiling),
asynchronous communication could be reduced. In
addition, bandwidth consumption is also reduced
because writers only update the home. For this

Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing (Euromicro-PDP’05)
1066-6192/05 $ 20.00 IEEE

reason, HLRC protocols are the most used in SVM
system implementations.

In our implementation, the page homes are
selected by means of a module function of the most
significant bits of their page addresses. Each write
notice contains the identification of the writer
process, the timestamp of the write, and the page
address. Write notices are only sent to a given
process whether it acquires a semaphore or to all
processes when they reach a barrier. Once a process
releasing a semaphore or a barrie r sends the write
notices to the acquirer, it immediately sends to the
homes those diffs produced by its previous writes in
order to keep the homes updated.

As the page homes, each semaphore and barrier
has a home node selected by using a module
function. The semaphore home node queues the
acquire requests and remembers which was the last
node releasing the semaphore. This allows it to
forward those requests to the last releaser when
needed. Then, the releaser will directly send the
write notices to the acquirer node without crossing
the home.

Nodes that reach a barrier send the write notices
to the barrier home and get blocked. When the home
has received all the barrier requests it sends to all
pending processes the write notices it has received.
Finally, nodes invalidate the corresponding pages
and release the barrier. Barriers are implemented
without using the broadcast capabilities of Ethernet.

5.2. The HLRC-DU Protocol

In contrast with the baseline HLRC the HLRC-
DU protocol works as a hybrid protocol that decides
which diffs will be updated and which not. The
protocol submits those diffs to be updated attached
to the write notices. All this information is referred
as write updates. When diffs are not updated the
protocol proceeds as the baseline submitting only
write notices and invalidating the page. If the
updates are effective enough the protocol reduces
considerably the amount of page faults; i.e., it
reduces the amount of asynchronous page requests
to the homes.

Figure 2 shows a working example under the same
scenario than the baseline protocol. The example
shows how modifications of the writer (node A) on
given page arrive directly to node C when entering
the semaphore as well as to the home node (node B).
Later accesses to the page of node C (READ X) will

not result in a page fault so that it will not interrupt
to node C for an up-to-date page as occurred in the
baseline protocol.

APPLY
DIFF

NODE A

NODE B

NODE C

LOCK WRITE X U N L O C K

COMPUTE
DIFF

 LOCK READ X

WRITE
UPDATES

APPLY
DIFF

Figure 2. HLRC-DU protocol example

If during the acquisition of a semaphore, a
process receives both an update and invalidation for
the same page, the page becomes invalid. Therefore,
if the node requires the page it proceeds as the
baseline protocol. Thus, there is a need to update the
home (node B) as occurs in the baseline HLRC
protocol.

The main decision the protocol does is to select
which diffs should be updated. This is a critical
decision since update techniques introduces a
tradeoff between the benefits on performance that
involves the reduction of asynchronous
communication and the adverse effects due to the
increase of network utilization. We use a threshold
value that acts as a mechanism that can open or
close the traffic injected in the network due to write
updates. The HLRC-DU protocol detects diffs
smaller than this threshold size and updates them via
write updates. Note that as the threshold approaches
zero, the protocol works close to the baseline HLRC;
whereas under no threshold restrictions it behaves
like a pure update protocol.

6. Experimental Results

To reach as good performance as possible, the
HLRC-DU protocol should select to update those
diffs having two main restrictions, 1) their overall
volume (size times frequency) should be small
enough to fit in the network bandwidth without
introducing network congestion, 2) their update
should be useful enough to avoid part of the
subsequent asynchronous communication. This
section firstly analyzes the characteristics of the
running workload and how they accomplish both
restrictions before doing performance evaluation.

6.1. Protocol Sensitiveness

To check the first restriction we measure the diff

Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing (Euromicro-PDP’05)
1066-6192/05 $ 20.00 IEEE

size distribution per processor produced by the write
notice when they are sent. Looking at Table 2 one
can see that most diffs are relatively small since, on
the average, by about the 58% contains less than 128
words. Thus, in principle, one could think that this
value would be a good value; however, as showed
later this would saturate the network in many cases.
Note that what the algorithm pursues by using write
updates is to avoid page requests to the home node.
In this sense, Table 2 represents the maximum
number of requests that can be avoided.

