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Abstract—The wavefront pattern captures the unfolding of a
parallel computation in which data elements are laid out as a
logical multidimensional grid and the dependency graph favours
a diagonal sweep across the grid. In the emerging area of spectral
graph analysis, the computing often consists in a wavefront
running over a tiled matrix, involving expensive linear algebra
kernels. While these applications might benefit from parallel
heterogeneous platforms (multi-core with GPUs), programming
wavefront applications directly with high-performance linear
algebra libraries yields code that is complex to write and optimize
for the specific application. We advocate a methodology based
on two abstractions (linear algebra and parallel pattern-based
run-time), that allows to develop portable, self-configuring, and
easy-to-profile code on hybrid platforms.

Index Terms—linear algebra,GPU,wavefront,hybrid

I. INTRODUCTION

Graph signal processing is an emerging technique that can
be applied in a broad range of topics as, for instance, image
compression, epidemiological data, logistics and many other
fields [1]. In this paper we present a novel approach aimed to
address a number of computational challenges related to the
application of graph signals to image processing.

In order to identify and study such challenges without
restricting ourselves to a specific processing algorithm, we
propose a representative mock-up of a block-based image
processing procedure that can be mapped to a broad class
of similar problems, synthesized in Fig. 1: given an input
matrix A of size n ⇥ m that represents the original image
bound to be processed, it is logically partitioned into fixed-
size squared sub-matrices that will be hereafter referred to as
tiles or blocks. On each tile is applied a function (kernel) that
implements some linear algebra processing and returns the
transformed block. Depending on the details of the specific
algorithm, a pattern of data dependencies can possibly be
defined on the two-dimensional grid of tiles—which prevents
the developer to speed up the computation by implementing
a naive data parallel approach—and should be addressed with
specific techniques in order to exploit parallelism by means of
so-called wavefront patterns [2].

A fundamental parameter that characterises the depicted
class of algorithms is the tile size. It depends on the specific
application, but it is usually constrained by the computational
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Fig. 1. Representation of the use-case

cost: in fact the complexity of the linear algebra kernel usually
as O(n3). Parallel and heterogeneous platforms (CPU+GPU),
may be exploited to achieve high-performance, but a huge
effort in terms of coding and optimization is generally required
to deal with such platforms.

Starting from the depicted scenario, this paper proposes a
general methodology to address the low-effort development
of a broad class of applications and their deployment on
heterogeneous architectures. The contributions presented here
can be resumed in three main points:

1) an approach that integrates a number of techniques and
tools to accelerate wavefronts of linear algebra kernels on
heterogeneous architectures with very limited effort from
the developer;

2) a methodology based on the approach at point 1) that
allows to thoroughly characterise the performance of
heterogeneous platforms by investigating a large number
of parameters of both the problem itself, e.g. tile size,
and of the software, e.g. CPU/GPU work balance;

3) an efficient implementation of a graph signal processing
use-case.

The paper proceeds as follows. Sec. II presents the details
of the application that is considered as both use case and
benchmark for this work. Sec. III reviews the most significant
related work. Sec. IV describes the software components and
the methodologies exploited in order to achieve the goal of this
paper. Sec. V reports the results of the benchmarks employed
to validate the presented approach. Finally, Sec. VI concludes
and outlines some possible future works.
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II. RUNNING EXAMPLE

Signal processing based on graphs has recently emerged
as a promising approach in many areas of signal analysis and
representation [3]. This field of research builds around the idea
of modelling correlations among signal samples as undirected
graphs defined as G = {V, E ,W}, with vertexes V represent-
ing the signal samples, edges E representing the connections
between pairs of correlated samples, and W a symmetric
n ⇥ n weighted adjacency matrix, where n is the number of
signal samples. The above graph-based representation allows
to exploit spectral graph theory [4] to extend the root operator
of signal processing history: the Fourier transform. Namely,
the Generalised Fourier Transform (GFT) can be defined, that
is the spectral representation obtained using as basis functions
the eigenvectors of the graph Laplacian.

