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Abstract partitioning strategies. Firstly, the scheduling overhas-
sociated with a partitioning strategy is lower than the ever
In this paper we present the utilization bound for Earli- head associated with a non-partitioning strategy. Segpndl
est Deadline First (EDF) scheduling on homogeneous mul- partitioning strategies allow us to apply well-known umipr
tiprocessor systems with partitioning strategies. cessor scheduling algorithms to each processor.

Assuming that tasks are pre-emptively scheduled oneach |n this paper, we follow the partitioning strategy, and
processor according to the EDF algorithm, and allocated \ye assume that all the tasks allocated to a processor are
according to the First Fit (FF) heuristic, we prove that the pre-emptively scheduled using EDF, as this is the optimal
worst-case achievable utilization @s5(n + 1), wheren is  scheduling algorithm for uniprocessors. Once the schedule

the number of processors. This bound is valid for arbitrary has peen chosen, the only degree of freedom is the alloca-
utilization factors. Moreover, if all the tasks have utliion tion algorithm.

factors under a valuer, the previous bound is raised, and
the new utilization bound consideringis calculated.

In addition, we prove that no pair of uniprocessor
scheduling algorithm-allocation algorithm can provide a
higher worst-case achievable utilization than that of EDF-
FF. Finally, simulation provides the average-case achiev-
able utilization for EDF-FF.

The problem of allocating a set of tasks to a set of pro-
cessors is analogous to the bin-packing problem. In this
case the bin is a processor with a capacity of one, accord-
ing to Liu & Layland’s bound for EDF scheduling [6]. The
bin-packing problem is known to be NP-hard in the strong
sense [5]. Thus, searching for optimal allocation algonih
is not practical. Several heuristic allocation algoritimase
been proposed [7], [5], [1], [2], [8]. One of these, known as
the First Fit (FF) algorithm, which is focused on in this pa-
1. Introduction per.

A common metric to compare the performance of differ-

Dertouzos [3] proved EDF scheduling to be optimal for ent allocation algorithms is the expressidif Nog, Where
any kind of tasks, periodic or not, in uniprocessors. Unfor- N is the number of processors required to allocate the tasks
tunately, EDF scheduling is not optimal in multiprocessor using a given allocation algorithm, an¥,p is the num-
systems [4]. ber of processors required by the optimal allocation algo-

A new issue arises in multiprocessor scheduling with re- rithm. Using FF allocation, Garey et al. [5] showed that
gard to the uniprocessor case; that is which processor exe/N < [17Nqp/10]. For high values ofVoy this expres-
cutes each task at a given time. There are two major stratesion is approximately equivalent &/ Nop: < 1.7. The
gies to deal with this issuepartitioning strategies and metric N/Nop is useful to compare different allocation al-
non-partitioning strategiegalso known as global) [7]. In  gorithms but not to perform a schedulability test. There are
a partitioning strategy, once a task is allocated to a proces two reasons for this. FirstlyNq,: can not be calculated in
sor, it is executed exclusively on that processor. In a non-pseudo-polynomial time. Secondly, even if we did know
partitioning strategy any instance of a task can be executedV,, we would not obtain a tight bound. For example, con-
on a different processor, or even be pre-empted and movedider a set ofOn tasks of utilization factor).5+¢). In this
to a different processor, before it is completed. caseNop = 10n, and applying the metrid//Nope < 1.7 we

Partitioning strategies have several advantages over nonwould need at leadtrn processors to guarantee the schedu-



lability of the task set using FF allocation. The total atii factor of any task. Thus, the total utilization of the task se
tion of this task set i$n whene — 0, much less than the defined ad/ = Z;’;l u; is less than or equal tva. NoO
utilization0.5(17n + 1), which is presented far7n proces- particular ordering is assumed among the utilization fiecto

sors. Tasks are allocated to an array ofidentical proces-
Our paper proves that the worst-case achievable utiliza-sors{ Py, ..., P, }, and are executed independently of each
tion for EDF scheduling and FF allocation (EDF-FF) takes other. Once a task is allocated to a processor, it is executed
the value only on that processor. Within each processor, tasks are
scheduled pre-emptively using EDF. The allocation is car-
Ung™ T (n) = 0.5(n+ 1) (1)  ried out using theirst Fit (FF) allocation algorithm.