Table 2. Distribution of diff sizes
BenchmarkDiff Size

Range
(Words) Barnes FFT LU LU-

CONT
Ocean Radix Water-

NSQ
Water-

SP

Cumulative
percentage

]0,1] 3366 1 0 0 12 7 0 3 2%

]1,2] 93 0 0 0 665 7 161 164 3%

]2,4] 14525 0 0 0 21 21 74 3 14%

]4,8] 839 0 32 32 1608 38 95 16 16%

]8,16] 746 0 0 0 1128 99 148 256 18%

]16,32] 1322 0 9215 0 1016 139 9065 2 33%

]32,64] 261 0 0 0 4570 10869 77 560 45%

]64,128] 647 0 5600 0 3345 7886 28 17 58%

]128,256] 303 0 23488 0 3689 2037 70 78 79%

]256,512] 40 0 3002 1585 2166 1373 36 980 86%

]512,1024] 0 3120 0 4912 8760 113 704 0 99%

The threshold value imposes a trade-off between
bus utilization and the reduction of asynchronous
communication. This means that both restrictions are
strongly dependent on the threshold value.
Therefore, to explore both restrictions, we use six
different threshold values ranging from 16 to 512
words, besides of no threshold restrictions.

Table 3. Percentage of saved home page
requests varying the threshold size

Threshold size (words)
Benchmark Requests

16 32 64 128 256 512 ?

Barnes 11539 70% 76% 76% 78% 85% 87% 87%

FFT 26616 0% 0% 0% 0% 0% 0% 30%

LU 39507 0% 0% 2% 14% 69% 82% 82%

LU-CONT 2880 0% 0% 0% 0% 0% 0% 24%

Ocean 35231 7% 7% 9% 16% 32% 45% 90%

Radix 22944 0% 0% 0% 6% 6% 6% 7%

Water-NSQ 4083 5% 40% 41% 41% 42% 44% 74%

Water-SP 7266 6% 6% 13% 13% 13% 72% 72%

Table 3 shows the results, that is, the percentage of
home page requests saved by write updates by

varying the threshold value. Results from the last
column are lower than 100% due to the init ial home
page requests.
In general, larger write updates avoid larger amount
of page requests among the benchmarks. This is
because larger diffs present less false sharing, i.e.
they leave fewer places in the page that could be
invalidated. Although larger diffs hugely reduce the
number of page requests, the network traffic will
increase too. Consequently, we must trade off this
reduction with network traffic (bus utilization) to
improve the system performance.

6.2. Performance Results

Figure 3 shows the network utilization in the
baseline HLRC model for each benchmark used
while varying the threshold size. While in most
cases, under a large threshold value, the injection of
write updates considerably increases the network
traffic; e.g., FFT, LU, LU-CONT, Ocean and Radix,
it is remarkable that no benchmark increases the
network traffic with respect to the baseline protocol
when using a small threshold value.

0.00

0.20

0.40

0.60

0.80

1.00

Water-SP Water-NSQ Radix Ocean LU-CONT LU FFT Barnes

S
pe

ed
up

HLRC 16 32 64 128 256 512 all

Figure 3. Network utilization varying the
threshold size

It is unclear from Figure 3 when the network
becomes a performance bottleneck. To check the
impact of network utilization on performance we
measure the speedup of the proposed protocol over
the baseline one, varying the threshold size.

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

16 32 64 128 256 512 all

Threshold size (bytes)

S
pe

ed
up

Barnes FFT LU LU-CONT Ocean Radix Water-NSQ Water-SP

Figure 4. Speedup relative to the baseline
protocol varying the threshold size

Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing (Euromicro-PDP’05)
1066-6192/05 $ 20.00 IEEE

Figure 4 shows the results. As one can see,
network becomes a bottleneck for utilization higher
than 50%. For example, Ocean with no threshold
restrictions, and Radix for threshold values higher
than 64B. Note that in the case of FFT, the network
already was a bottleneck for the baseline protocol.
For lower utilization values the speedup mainly
depends on the percentage of asynchronous
communication saved by the HLRC-DU protocol.

Experiments show that the threshold values that
achieve the best speedup depend on the workload
used but, in general, they range from 16 to 64 words.