Depending on the analysis goals, several definitions of
the Laplacian matrix can be used, a popular one being the
combinatorial Laplacian L = D�W, where D is the degree
matrix (i.e., the diagonal matrix which i-th diagonal element di
is equal to the sum of the weights of all edges incident to node
i). GFT is based on the eigen decomposition of L, defined
as follows, where L is a symmetric positive semi-definitive
matrix, U is the matrix whose rows are the eigenvectors of
L, and ⇤ is the diagonal matrix whose diagonal elements are
the corresponding eigenvalues.

L = UT⇤U (1)

Given a vector x of samples, the GFT transform and its inverse
are defined as:

y = Ux x = UTy (2)

Analogously to the Fourier representation, small eigenvalues
corresponds to low frequencies and large ones correspond
to high frequencies. Many applications leverage on GFT
properties, ranging from interpolation of structured data [5]
to image compression [6]–[8]. The key to the success of GFT
is its ability to match the signal local structure and correlation,
that in turns enhances performance in the application domain,
e.g. image compression efficiency.

Unfortunately, the GFT advantages are paid in terms of
computational cost: given an input signal (e.g., a bitmap
image), an eigen decomposition needs to be computed for each
tile (e.g., a 2D block) in the signal. Since the GFT builds and
processes an adjacency matrix for each tile, the actual size of
each eigenvector problem is t

2⇥ t
2, where t is the size of the

tile.
In this work, we present a generic mock-up that performs

tile-based processing over a 2D signal (e.g., a bitmap image).
The mock-up is parametric with respect to the GFT calculation
that is performed on each tile of the input image. We will refer
hereafter to such calculation as the GFT kernel. Since this
work is not focused on the details of the image processing
algorithms, the GFT kernel implemented here involves only
the calculation of terms in Eq. 1 and 2, where the matrix L is

generated from the tile in an arbitrary way. Also the depen-
dencies between different tiles are introduced in an arbitrary
way, in order to evaluate their impact on the performance.

III. RELATED WORK

From a high-level perspective, this work addresses the
need to achieve a reasonable speedup on a large class of
problems while keeping the development effort to a minimum.
This goal is pursued by combining a set of existing tools,
recapped in Sec. IV-A1, in order to handle the two aspects
of the computation: the parallel coordination supporting task
parallelism and the linear algebra involved in the GFT ker-
nel. For the parallel coordination, we rely on FastFlow [9],
[10], but several tools could have been exploited, like Intel
TBB or OpenMP, that also provide interfaces to implement
task-parallel programs [11]. For linear algebra functions, we
rely on Dynamic-Armadillo [12], a customised version of
Armadillo1 (cf. IV-A1), but alternative approaches could rely
on, for instance, ArrayFire2, which would equally meet the
requirements for this work; in alternative, a low-level approach
could be considered, as, for instance, direct interacting with
Magma [13].

A symmetrical approach consists in working at a lower
level, that enables a whole different set of techniques to
speed up the execution of such workloads on GPUs [14].
However, this increases the development effort and, in most
cases, restricts the implementation to a specific application.
In our specific case, in order to benefit from a number
of optimizations (i.e. efficient host-device memory transfer
strategies) that would push the GPU performance slightly
further than what achieved with the presented approach, it
would be required an unaffordable development effort.

IV. APPROACH

In this section, we propose a methodology for accelerat-
ing wavefronts of linear algebra kernels on heterogeneous
platforms. We formulate the discussion around the example
introduced in Sec. II, but a generalisation to different linear
algebra kernels would be straightforward. We rely on the
Armadillo and FastFlow tools, recapped in Sec. IV-A1. We
proceed by decomposing the problem into two simpler sub-
problems. In Sec. IV-B, various heterogeneous deployments
(i.e., multicore CPUs with GPU accelerators and SOCs) are
considered over a simplified GFT kernel, in which inter-
tiles dependencies are dropped. In Sec. IV-C, the simplified
kernel is endowed with the logic for managing a wavefront
dependency pattern.

A. Tools
1) Armadillo: Armadillo is a C++ template library for

linear algebra with an high-level API, which is deliberately
similar to Matlab and provides functions to manipulate custom
objects representing vectors, matrices and tensors; it relies on
an underlying BLAS and LAPACK implementation (hereafter

1http://arma.sourceforge.net/
2https://arrayfire.com



we will refer to such implementation as the back-end) to
achieve high performance. The textbook-like API significantly
lowers the barrier to high performance numerical linear al-
gebra. For instance, the calculation of eigenvectors, required
by GFT, in LAPACK has a monstrous 11-parameter syntax,
whereas in Armadillo it is a simple 3-parameter function, to
be invoked as: eig_sym(e, E, A).

