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Abstract—We profile the impact of computation and
inter-processor communication on the energy consumption and
on the scaling of cortical simulations approaching the real-time
regime on distributed computing platforms. Also, the speed
and energy consumption of processor architectures typical of
standard HPC and embedded platforms are compared. We
demonstrate the importance of the design of low-latency inter-
connect for speed and energy consumption. The cost of cortical
simulations is quantified using the Joule per synaptic event
metric on both architectures. Reaching efficient real-time on
large scale cortical simulations is of increasing relevance for
both future bio-inspired artificial intelligence applications and
for understanding the cognitive functions of the brain, a scientific
quest that will require to embed large scale simulations into
highly complex virtual or real worlds. This work stands at the
crossroads between the WaveScalES experiment in the Human
Brain Project (HBP), which includes the objective of large scale
thalamo-cortical simulations of brain states and their transitions,
and the ExaNeSt and EuroExa projects, that investigate the de-
sign of an ARM-based, low-power High Performance Computing
(HPC) architecture with a dedicated interconnect scalable to
million of cores; simulation of deep sleep Slow Wave Activity
(SWA) and Asynchronous aWake (AW) regimes expressed by
thalamo-cortical models are among their benchmarks.

Index Terms—neural network; real-time; energy-to-solution;
interconnect; scaling; distributed computing;

I. INTRODUCTION

In modern HPC and embedded systems, the most constrain-

ing limits to scaling are those related to power draw and dissi-

pation. In HPC the electricity bill is the main contributor to the

total cost of running an application so that energy-efficiency is

becoming a fundamental requirement for large scale platforms,

and power is a critical design figure for any embedded system.

In this context, the feasibility of a computing system must

not only pass through performance assessment of processors

but also their performance-per-watt ratio. Several scientific

communities are exploring non-traditional many-core pro-

cessors architectures looking for a better tradeoff between

time-to-solution and energy-to-solution. Some architectures of

this kind are the Graphics Processing Unit (GPU) or those

like the MPSoC that come from the embedded world, where

ARM-based System-on-Chip designs dominate the market of

low-power and battery-powered devices such as tablets and

smartphones.

A number of research projects are active in trying to design

an actual HPC platform along this direction. The Mont-Blanc

project [1], [2], coordinated by the Barcelona Supercomput-

ing Center, has deployed two generations of HPC clusters

based on ARM processors, developing also the corresponding

ecosystem of HPC tools targeted to this architecture. Another

example is the EU-FP7 EuroServer [3] project, coordinated

by CEA, which aims to design and prototype technology,

architecture, and systems software for the next generation of

datacenter “microservers”, exploiting 64-bit ARM cores.

Unraveling how the brain works is a formidable scientific

and HPC undertaking. The human brain includes about 1015

synapses and 1011 neurons activated at a mean rate of several

Hz; as a digital simulation, it is a significant coding challenge

and has very exacting requirements for an adequate computing

architecture, even at the highest abstraction level.

Fast simulation of spiking neural network models plays

a dual role: (i) it contributes to the solution of a scientific

grand challenge — i.e. the comprehension of brain activity

— and, (ii) by including it into embedded systems, it can

enhance applications such as autonomous navigation, surveil-

lance and robotics, requiring real-time performances. More-

over, real-time simulation of neural networks will be essential

for understanding the mechanisms underlying the cognitive

functions of the brain. Indeed, brain simulations should be em-

bedded in complex environments, e.g. robotic platforms inter-

acting with the world in real-time, which makes requirements

on power consumption so much tighter. Therefore, cortical

simulations assume a driving role in shaping the architecture of

either specialized and general-purpose multi-core/many-core

systems to come, standing at the crossroads between embedded
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and HPC. See, for example [4], describing the TrueNorth

low-power specialized hardware architecture dedicated to em-

bedded applications, and [5] discussing the power consump-

tion of the SpiNNaker hardware architecture, based on em-

bedded multi-cores, dedicated to brain simulation. Worthy of

mention are also [6], [7] as examples of approaches based on

standard HPC platforms and general-purpose simulators.