6.3. Performance versus Hardware Techniques

In this section we compare the HLRC-DU
performance versus a relevant hardware approach
found in the literature [5].

In general, hardware techniques for improving
performances of HLRC protocols use specific
hardware, or dedicated processors, for avoiding
asynchronous communication at the node serving
the page. In this way, pages are served automatically
and the home node is uninterrupted. We modeled
this feature in the simulator by assuming that in
these kinds of systems the page is served in zero
time. Figure 5 presents the speedup of HLRC-DU
using different threshold sizes (16B, 32B, and 64B)
and the baseline protocol with the hardware that
automatically server pages without asynchronously
interrupting the processor.

0.80

0.90

1.00

1.10

1.20

1.30

Barnes FFT LU LU-CONT Ocean Radix Water-NSQ Water-SP

S
pe

ed
up

HLRC-DU 16 HLRC-DU 32 HLRC-DU 64 Hardware

Figure 5. Speedup of the HLRC-DU protocol
using a threshold size of 32 words relative to the

baseline protocol

Results show that specific hardware performs
better than HLRC-DU only in those cases where
HLRC-DU does not obtain benefits relative to the
baseline protocol. In all other cases, HLRC-DU
performs better than hardware. This occurs because
write updates save two interrupts, one at the node
accessing the page and the other at the home node.
In contrast, the hardware only saves one interrupt at

the home node. Although pages are served in zero
time, in four of the eight workloads considered
(Barnes, Ocean, Water-NSQ and Water-SP) the
additional saved interrupt improves the performance.

Note that the compared hardware and the HLRC-
DU protocol are compatible. In fact, they are
complementary approaches. Table 4 shows the
results of combining both approaches. In some
workloads like Barnes, Ocean and Water-SP, the
HLRC-DU protocol and hardware sum up
performances. In others, the advantage of just one
approach remains. There are only two workloads
where HLRC-DU impacts negatively together with
the hardware (FFT and LU-CONT), but in those two
cases the negative impact is less than 2%.

Table 4. Speedup relative to the baseline
protocol

Benchmark HLRC-DU 32 Hardware HLRC-DU 32 + Hardware

Barnes 1.24 1.02 1.25

FFT 1.00 1.03 1.02

LU 1.00 1.08 1.08

LU-CONT 1.00 1.06 1.04

Ocean 1.17 1.03 1.21

Radix 1.01 1.04 1.04

Water-NSQ 1.08 1.01 1.08

Water-SP 1.15 1.05 1.19

7. Conclusions

The overhead associated with the software
management of SVM systems introduces extra
latencies that can adversely impact on system
performance. One way to mitigate this overhead is to
design more efficient SVM consistency protocols.

A previous characterization work [13] induced us
to design the HLRC-DU protocol, which is based on
the HLRC protocol. In the proposed protocol the
writer node sends write updates instead of write
notices when it detects diffs smaller than an
experimental threshold, which is used to avoid the
network becomes a bottleneck as well as to reduce
asynchronous communication.

The percentage of home page requests our
protocol saves is really high, whatever the threshold
used. When considering the optimal threshold (32B
is the one which achieves the best performance),
results show that in some cases, like Barnes and

Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing (Euromicro-PDP’05)
1066-6192/05 $ 20.00 IEEE

Water-NSQ, this percentage surpasses the 40%. This
reduction is the reason why our protocol, in some
cases, reaches a speedup even higher than the 20%
over the HLRC baseline protocol.

We also compare the HLRC-DU to a hardware
approach found in the literature [5]. Results show
that, by on the half of the benchmarks, our protocol
performs better than the hardware approach. To
remark that performance results (speedup) are much
closer when the hardware reaches better
performance. We also modelled a variant of our
protocol including the hardware mechanism (since
they are complementary). We found that, on the
average, this variant performs by about 11% better
than the baseline protocol.

Acknowledgments

This work has been partially supported by the
Generalitat Valenciana under grant GV04B/487.