In this work, we exploit Dynamic-Armadillo [12], an ex-
tension that supports dynamic offloading of operations onto
multiple back-ends. Specifically, the OpenBLAS [15] CPU
back-end and the Magma [13] hybrid CPU/GPU back-end
will be used. In this context, this set-up makes it possible to
investigate how GPU usage within Magma affects the overall
performance and to model under which conditions the usage
of a hybrid CPU-GPU back-end is beneficial.

Notice that, by employing Armadillo, we can only execute
each linear algebra operation on the tiles independently, while
the parallelism is exploited at a higher level. This approach
is not ideal from a performance perspective if compared to a
purely batched approach, like Magma batched routines [16],
[17]. Nevertheless, two issues prevented us from exploiting
batched routines: 1) batched ssyevd is not currently provided
in Magma (v2.2); 2) it would be required a much more
complex dependency management and a deeper knowledge
of the complex LAPACK/Magma API, conflicting with the
low-effort approach we advocate.

2) FastFlow: FastFlow [10] is a C++ header-only library
for parallel programming. Among the different levels targeted
by the FastFlow API, in this work we consider the core
patterns interface, where programs are arbitrary compositions
of farm and pipeline patterns. In particular, we only use the
farm pattern.

In a FastFlow farm, an emitter is connected to n workers,
each attached to the farm collector. Arbitrary policies can be
implemented for distributing tokens to the workers. Since the
emitter acts as a centralization point, it is sufficient to embed
the policy into the emitter routine as sequential C++ code.
With other approaches, based for instances on concurrent data
structures (e.g., a shared work pool), it would be required
to encode the policy as a distributed protocol across the
concurrent executors. We exploit such feature in Sec. IV-C
for encoding the management of wavefront dependencies.

Although FastFlow has been proven to be as fast as similar
frameworks such as Intel TBB or OpenMP [18], we consider
the pure performance of the coordination mechanisms out of
the scope of this work. The performance on the presented
benchmark depends mostly on the implementation of the linear
algebra kernel.

B. Multi-Platform Tiled Matrix Processing

We consider the simplified problem of tiled matrix process-
ing. Given an input matrix A, it is logically partitioned into
fixed-size squared tiles and each tile is processed, indepen-
dently from each other, by a function f , that we call kernel.
We denote by ãi,j the input tile at position (i, j) in the two-

e

c1 cm g1 gn

C1 Cm Cm+1 G Cm+n

Fig. 2. general deployment setting; ci and gi represent the i-th CPU worker
and GPU worker, respectively, according the FastFlow numeration of farm
workers; Ci represents the i-th CPU context according to the OS numeration;
G represents the GPU.

dimensional tile space and we define the output matrix B such
that b̃i,j = f(ãi,j) for each tile.

In this work, the kernel function is a representative GFT
procedure (Sec. II), that we implemented in C++ on top of
the Armadillo library. As recapped in Sec. IV-A1, Armadillo
provides two variants for each function, namely CPU-only and
mixed CPU+GPU, yielding two variants of the GFT procedure.
Note that, for brevity, we will refer hereafter to the Magma
back-end as the GPU back-end.

1) Data-Parallel Setting: In Fig. 2 is depicted the general
setting for a data-parallel implementation of the depicted
problem, that consists in a FastFlow farm composed of m

CPU workers and n GPU workers. A CPU worker executes the
CPU-only GFT and it is attached to a CPU context, whereas
a GPU worker executes the mixed GFT and it is attached to
both a CPU context and the GPU.

We categorise the deployments into two classes, namely
homogeneous and heterogeneous. In a deployment of the
former class all the workers are either CPU or GPU workers
(i.e., n = 0 or m = 0), whereas in a deployment of the latter
class they can be mixed. The workers are fed by an emitter
node e, that performs the matrix partitioning and distributes
the input tiles to the workers with either a round-robin policy
or an on-demand policy that sends each tile to the first inactive
worker, for better load balancing..