The WaveScalES experiment in the Human Brain Project

(HBP) has the goal of matching experimental measures with

simulations of Slow Wave Activity (SWA) during deep sleep

and anaesthesia, the transition to other brain states, and the

interplay between cortical waves and memories with a focus

in developing dedicated, parallel/distributed technologies able

to overcome some of the limits faced by current attempts

at brain simulation. On a different line of research, the

ExaNeSt [8] and EuroExa projects investigates the design of an

ARM-based, low-power High Performance Computing (HPC)

architectures with dedicated interconnects scalable to million

of cores; thalamo-cortical simulations are among their moti-

vating benchmarks. At the joint between these projects stands

the Distributed and Plastic Spiking Neural Network (DPSNN)

simulation engine, developed by the APE Parallel/Distributed

Computing Laboratory at INFN; its C/C++ code is written

according to the MPI multi-process paradigm and is designed

to be easily portable to exotic architectures and to stress

either the available networking or computing resources. In

this paper, the simulator is used to compare the scaling in

time and energy consumption of an Intel-based HPC cluster

— equipped with high-performance InfiniBand connectivity

in addition to ordinary Ethernet — with that of different

ARM-based platforms, taken as representatives of the class of

new, low-power HPC systems like those pursued by ExaNeSt

and EuroExa.

In previous works, we demonstrated the scalability of our

simulation engine up to 1K processes [9] when applied to

realistic long range synaptic connectivity [10] and described

its internal architecture [11]. Within HBP the simulator has

been applied to the study of Slow Waves Activity [12], [13],

[14] in large scale cortical fields (up to 14 billion synapses),

a different HPC challenge in which real-time is not required

(Figure 1).

Originally, this simulation engine was developed as a

mini-application benchmark in the framework of the EU-

RETILE FP7 project [15].

The code organization and its compactness endow our

application with a high degree of tunability and with it the

chance of testing different areas of the executing platforms;

by varying the number of neurons per core in the simulated

neural net, the analysis can be moved from the performances

of the platform interconnect — with relatively few neurons,

each one projecting thousands of synapses — to the computing

and memory resources — with more neurons per core. Full

biological realism of a cortical tissue would require a number

of synapses per neuron in the range between 5000 and 10000.

Plus, the representation of large scale cortical systems needs

the projection of long range intra-areal sparse connectivity

described either by distance and layer dependent probability

rules or by explicit lists of connections. Inter-areal connectivity

is instead derived from the description of the sparse long-range

connectome. Both kind of synaptic adjacency matrices depend

on the spatial location of source and target neurons. If a large

scale neural network is distributed on a grid of processes using

a spatial mapping (i.e. a set of neighbouring neurons and

incoming synapses is assigned to each process), the transport

of spiking messages carried by the sparse synaptic adjacency

matrix does not typically require an all-to-all interconnection

between processes. Indeed, we demonstrated the advantages of

such a reduction of the adjacency matrix between processes for

the scaling of simulations of large networks with biologically

plausible intra-areal long-range connections in [9]. However,

the execution time for such large scale systems (Figure 1)

is still one or two order of magnitude slower than the real

time domain we focus on in this paper. If smaller number of

neurons are considered, as necessary to reduce the network

size to compatibility with real time execution, the sparsity

of the synaptic adjacency matrix would also be reduced and

the simulation would typically require all-to-all interprocess

communications. As we will see, the communication of spikes

among neurons is dominated by latency for network sizes

in the explored range on contemporary HPC and embedded

platforms. Therefore, we adopted in this paper a simple synap-

tic adjacency matrix: an homogeneous connection probability

that simplifies the analysis of the scaling behaviour. Finally,

we reduced the number of synapses per neuron to 1125, this

way further stressing intercommunication latency (moderate

size of payloads) and enabling the simulation of networks

with a few more neurons, with a potentially higher repre-

sentational power, but still needing the support of all-to-all

inter-process communication.

This paper addresses the measure of power consumption

and energy-to-solution for real-time cortical simulation and

profiles the relative scaling of computation, communication

Fig. 1. Strong scaling up to 1024 processes of large neural networks on an
IB-equipped Intel-based cluster.
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and synchronization. Specifically, we perform a number of

neural simulations to compare the performances of ARM-

and Intel-based multi-core platforms, with further focus on

the possible impact of the usage of off-the-shelf vs. custom

networking components.

II. MINI-APPLICATION BENCHMARKING TOOL

Evaluation of HPC hardware is a key element especially in

the first stages of a project — i.e. definition of specification and

design — and during the development and implementation.

Key components impacting performance should be identified

in the early stages of the development, but full applications are

too complex to be run on simulators and hardware prototypes.