References

[1] K. Li and P. Hudak, “Memory Coherence in
Shared Virtual Memory Systems,” Proceedings of the 5th

Annual Symposium on Principles of Distributed
Computing , August 1986.
[2] K. Li, "IVY: A Shared Virtual Memory System
for Parallel Computing,” Proceedings of the 1988
International Conference on Parallel Processing, August
1988.
[3] D. Jiang, H. Shan, and J. P. Singh, “Application
Restructuring and Performance Portability across Shared
Virtual Memory and Hardware-Coherent
Multiprocessors,” Proceedings of the 6th Symposium on
Principles and Practice of Parallel Programming, June
1997.
[4] L. Iftode, J. P. Singh, and K. Li, “Understanding
Application Performance on Shared Virtual Memory,”
Proceedings of the 23rd Annual Symposium on Computer
Architecture, May 1996.
[5] A. Bilas, C. Liao, and J. P. Singh, “Using Network
Interface Support to Avoid Asynchronous Protocol
Processing in Shared Virtual Memory Systems,”
Proceedings of the 26th Annual International Symposium
on Computer Architecture, May 1999.
[6] Y. Zhou, L. Iftode, J. P. Singh, K. Li, B. R.
Toonen, L. Schoinas, M. D. Hill, and D. A. Wood,
“Relaxed Consistency and Coherence Granurality in DSM
Systems: A Performance Evaluation,” Proceedings of 6th

Symposium on Principles and Practice of Parallel
Programming, June 1997.
[7] R. Bianchini, L. I. Kontothanassis, R. Pinto, M.
De Maria, M. Abud, and C. L. Amorim, “Hiding

Communication Latency and Coherence Overhead in
Software DSMs,” Proceedings of the 7th International
Conference on Architectural Support for Programming
Languages and Operating Systems, October 1996.
[8] M. A. Blumrich, R. D. Alpert, A. Bilas, Y. Chen,
D. W. Clark, S. Damianakis, C. Dubnicki, E. W. Felten,
L. Iftode, K. Li, M. Martonosi, and R. A. Shillner,
“Design Choices in the SHRIMP System: An Empirical
Study,”' in Proceedings of the 25th Annual Symposium on
Computer Architecture, June 1998.
[9] R. Stets, S. Dwarkadas, L. Komothanassis, U.
Rencuzogullari, and M. L. Scott, “The Effect of Network
Total Order, Broadcast and Remote-Write Capability on
Network-Based Shared Memory Computing,”
Proceedings of the 6th Symposium on High-Performance
Computer Architecture, January 2000.
[10] E. Speight and J. Bennett, “Using Multicast and
Multithreading to Reduce Communication in Software
DSM Systems,” Proceedings of the 4th Symposium on
High-Performance Computer Architecture”, February
1998.
[11] A. Bilas and J. P. Singh, “The Effects of
Communication Parameters on End Performance of
Shared Virtual Memory Clusters,” Proceedings of the
Supercomputing '97 Conference, November 1997.
[12] A. M. Swanson, L. Stoller, and J.B. Carter,
“Making Distributed Shared Memory Simple, Yet
Efficient,” Proceedings of the 3rd International Workshop
on High-Level Parallel Programming Models and
Supportive Environments, March 1998.
[13] S. Petit, J. Sahuquillo, A. Pont, and D. Kaeli,
“Characterization the Dynamic Behavior of Workload
Execution in SVM Systems,” Proceedings of the 16th

Ssymposium on Computer Architecture and High
Performance Computing (SBAC-PAD), October 2004.
[14] S. Petit, J. Sahuquillo, and A. Pont, “About the
Sensitivity of the HLRC-DU Protocol to the Written Area
Size and Page Size,” Proceedings of the 2001 IEEE
International Symposium on Performance Analysis of
Systems and Software, November 2001.
[15] Y. Zhou, L. Iftode, and K. Li, “Performance
Evaluation of Two Home -Based Lazy Release
Consistency Protocols for Shared Virtual Memory
Systems,” Proceedings of the 2nd Symposium on
Operating Systems Design and Implementation , October
1996.
[16] S. Petit, J. A. Gil, J. Sahuquillo, and A. Pont,
LIDE: A Simulation Environment for Shared Virtual
Memory Systems, September 2000 issue of the ACM
Computer News, Vol. 28, No. 4.
[17] S. Petit, Efficient Home-Based Protocols for
Reducing Asynchronous Communication in Shared
Virtual Memory Systems, Ph.D. Thesis, Universidad
Politécnica de Valencia, February 2003.

Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing (Euromicro-PDP’05)
1066-6192/05 $ 20.00 IEEE