Each periodic task;, of utilization factoru;, is assigned
by the FF heuristic to the first process#;, with enough
capacity. Under EDF scheduling, the capacity of each pro-
cessor is one, i.e, the total utilization of the tasks alieda
to one processot/;, must be less than or equal to one [6].

independent of the number of tasks, wheris the number
of processors. If all the tasks have an utilization factatem

a valuea, the worst-case achievable utilization is proved to
be that given by equation (2).

Bn+1 Thus, the task is allocated to the first processor fulfilling

Ure™ ™ (n, 8) = 511 (2)  w; + U; < 1, whereU; is the total utilization of the tasks

previously allocated to processBy. Processors are visited

where = [1/a]. in the orderPy, P, ..., P,. If no processor has enough
Equation (1) is obtained from equation (2) makimg= capacity to holdr;, then the periodic task set is said to be

1, and therefore3 = 1. As a decreases, both and the non-schedulable (under EDF scheduling and FF allocation).

bound given by equation (2) increase. In the limit, when

a — 0, theng — oo, and the bound is. That is, for low 3. Worst-case achievable utilization

utilization factors EDF-FF is a nearly optimal multiproees

sor scheduling algorithm. In this section we obtain the worst-case achievable uti-
Equation (2) allows us not only to carry out a fast |ization /EDFFF for EDF scheduling and FF allocation

schedulability test, but also gives the worst-case beliavio (EDF-FF) on multiprocessors, which is defined as follows.
that could be expected from multiprocessor EDF-FF

scheduling. For example, for a multiprocessor made up Definition 1 The worst-case achievable utilization for
of two processors, any task set of total utilizatibs or EDF-FF is defined as the real numb@&iEP™FF, fulfilling
less is schedulable by EDF-FF, which implies an averagethe following properties:

utilization of 0.75 per processor. If the utilization factors of
the tasks are known to be less than or equal te 0.3 then

B = 3, and so the worst-case achievable utilizatioh. &,
which implies an average utilization 01875 per processor.

e Any periodic task set of total utilizatioii < UEDPFFF
fits inton processors, using EDF scheduling, and FF
allocation. Therefore, it is schedulable using EDF
scheduling, and FF allocation.

The rest of the paper is organized as follows. Section 2 4 For any total utilizationU > UEPFFF | it is always
defines the system we deal with. The expression of the  possible to find a periodic task set with that utiliza-

worst-case achievable utilization given by equation (2) is  tion, which does not fit inte. processors, using EDF
proved in Section 3. Section 4 provides the worst-case  scheduling and FF allocation. Therefore, a task set
achievable utilization for other allocation heuristicsden with total utilizationU may or may not be schedula-

EDF scheduling. Section 5 analyzes the expression of the ble.

worst-case achievable utilization. Section 6 provides the

achievable utilization for the average-case by means of sim  Consequently, the worst-case achievable utilization can
ulation. Finally, our conclusions are presented in Section be utilized as a sufficient schedulability condition for mul
tiprocessors.

Before calculating the worst-case achievable utilization
we introduce the parametéy defined ashe maximum num-
ber of tasks of utilization factat, which fitinto one proces-
sor. This parameter is a key concept in obtainiigP™FF.
Parametep is a function ofw, as given by Lemma 1.

2. System definition

The task set model consists of independent periodic
tasks{r,..., 7}, of computation timeqCi,...,Cp},
periods{Ti,...,Ty}, and hard deadlines equal to the task
periods. The utilization factak; of any taskr;, definedas  Lemma 1
u; = C;/T;, is assumed to be < u; < a < 1, wherea

is the maximum value that can be taken by the utilization B =1[1/a] 3)



Proof:
According to the definition of, 5 tasks of utilization factor
a fit into one processor. Thus, from the utilization bound

tasks of arbitrary utilization factors<{( ) fit into each pro-
cessor. Therefore, a multiprocessor made up pfoces-
sors can allocate at lea8h tasks. Subsequently, if a task
set is made up of: tasks, with utilization factors; < «,
andm < fn, the task set is schedulable by EDF and any
reasonableallocation algorithm om processors. By eea-
sonableallocation algorithm we means one which fails to
allocate a task only when there is no processor in the mul-
tiprocessor with sufficient capacity to hold the task. For

for EDF scheduling we geta < 1. Finding 3, we obtain 7
B8 < 1/a. Sinces is an integer we get < |1/a]. Sinces ; - -
is the maximum number of tasks of utilization factothat 6] | Schedulability condition
fit into one processof,5 + 1) tasks of utilization factor L
do not fit into one processor. Thug + 1)a > 1. Finding 5
S we obtaing > 1/« — 1. Sincep is an integer we get 5 i< dnt
B > |1/al. Inconclusiond = [1/a]. [ 7 1

m < 3n

The value of3 can be used to establish the schedulability

of some task sets. From the definition#f3 tasks of uti- g m < 2n
lization factora fit into each processor. Since all the tasks i
have utilization factors less than or equaldpat least3 1 men