In usual practice, hardware is tested with very simple kernels

and benchmarking tools which often reveal their inadequacy

as soon as they are compared with real applications running

on the final platform, showing a huge performance gap.

In the last years, a new category of compact, self-contained

proxies for real applications called mini-apps have appeared.

Although a full application is usually composed by a huge

amount of code, the overall behaviour is driven by a relatively

small subset of it. Mini-apps are composed by these core

operations providing a tool to study different subjects: (i)

analysis of the computing device — i.e. the node of the

system. (ii) evaluation of scaling capabilities, configuring the

mini-apps to run on different numbers of nodes, and (iii) study

of the memory usage and the effective throughput towards the

memory.

This effort is led by the Mantevo project [16], that pro-

vides application performance proxies since 2009. Further-

more, the main research computing centers provide sets of

mini-applications, adopted when procuring the systems, as in

the case of the NERSC-8/Trinity Benchmarks [17], used to

assess the performance of the Cray XC30 architecture, or the

Fiber Miniapp Suite [18], developed by RIKEN Advanced

Institute for Computational Science (RIKEN AICS) and the

Tokyo Institute of Technology.

In this work, we used DPSNN as a mini-application bench-

marking tool to simulate networks of point-like spiking neu-

rons of size compatible with reaching the real-time target.

The network is composed of 80% Leaky Integrate-and-Fire

neurons with Spike Frequency Adaptation (SFA), representing

cortical pyramidal excitatory neurons with fatigue and 20%

inhibitory neurons. SFA is switched off for inhibitory neu-

rons. This network is a down-scaling of a grid of cortical

columns [9] with realistic long range inter-columnar synaptic

connectivity [10]. This network is able to enter both an

asynchronous awake-like regime and a deep-sleep-like slow

wave activity, by tuning the values of SFA and stimulation.

Within the Wavescales experiment, a similar model with

SFA is extended to study the interactions between Slow

Waves Activity, memory association and synaptic homeostasis

in a thalamo-cortical model applied to the classification of

MNIST handwritten digits [19]. In this paper, synapses inject

instantaneous post-synaptic currents while synaptic plasticity

is disabled. The simulator implements a mixed event-driven

(synaptic and neural dynamics) and time-driven (exchange of

spiking messages) integration scheme. As discussed in the

previous section, the number of synapses projected by each

neuron is kept constant with an average value of 1125 synapses

per neuron, the synaptic adjacency matrix is homogenously

sparse, and neurons are evenly distributed among processes.

Each neuron receives also the stimulus of 400 “external”

synapses, each one delivering a Poissonian spike train at a rate

of about 3 Hz. After an initial transient, the neural network

enters an asynchronous irregular firing regime at a mean rate of

about 3.2 Hz in all simulations used for the scaling measures

of this paper.

Inter-process communication is necessary to deliver spikes

to target neurons residing on a process different from the

one hosting the source neuron. Spikes are delivered using the

AER representation (spiking neuron ID, emission time) [20];

in our case 12 byte per spike are required. The exchange of

spikes is implemented in the set-up of this paper by means of

synchronous MPI collectives. In a process, all spikes produced

by neurons and targeted to neurons belonging to another are

packed into a single message and delivered. The total number

of messages required for all-to-all communication increases

with the square of the number of processes on which the

simulation is run. This throttles the application into different

regimes, allowing to stress and test several elements of the

execution platform.

Here is a rundown of the application tasks that the simulator

performs and that allow to gauge the components of the

architecture under test:

• Computation: event-driven integration of all neural dy-

namics and synaptic current injection events, occurring in

a single network synchronization time step (set to 1 ms).

This includes a component dominated by memory access

to: 1- time delay queues of axonal spikes, 2- lists of

neuro-synaptic connections, 3- lists of synapses.

• Communication: transmission along the interconnect

system of the axonal spikes to the subset of processes

where target neurons exist (in the specific set-up of this

paper, all processes).

• Synchronization: synchronization barrier inserted to sim-

plify the weighting of computation and communication

components.

Fluctuations in computation load or communication con-

gestion cause idling cores and diminished parallelization. The

relative weight of computation increases with the number of

incoming synapses per process. On the other side, a higher

number of processes results in higher relative communication

costs.