2) Deployments: We consider two deployments for ex-
ploiting a multicore CPU, without taking into account any
additional accelerator (i.e., homogeneous CPU deployments
with n = 0). In particular we consider two different values
for m: either equal to the number of physical core or to the
number of CPU contexts (e.g., two per physical core in a
typical hyper-threaded platform). The former case is expected
to show a neat scalability up to m, as long as the working
set for each input tile fits in some level of cache. The latter
deployment should instead not provide any substantial gain
from multi-context processing, since the working sets for each
input tile are disjoint (i.e. no cooperative caching).

For a single GPU worker mapped to a single CPU core
and the GPU (n = 1), we observe a performance gain if
and only if the average time needed for processing a tile by
the GPU worker is smaller than the average time needed by
a CPU worker. Although with this accelerator offloading we
increase the amount of available parallelism—in particular in



case of highly parallel architectures such as GPUs—the above
condition is not always verified because of non-negligible
overheads induced by the underlying platform model.

Furthermore, considering a configuration in which the above
condition holds, although it sounds natural trying to increase
n—if a single GPU worker performs better than its CPU
counterpart, one expects to observe a performance gain by
replacing n CPU workers with n GPU ones—the GPU is
a shared resource, exploited concurrently by all the GPU
workers, thus limiting the scalability. Therefore, we consider
deployments in which n > 0 GPU workers are coupled with
m > 0 CPU workers in an heterogeneous farm.

C. Wavefront Processing
In Sec. IV-B we considered blocked matrix processing, in

which each output tile b̃i,j is function only of the corre-
sponding input tile ãi,j , namely b̃i,j = f (ãi,j). As outlined
in Sec. II, some GFT methods introduce a more complex
dependency relation: for instance, we consider the common
case with b̃i,j = f

⇣
ãi,j , b̃i�1,j , b̃i,j�1

⌘
. This definition breaks

the simple data-parallel nature and introduces a dependency
pattern—often referred as the wavefront pattern—in which
the computation for the output tile b̃i,j cannot start until the
computations for tiles b̃i�1,j and b̃i,j�1 have been completed.

We implemented the depicted wavefront dependency pattern
as an instance of the FastFlow construct farm-with-feedback,
that adds a feedback channel from each worker back to the
emitter node (cf. Fig. 2). When a tile b̃i�1,j is completed,
(a reference to) it is sent back to the emitter that updates its
internal state and possibly schedules for execution the tiles
b̃i+1,j and b̃i,j+1.

V. EXPERIMENTAL VALIDATION

In this section we provide some experimental evidence
of the conjectures about performance we formulated in the
previous sections.

We used two platforms for the reported experiments:
A) dual-socket Intel Xeon E5-2680 v3 running at 2.50GHz

with 24 cores (12 per socket), equipped with two Nvidia
Tesla K40 GPUs;

B) Nvidia Jetson TX1 equipped with a 4-core ARM A7 CPU
and an embedded Nvidia Maxwell GPU.

Each experiment has been repeated 4 times and the median
values are reported. Since all the measurements exhibited
negligible variance, we omitted error quantification.

A. Eigenvector computation
The ssyevd routine (i.e., Symmetric Eigenvectors) domi-

nates the GFT execution time, therefore we isolate the study
of its performance in order to better understand the global
performance of the application.

Fig. 3a compares the performance of ssyevd in its CPU
and GPU variants (respectively OpenBLAS and Magma in
the figure), with respect to the square size of the input matrix.
From the reported results, we infer that Magma forces using
the CPU variant for small (i.e., with square size up to 128)

input matrices. The GPU variant performs worse than the CPU
one until the square size reaches 2048, where the execution
times of the two variants collapse. Finally, for bigger input
matrices the GPU variant performs better.

From the above considerations, we expect to observe some
performance gain from the GPU only for sufficient tile sizes
(i.e. from

p
2048 ' 45). It is noteworthy that Fig. 3b show

exactly the same trend as figure Fig. 3a, while actually running
on a completely different architecture. This can be surprising
given that the CPU and the GPU share the same memory
and no transfer is paid when offloading a task to the GPU,
potentially improving the performance on small problem sizes.
Nevertheless, the Jetson TX1 graphic processor presents a
much slower (25.6 GB/s vs 288 GB/s) memory bandwidth
and a narrower (64-bit vs. 384-bit) memory bus that prevent
the GPU to fully benefit from the lack of memory transfer. In
this context we can indeed consider the TX1 as a scaled-down
Xeon node, where the balance of processing power between
the CPU and the GPU is, for the specific workload, roughly
the same.