I
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Figure 1. Representation of the function  §(a),
and the associated schedulability condition.

example, FF and the optimal allocation algorithm exa- cessors, with the worst-case achievable utilization of

sonable (m — j3) tasks andn — 1) processors for EDF-FF.
Figure 1 depictgs as a function ofy, also showing the

sufficient schedulability conditiom < gn. For example, 4. From the result given in step 3, and the bound for

if aisinthe interval1/3,1/2]thens = 2. In this case, the EDF scheduling on uniprocessors, Theorem 3 obtains

task set is schedulable if it has tasks or less. a lower bound on the worst-case achievable utilization
Another consequence of the schedulability condition for EDF-FF.

m < fn, is that it is worthwhile obtaining the value of the

worst-case achievable utilization only for the case> gn. 5. The upper and lower bounds on the worst-case achiev-

Otherwise, the task set is directly schedulable. From now able utilization for EDF-FF given in steps 1 and 4 are

on we assume that: > f(n, so the above schedulability the same. Thus, both coincide with the worst-case

condition can not be applied. achievable utilization, as stated finally by Theorem 3.

The worst-case achievable utilization depends (at most) _
on the restrictions of the task set and multiprocessor, that heorem 1 gives an upper bound on the worst-case

is, the number of processors, the number of tasksp, achievable utilization for EDF scheduling, and an arbjtrar
and the maximum reachable utilization facter, Thus, allocation algorithm, represented by AA. The proofis based
hereafter we usEEPFFF(m, n, o) to denote it. on finding a task set which does not fit into the processors.

Next, we present the strategy for the calculation of the Theorem 1 If m > fn then
worst-case achievable utilization under EDF-FF schedulin

. EDF-AA Bn+1
1. Theorem 1 gives an upper bound on the worst-case Une (m,n,a) < 311
achievable utilization for any allocation algorithm.
Therefore, this bound also applies to FF allocation. Proof:
2. Lemma 2 is proved. This lemma is necessary in orderW.e_W'". prove that a set afu tasks{r . L Tim} EXists, with
utilization factors) < u; < aforalli = 1,...,m, and

t Th 2. A ;
0 prove Theorem total utilizationU = (8n + 1)/(8 + 1) + ¢, beinge — 07,

3. Theorem 2 proves an expression which relates thewhich does not fit intan processors using any allocation
worst-case achievable utilizationaf tasks andh pro- algorithm and EDF scheduling on each processor.



We will construct this set afr tasks as composed of two We conclude that the proposed task set of total utiliza-
subsets: a first subset witm — gn — 1) tasks, and a second tion (8n + 1)/(8 + 1) + € does not fit inton processors

subset with(Sn + 1) tasks. whene — 0T, so the worst-case achievable utiliza-
All the tasks of the first subset have the same utilization tion, UEPFA%(m_ n,a), must be less than or equal to
factor of value (Bn+1)/(B+1).

NOTE: the tasks of the first subset are necessary in the

€
Ui = proof only to fulfil the restriction of having tasks. R
wherei =1,...,(m — fn —1). The proof of Theorem 2 requires Lemma 2, which is
All the tasks of the second subset have the same utiliza-proved below. It relates the worst-case achievable utiliza
tion factor of value tion for the same number of processors but a different num-
1 . ber of tasks, using amgasonableallocation algorithm, rep-
u; = + — resented by RA. The result is valid for FF allocation, as it is
(B+1)  m for anyreasonableallocation algorithm.
wherei = (m — fn),...,m. Lemma 2
It can be seen that the total utilization of the whole task
EDF-R EDF-R
setis(Bn +1)/(8 + 1) +e. UEDFRA G n, o) > UEPFRAm, n,a) forall ¢ < m
Firstly, it is necessary to prove that the utilization prgof:
i=1,...,m. Let us suppose that a pair of intege@ndm exists, such

o _ thatg < m, andUEP™RA(q,n, a) < UEPFRA(m n,a). Be-
Check of the utilization factors of the first subehoos-  tween two real numbers, it is always possible to find another

ing a small enough value fer we obtain) < u; = - < a. real number, so we can find an> 0 such that
EDF-RA EDF-RA
Check of the utilization factors of the second subBgt. Une (@;m,0) <Upe (m,n,a) —¢€
definition of 3, (8 + 1) tasks of utilization factor do not < UEPFRA(m, n, a)

fit into one processor, therefofg + 1)a > 1, and , _ ) .
According to the definition of worst-case achievable iz