III. SCALING TOWARDS REAL-TIME

In this domain, being “real-time”, under a “soft” assump-

tion, means a work point for the application such that the

total wall-clock time for running it is not greater than the

total simulated time, a condition necessary, but not sufficient,

for robotics applications and embedding HPC simulations

into virtual or real world environments, that would impose
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more stringent “hard” constraint to be satisfied at the scale

of each step, lasting at most a few tens of ms each. The

aim of this work is to identify the obstacles that impede

reaching the real-time target for large neural networks. We

performed a set of strong scaling tests on neural networks

of increasing size executed on both Intel and ARM-based

distributed platforms. For all network, we simulated 10 s

of neural activity. The first testbed we used, representative

of standard HPC systems, is made of Intel Xeon E5-2630

v2 processors (clocked at 2.60GHz) communicating over a

ConnectX-class InfiniBand interconnect. For what concern

the case of ARM-based distributed systems, representative of

the embedded system world, we used two different testbeds,

respectively based on Trenz and Jetson boards, detailed later

in this section.

Fig. 2. Strong scaling of different problem sizes on an IB-equipped
Intel-based platform. The red line is the threshold to be reached for soft
real-time execution.

Figure 2 shows the runtimes for three neural network sizes.

They should all be able to run in real-time if the scaling valid

for larger configurations applied (see Figure 1). Indeed, the

20480 neurons configuration reaches real-time (9.15 seconds

to simulates 10 seconds of activity). The network with 20480

neurons reached its maximum speed when distributed on

32 processes (Figure 2). Communication and synchronization

are the main obstacles against scaling (see Figure 3 and

Table I). For the 20480 neuron configuration they block a

further acceleration over 32 processes and start impeding the

scaling toward real-time of larger neural networks after a

threshold corresponding to a larger number of processes for the

configurations with 320K neurons (16× the 20480 network)

and 1280K neurons (64×).

In our simulation, the network communicates spikes every

simulated millisecond, the payload for each spike is 12 byte

and the average firing rate is about 3 Hz. As a consequence,

when the number of cores increases, the network produces a

very large number of small message packets. Therefore, this

test highlights a “latency” limitation of the interconnect. In

general, commercial off-the-shelf interconnects offer adequate

Fig. 3. DPSNN analysis of the Intel-based platform.

TABLE I
PROFILING OF EXECUTION COMPONENTS FOR DIFFERENT NETWORK

SIZES.

Neurons 20480N 320KN 1280KN
Synapses 2.30E+07 3.60E+08 1.44E+09
Procs 4 32 256 4 256 4 256
Wall-clock (s) 31.5 9.15 237 893 441 4341 561
Computation 97.6% 69.7% 6.6% 98.1% 21.7% 99.4% 50.0%
Communicat. 0.6% 22.7% 91.7% 0.1% 79.9% 0.1% 48.1%
Barrier 1.3% 7.5% 1.6% 1.8% 1.1% 0.5% 1.9%

throughput when moving large amounts of data but typically

trudge when the communication is latency-dominated. This

issue with communication — manifesting here with a number

of computing cores which is, by today’s standards, not large

— is similar to that encountered by the parallel cortical

simulator C2 [21] — targeting a scale in excess of that of

the cat cortex — on the Dawn Blue Gene/P supercomputer at

LLNL, with 147456 CPUs and 144 TB of main memory. The

capability to replicate the behaviour of a supercomputer with

a mini-app running on a limited number of 1U servers hints at

an interesting performance improvement at both larger scale

and smaller real-time configuration if identified obstacles to

scaling were removed.

Similar results are obtained performing the same test on

two ARM-based platforms; one is the ARM-based prototype

of the ExaNeSt project [22] and the other is a commercial

development board by NVIDIA equipped with an ARM SoC

(Jetson TX1).

The ExaNeSt prototype is composed by four nodes,

each node consisting of a TEBF0808 Trenz board

equipped with a Trenz TE0808 UltraSOM+ module.

The Trenz UltraSOM+ consists of a Xilinx Zynq UltraScale+

xczu9eg-ffvc900-1-e-es1 MPSoC and 2 Gbytes of DDR4

memory. The Zynq UltraScale+ MPSoC incorporates both a

processing system composed by quad-core ARM Cortex-A53

and the programmable logic — left unused in this test.

All four nodes are connected together through a 1 Gbps
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Ethernet-based network. Given that the available cores are

limited to 16, the scaling was pushed further up by using

the “heterogeneous” mode of MPI, which allows launching

an application as a single MPI instance that simultaneously

uses distinct executables for different architectures; in this

way, the simulation of the neural network is split between

partitions of processes executing on ARM and Intel cores.