B. Data-Parallel Tiled Matrix Processing
1) Multicore Deployments: In Sect. IV-B2 we stated that,

under certain conditions, we expect linear scalability with
respect to the number of CPU cores in a homogeneous
multicore deployment. The performance results in Figures 4a,
4b and 4c confirm the hypothesis above for tile sizes 8, 16,
and, to a slightly lesser degree, 32 respectively. Conversely, the
speedup is strongly sub-linear for tile size 64. The working set
in such case is large at least as the adjacency matrix computed
by GFT—namely 644 = 16.8M items, that is 67 MB with 32-
bit floating point items—thus even the most external level of
cache gets filled rapidly and the scalability is bound by the
CPU-memory bandwidth.

Also the behaviour with respect to multiple CPU contexts
confirms the hypotheses we formulated, thus we observe a very
limited performance gain if we deploy more CPU workers than
physical CPU cores. In such case it is important to schedule
tiles on demand (rather than round-robin) since some workers
are somehow penalised by the OS thread scheduling. It is
indeed possible to notice from the performance drop of the
rightmost point of Fig. 4a and 4e that, for tile size equal to
8, the on-demand scheduler heavily loads the core where the
emitter is allocated, actually reducing the number of available
cores by one.

2) GPU Deployments: The basic setting to understand the
performance of homogeneous GPU deployments as presented
in Sec. IV-B can be found in Figures 4 for each tile size at
the points with abscissa 1 on the GPU lines.

As we estimated in Sec. V-A, the case in Fig. 4b with
tile size 16 (that corresponds to input size 256 for ssyevd)
is a worst-case scenario for GPU deployments. The case in
Fig. 4c with tile size 32 (1024 for ssyevd) performs better,
but still slower than the CPU deployment, whereas the case
in Fig. 4d with tile size 64 performs better than the CPU. In
all the cases, we observe poor scalability when adding GPU
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Fig. 3. Computation of symmetric eigenvalues using ssyevd, comparison between OpenBLAS and Magma back-ends for different problem sizes.

workers: this is due to the GPU being a shared resource.
The behaviour exposed by platform B is the same, as also
expected from Sec. V-A. The poor scalability for tile size 64
also highlights a further issue: longer GPU bursts potentially
leave the CPU idle while the GPU works, inducing CPU
under-utilization that plays an important role in exploiting
heterogeneous deployments, as we discuss in the next section.

In Fig. 5 we present a simple performance model that
reflects the results of Sec. V-A.

If we compare the performance reported in Sec. V-A to the
presented model, it is possible to argue that, by raising the tile
size, the interactions between the CPU and GPU moves from
the situation in phase A to the situation in phase B. Moreover,
with larger and larger input sizes we would observe a new
condition (phase C in the figure), in which the computation is
performed mainly by the GPU. Such scenario takes advantage
of the high degree of GPU parallelism, resulting in a reduction
of the execution time. However, it both induces CPU under-
utilization and occupies GPU resources, thus reducing the
scalability in a configuration with multiple GPU workers, as
seen in Fig. 4d. To overcome this issue, it is possible to
introduce more CPU-only workers, with the benefit discussed
in the next section.

This model can help to understand the peculiar implemen-
tation of Magma: in fact it employs a task-based approach
that schedules a complex DAG of tasks either on the CPU
or on the GPU based on the specific workload. Operations
exhibiting true data dependencies among data, and global
synchronizations are typically executed on the CPU. When
calling a magma function, depending on the specific operation
and data size, only a fraction of the computation is actually
offloaded to the GPU. The fraction of the kernel performed on
the CPU is indeed not known in advance, but it is definitely
not negligible.

3) Heterogeneous Deployments: Considering what dis-
cussed above, it is expected that employing both the CPU
and the GPU together would improve the overall performance
due to: i) additional CPU workers that overcome the limited
scalability showed by the GPU alone and ii) possibility to

avoid the CPU underutilization by filling it with additional
CPU workers.