1 tion, there exists at least one setyafaisks {1, ..., 7.}, of
“> B total utilization
q
It is always possible to find one real number between two Z“i = UEDFRA(m, n,a) — e
real numbers. Hence, a positive vakluexists such that i—1
greater than the worst-case achievable utilization ¢for
1 €
a> St —=u tasks), which does not fit inte processors. Next, we prove
B+1) m

that this gives rise to a contradiction.
which proves that the utilization factors of the second If we add to this task setm — ¢) new tasks,

subset are less tham whene — 0%. In addition, the  {7;4+1,...,7}, each of utilization factore/(m — q),
utilization factors of the second subset are obviously we obtain a task set made uprftasks of total utilization
greater than zero. S ui = UEPFRA(m, n, o), which fits inton processors.
Hence, the firsyy tasks fit inton processors, which is a

From the above results, we conclude that the proposedcontradiction. [ |

task set is valid. Below we prove that it does not fit into

processors, using EDF scheduling and any allocation algo- Next, we prove an expression which relates the worst-

rithm. case achievable utilization of multiprocessors wittand
There arg3n + 1) tasks in the second subset. Hence at (n — 1) processors for EDF-FF. This will allow us to obtain

least one processor of theavailable should allocatg + 1) a lower bound on the worst-case achievable utilization for

or more of these tasks. However, no processor can allocat&=DF-FF, going from the case = 1 (uniprocessor case) to

(84 1) or more tasks of the second subset, sifite 1) of a general multiprocessor case with an arbitrary

these tasks together have an utilization over one. Theorem 2 If m > An then

G0 (35 ) > UESFF (1 1 ) >

71t m + U T (m = B,n —1,0)

_B_
B+1
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Figure 2. General situation in  Case 2of Theo-
rem 2.
Proof:
We will prove that any set ofn tasks{ry,...,7,}, with
utilization factors0 < u; < aforalli = 1,...,m, and
total utilization less than or equal to
B UEF R — g~ 1,a)
B+1

fits inton processors using EDF scheduling on each proces-

sor and FF allocation.
There are two possible cases:

Case 1: The first(m — () tasks have total utilization
less than or equal t&/EP™ (m — B,n — 1,a), that is,
S P ui < UESFFRm — B,n — 1,0). In this case the
whole set ofn tasks always fits inte processors, because
the first(m — j) tasks fit into the firs{n — 1) processors
(since their total utilization is below the bound), and the

remainingg tasks fit into the last processor, since the def-

inition of 8 implies that a leasp tasks always fit into one
processor.

Case 2:The first(m — ) tasks have a total utilization
greater thaw/E0FFF(m — 8,n — 1, ), thatis, "7 7% u; >
UEDFFF(m — B,n — 1,a). In this case we will prove that
the whole set ofn tasks still fits inton processors if the
total utilization is equal ta&/EPFFF(m — B,n — 1,a) + A,
providedA € R, andA < T

A taskr, must exist, whose;, added to the previous uti-
lizationsu;, causes the bourddEP™  (m — 3,n — 1,a) to

be exceeded. This situation is depicted in Figure 2, which is

a graphical representation of the utilization factors aftea

task and the relationships between several quantities and

summations used through this proof. The valué dig ob-
tained as the integer which fulfills

k—1 k
Zui S UVE(I:DF—FF(m _6an - ].,Oé) < Zuz
i=1 i=1

Note thatt < m — g (if £ > m —  we would be inCase ).