A similar partitioning approach has been used also for the

platform based on Jetson boards. Intel cores are about ten

times faster than the ARMs on the Trenz boards and about 5

times faster than those on the Jetson (see execution times for

1, 2 and 4 processes in Figures 3, 5 and 6 in a scaling regime

dominated by computation). Therefore, the Intel “bath” of

processes executed on the Intel partition does not slow down

the execution of the ARM Trenz and Jetson boards embedded

in it.

The scaling of the system including the Trenz boards

up to 64 processes and the profiling of the computation,

communication and synchronization components are reported

in Figures 4 and 5.

Fig. 4. Strong scaling of a grid simulated on the Trenz platform equipped
with GbE interconnect.

The very same test was performed on two NVIDIA

Jetson TX1 boards connected by an Ethernet 1 Gbit/s

switch to emulate a dual-socket node, each equipped with

four ARM Cortex-A57@2 GHz cores plus four ARM

Cortex-A53@1.5 GHz cores in 20 nm CMOS technology in

big.LITTLE configuration; results are in Figure 6.

IV. ENERGY-TO-SOLUTION ANALYSIS

We estimate and compare the instantaneous power, total

energy consumption, execution time and energetic cost per

synaptic event of a spiking neural network simulator dis-

tributed on MPI processes running the DPSNN simulation

engine on both the low-power and standard HPC platforms.

The measures were performed with AC/DC current readings

by a high-precision GW Instek GDM-8351 digital multimeter

connected via USB to a PC: for the SoCs the DC current was

sampled downstream the power supply — rated as 19V DC

Fig. 5. DPSNN analysis of the Trenz platform.

Fig. 6. DPSNN analysis of the NVIDIA SoC platform.

output — as long as only one board was used; for two SoC

boards and for the Intel servers the AC current was sampled

between the power strip feeding the systems’ plugs and the

mains outlet — rated as 220V AC output. Such difference

should not affect significantly the results, given the closeness

to one of the cosϕ factor of the server power supply.

The traditional computing system — i.e. “server plat-

form” — is based on SuperMicro X8DTG-D 1U dual-socket

servers equipped with a mix of Xeon computing cores in

the 32 nm CMOS technology of the Westmere-family, i.e.
exa-core X5660@2.8 GHz and quad-core E5620@2.4 GHz.

This “server platform” is juxtaposed to a typical “embedded

platform”, which is composed by the two Jetson boards.

The “embedded platform” has 4 GB — 1 GB per core

— of LPDDR4 memory, with a memory bandwidth declared

as 25.6 GB/s; the “server platform” has a varying amount

of DDR3 memory (operating at 1333 MHz) per node —

amounting to 1.5÷4 GB per core — and a max declared

bandwidth of 32 GB/s.
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Fig. 7. Scaling of the total power consumption on x86: the same total
simulation workload is executed on a number of cores doubling from 1 to 64.
Temporal axis in logarithmic scale.

Fig. 8. Power consumption on ARM. Temporal axis in logarithmic scale.

Power and energy consumption were obtained simulating

10 s of activity of a network including ∼20480 neurons. The

results of a strong scaling test are reported in Figure 7 for

the “server platform” and in Figure 8 for the “embedded”

one. In both plots, the legend reports the number of processes

employed. Elapsed time is on the X-axis and the power draw

is on the Y-axis, the meter reading subtracted from a baseline

that is inferred by inspecting the plateau at application start,

where 5 s of artificial pause was inserted in the application.

Immediately after, a steep knee signals the real start of the

simulation and the final drop marks its end. Note that, for the

“embedded platform”, the plot is split in two ranges: measures

between one and four cores are performed on a single board;

while two boards are used for eight cores. For both measures

we used only one multimeter; attaching the probe at the output

of a single power supply - which is DC - was the approach

used for a single board. For two boards, we put the multimeter

upstream the two power supplies, that implies an AC measure.

The transformers’ draw causes a significantly higher baseline

while the readings are clearly noisier and more spread out.

These baselines stand at 564 W for the “server platform” —

from Figure 7 — and 49.2 W for the “embedded platform”

— upper range of Figure 8.

Energy-to-solution and execution times for the Intel based

platform, computed using data from Figure 7, are summarized

in Table II, while those from Figure 8 (ARM platform), are

in Table III.