In order to quantify the impact of effect i), we performed the
test presented in Fig. 6 with mixed CPU and GPU workers: in
particular it is possible to identify exactly where the number
of GPU workers starts to saturate the GPU queue and the
subsequent latency starts to impact the performance. The
resulting plot shows how adding more than 12 GPU workers
negatively affects the performance.

Effect ii) has been taken into account by employing addi-
tional CPU workers with respect to the optimal point of Fig. 6.
The best result has been recorded with 20 CPU workers and
12 GPU workers, with a speedup of 18.86.

Also the performance measured for heterogeneous deploy-
ments can be explained by the model in Fig. 5. In particular.,
the model depicts the relative time spent by Magma running
on the CPU and the GPU with respect to a CPU-only approach
performing the same operation.

The performance analysis carried out on heterogeneous
architectures represents, in the authors’ view, the most interest-
ing result of this work beside the application itself. In fact, the
complex behaviour of a black-box, third-party code is inferred
from a simple benchmarking set-up.

C. Wavefront

In order to evaluate the impact of wavefront dependencies
(cf. Sec. IV-C), we consider the deployments leading the best
execution times for the data-parallel GFT variant, for each tile
size. As reported in Table I, the impact of dependencies grows
with the tile size.

In general, wavefront patterns induce some transient phases
in which only a limited set of tiles are ready to be processed.
Within a transient phase, the available parallelism is limited
and the execution exhibits poor scalability, therefore the impact
of the dependencies depends on how much time is spent in
such transient phases. The pattern we consider in this work
(i.e., top and left dependencies) induces such behaviour only
during initial and final phases. Since only a fraction of the
processed tiles are processed within such phases, the impact
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(b) OpenBLAS and Magma, tile size = 16.

 0

 5

 10

 15

 20

 25

 30

 0  5  1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

S
p

e
e

d
u

p

Number of Workers

CPU - ondemand
GPU - ondemand
CPU - round robin

GPU - round robin
Ideal

(c) OpenBLAS and Magma, tile size = 32.
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(d) OpenBLAS and Magma, tile size = 64. As expected from
Fig. 3a, the GPU provides super-linear speedup for up to 8
workers.
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(e) OpenBLAS only, tile size = 8.
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(f) OpenBLAS and Magma, tile size = 16.
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(g) OpenBLAS and Magma, tile size = 32.

Fig. 4. Speedup for purely data-parallel version. Figs. 4a to 4d, 6 are run on 2⇥ 12 core Xeon E5-2680 v3 @ 2.50GHz + Nvidia Tesla K40, Figs. 4e to 4g
are run on SOC with 4 64-bit ARM A57 CPUs + 256-core CUDA Maxwell. GPU deployment not shown in Fig. 4a, 4e since Magma reverts to the CPU for
small matrices.
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Fig. 5. Schematic representation of a Magma routine execution with GPU offloading. Three different load balancing scenarios that can be related to different
problem sizes.

TABLE I
TIMING AND SPEEDUP FIGURES FOR OPTIMAL WAVEFRONT DEPLOYMENT. ORIGINAL IMAGE SIZE: 1024⇥ 1024. 2⇥ 12 CORE XEON E5-2680 V3 @

2.50GHZ + NVIDIA TESLA K40.

Tile size Sequential time Best time Speedup Optimal deployment

8 14.99 0.75 19.99 24 CPU workers, round-robin
16 50.1 2.28 21.97 24 CPU workers, round-robin
32 255.7 17.70 14.44 24 CPU workers, round-robin
64 2550.4 304.7 8.37 15 CPU + 9 GPU workers, on-demand
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Fig. 6. Mixed CPU/GPU deployment: 24 total workers, variable CPU/GPU
share from (24, 0) to (0, 24). 12 core Xeon E5-2680 v3 @ 2.50GHz + Nvidia
Tesla K40.

of dependencies and the total number of processed tiles result
to be inversely proportional.

The above considerations are confirmed by comparing the
experimental results in Table I with the performance of the
data-parallel variant in Fig. 4. For small tiles (i.e., size 8 and
16), the maximum speedup is not far from the data-parallel
case, whereas for larger tiles (i.e., size 32 and 64) the transient
phases become non negligible. It should be noted that, for a
tile size of 64, a sample image of size 1024 ⇥ 1024 actually
limits the maximum wavefront size to 16 (i.e., the number
of tiles laying on the longest matrix diagonal), that represents
the total scalable parallelism available and hence lays an upper
bound to the speedup.

VI. CONCLUSION

In this work, we proposed an approach for developing,
analysing, and predicting the performance of applications
involving both wavefront parallelism and black-box linear
algebra kernels, and their deployment onto heterogeneous
platforms. As running example, we developed and evaluated an

application for signal processing in terms of General Fourier
Transform (GFT).

In particular, we demonstrated how the usage of high-level
tools, for both the linear algebra and the parallel coordination
aspects, turns into a very limited overall coding effort (i.e.,
few hundred lines of code). Moreover, the proposed approach
is based on a modular structure, that can be applied to
different problems. In fact, the GFT kernel can be replaced
with any processing to be executed on a matrix tile, while the
pattern of dependencies between different tiles can be easily
redefined and it is independent from the specific computation.
Moreover, the proposed approach allowed to highlight and
isolate a large number of factors that impacts the performance.
Although tackling the same problem at a lower level (e.g.,
writing directly CUDA code) could lead benefits in terms
of performance and control, the development effort would
typically outgrow the time saved due to a more straightforward
performance analysis.

On the performance side, we avoided to focus on absolute
measurements, since the problem-specific optimization is out
of the scope of this work. Nevertheless, the results achieved
by applying the proposed approach—in particular exploiting
the performance analysis it enables—are in line with ad-hoc
implementations found in literature [19].

In terms of future work, we plan to apply the proposed
approach to similar problems from the domain of graph-based
signal processing. For instance, recent efforts in the image
processing field are based on processing variable-size regions
rather than fixed-size tiles. In this scenario, we envision
heterogeneous deployments to be of paramount value when
mapping each region size to a suitable available back-end.

ACKNOWLEDGEMENT

This research has been supported by the Competency Center
on Scientific Computing (C3S) at University of Turin [20], by
the HPC4AI project funded by the Region Piedmont POR-



FESR 2014-20 programme (INFRA-P) [21], and the OptiBike
experiment in the H2020 projects Fortissimo2 (no. 680481).

REFERENCES

[1] D. Shuman et al., “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irregular
domains,” Signal Processing Magazine, IEEE, vol. 30, no. 3, pp. 83–98,
2013.

[2] J. Anvik et al., “Generating parallel programs from the wavefront design
pattern,” in Proc. of 16th Intl. Parallel and Distributed Processing
Symposium, 2002.

[3] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs: Frequency analysis,” IEEE Transactions on Signal Processing,
vol. 62, no. 12, pp. 3042–3054, 2014.

[4] F. R. Chung, Spectral graph theory. AMS, 1997, vol. 92.
[5] S. K. Narang, A. Gadde, and A. Ortega, “Signal processing techniques

for interpolation in graph structured data,” in Proc. of IEEE Intl.
Conference on Acoustics, Speech and Signal Processing, 2013.

[6] W. Hu, G. Cheung, and A. Ortega, “Intra-prediction and generalized
graph fourier transform for image coding,” Signal Processing Letters,
vol. 22, no. 11, pp. 1913–1917, 2015.

[7] C. Zhang and D. Florencio, “Analyzing the optimality of predictive
transform coding using graph-based models,” IEEE Signal Processing
Letters, vol. 20, no. 1, pp. 106–109, 2013.

[8] G. Fracastoro, F. Verdoja, M. Grangetto, and E. Magli, “Superpixel-
driven graph transform for image compression,” in Proc. of IEEE
International Conference on Image Processing, 2015.

[9] M. Aldinucci, S. Ruggieri, and M. Torquati, “Porting decision tree algo-
rithms to multicore using FastFlow,” in Proc. of European Conference
in Machine Learning and Knowledge Discovery in Databases (ECML
PKDD), ser. LNCS, vol. 6321. Barcelona, Spain: Springer, Sep. 2010,
pp. 7–23.

[10] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, “Fastflow:
high-level and efficient streaming on multi-core,” in Programming Multi-
core and Many-core Computing Systems, ser. Parallel and Distributed
Computing. Wiley, 2017, ch. 13.
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