TABLE II
DPSNN TIME, POWER AND ENERGY TO SOLUTION ON X86.

x86 cores Time (s) Power (W) Energy to solution (J)
1 150.9 48 7243.2

2 HT 121.8 53 6455.4
2 80.7 62 5003.4
4 37.4 92 3440.8
8 25.3 124 3137.2

16 26.1 166 4332.6
32 plus ETH 30.0 342 10260.0

32 plus IB 19.7 318 6264.6
64 plus ETH 69.3 531 36798.3

64 plus IB 32.1 501 16082.1

TABLE III
DPSNN TIME, POWER AND ENERGY TO SOLUTION ON ARM.

ARM cores Time (s) Power (W) Energy to solution (J)
1 636.8 2.2 1273.6
2 334.1 3.4 1135.9
4 185.0 6.0 1110.0
8 133.8 10 1338.0

A peculiar corner case is relative to the second row of

Table II, where one physical core was used as two Hyper-

Threaded (HT) cores to host two MPI processes; the scaling

is clearly not as good as using two real, physical cores (third

row), but a small gain is attained nonetheless using what is

fundamentally a single core, which, at least for DPSNN, does

not completely rule out using HyperThreading as often advised

for general HPC applications. The system hosted on a single

cluster node can use only up to 16 cores; as can be seen,

the minimum time-to-solution is reached with 32 cores, i.e.
2 nodes, and only when choosing a low-latency transport for

the inter-node communication such as InfiniBand — “IB” in

Table II and in Figure 7 — as opposed to Ethernet — marked

as “ETH”. Moreover, InfiniBand has another significant differ-

ence compared with Ethernet; it draws measurably less power

when in operation (∼30 W), as the two branches of the 32-core

and the 64-core cases show.

Another interesting result is that the absolute minimum for

energy-to-solution at 8 cores requires not even using remote

communication, which is comprehensible given the relatively

small size of the problem being simulated.

V. CONCLUSION

The computational cost of neural simulations is approxi-

mately proportional to the number of synaptic events. The
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total number of synaptic events is the product of the number

of neurons, the number of synapses per neuron, the average

firing rate and the total simulation time. The power efficiency

can therefore be estimated with a J per synaptic event metric

by dividing the total energy-to-solution by the total number

of synaptic events. As a reference, using this metric, the

energetic cost of Compass [23] — an optimized simulator for

the architecture of the TrueNorth ASIC-based platform [4]

—, run on an Intel Core i7 CPU 950@3.07 GHz (45 nm

CMOS process) with 4 cores and 8 threads, is 5.7 μJ/synaptic

event, also in that case excluding the base-line power con-

sumption. Table IV summarizes the power consumption of

DPSNN executed on ARM and Intel against that of the

Compass/TrueNorth simulator.

TABLE IV
COMPARISON OF ENERGETIC EFFICIENCIES.

DPSNN simulator Compass/TrueNorth sim.
ARM Intel Intel

1.1 (μJ / syn event) 3.4 (μJ / syn event) 5.7 (μJ / syn event)

The ARM architecture on Jetson requires about 3× less

energy than Intel, but is about 5× slower (see ARM 4-core

row in Table III 1110 J and 185 s vs 3440 J and 37.4 s, 4

Intel cores in Table II). Moreover, the way lower baseline for

ARM makes it an interesting candidate for clusters that can be

populated much more densely than what is actually possible

with Intel.

The profiling of the computation and communication com-

ponents reported in Figure 3, Figure 5 and Figure 6 demon-

strated the critical impact of interconnect on the scaling, limit-

ing the size of the network that can be simulated in real-time.

The last two rows of Table II prove the burden of interconnect

design on the energy-to-solution. Packets carrying spikes at

each simulation step are small, as quantified in Section III.

The observed effect on scaling is therefore latency-related, not

due to lack of bandwidth.

In conclusion, the design of low-latency, energy-efficient

interconnects supporting collective communications is of pri-

mary importance to enable a time- and energy-efficient ex-

change of neural spikes; this is expected to not only make

cortical simulations possible at a larger scale but also push

their use in embedded systems where it is often precluded by

tight real-time constraints and limited power budget.

AVAILABILITY OF CODE AND DATA

The source code of the DPSNN engine and the data that sup-

port the findings of this study are openly available in GitHub at

https://github.com/APE-group/201812RealTimeCortSim. The

DPSNN code also corresponds to the internal svn release 1163

of the APE group repository.
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