It can be seen that the fir6t — 1) tasks fit into the first
(n — 1) processors. The total utilization of the fi(ét — 1)
tasks fulfills

k—1
Y ui <URF(m =B, —1,0)

i=1
Applying Lemma 2 with(m — 3) > (k — 1) and RA=FF,
we get

UEDFFF(1 — B,n — 1,0) < UEPPF¥(k — 1,n — 1,0)

and thus
k-1
> ui SURTH(k—1,n-1,0)
i=1

Therefore, the firstk — 1) tasks fit into the firs{n — 1)
processors. Itis sufficient to prove that the remair{ing—
k + 1) tasks fit into the last processor.

We will assume without loss of generality that all the
tasksr; in {rx, ..., 7} haveu; > uy 1, where

k—1
ug1 = UEPFFR(m — B,n —1,a) — Zuz

i=1

as shown in Figure 2. Note that if there were a taskn
{Tky .., Tm } With u; < uy 1, we could always allocate this
task to the first(n — 1) processors (since the addition of
this new task does not cause the total utilization to exceed
the bound), and we would be in a situation analogous to the
current one, withk one unit greater. This reasoning can be
repeated until no task; with u; < wuj ; exists among the
last(m — k + 1) tasks, or until we are iCase 1

In order to prove that the la$tn — k + 1) tasks fit into
the last processor we have to prove that the total utilipatio
of these tasks is not greater than one, that is,

m

D uis1

i=k
Figure 2 shows that

D ui =g+ A (4)
i=k

As already stated, all the utilization factarsin this sum-
mation are greater thar), ;, so

(m—k+Dupg <ugyg+A

— he definition ofA
<wug1 + G+1 by the definition o



and we can find.y, ;.

B

DD ®)

Uk, <

Substituting the value aiy,; from (5) into (4) we obtain

m

B
;Uz< (6+1)(m—k)+A

g B
< BT Dm =k + CE) by def. of A
_ (m—-k+1)p
~(B+1)(m—k)
_1+1/(m—k)

1+1/8

We know thatt < (m — ) in Case 2so(m — k) > .
Therefore,

This equation shows that the last — k£ + 1) tasks meet
the EDF schedulability condition, so they fit into the last
processor.

We have proved that any task set with tasks and a
total utilization

UEDFFF(m — Byn — 1,0) + A <

L

U™ (m = B.n = 1,0) + 725

fits into n processors, so the worst-case utilization bound,
UEDPF (m,n,a), must be greater than or equal to
UsdFFm — B,n — 1,a) + F7, and the theorem is
proved. [ |

The worst-case achievable utilization for EDF-FF is ob-
tained from Theorem 1 and Theorem 2.

Theorem 3 If m > fn thenUEPFFF depends only on,
andg, and is given by

Usc' ™ (n, B)

(6)

Proof:

Firstly, we obtain a lower bound for the worst-case achiev-
able utilization for a set af: tasks on a multiprocessor with
n Processors.

Theorem 2 relates the worst-case achievable utilization

of sets ofm tasks on multiprocessors afprocessors, with

the worst-case achievable utilization of setéof— ) tasks
on multiprocessors witln — 1) processors.

Ue' " (m, n,0) >

B

B+1

Theorem 2 also relates the worst-case achievable utdizati
of sets of(m — ) tasks on multiprocessors @f — 1) pro-
cessors, with the worst-case achievable utilization &f skt
(m — 23) tasks on multiprocessors (i — 2) processors.

(7)

+ UVE'CDF'FF(m —B,n—1,a)

UEDFFF(m — B,n — 1,a) >

B
B+1

Substituting (8) into (7) we get

8
+ UEPFFF(m — 268,n — 2, a) ®)

Uger(m,n,a) 2

User ™ (m = 28,n - 2,0)

This procedure can be repeated, until finally relating the
worst-case achievable utilization of setswftasks on mul-
tiprocessors of, processors, with the worst-case achievable
utilization of sets of m — (n — 1)) tasks on an uniproces-
sor.

Une' H(m,n, @) >
(n—1)p

B+1
The worst-case achievable utilization fon — (n — 1)5)

tasks and one processor is one, independently of the values
of m or a.

9
—(n—-1)8,1,a) ®)

+ Ug2FF(m

Une' Tm—(n=1)8,1,0) =1 (10)
Substituting (10) into (9), we obtain a lower bound on the
worst-case achievable utilization of tasks onn proces-
sors.

: fn+1
Use™m,m, 0) 2 = (11)
Theorem 1 proved that
3 Bn+1
Une™ M (m,n, ) < 51 (12)

where AA is an arbitrary allocation algorithm. Hence, it
also applies to the FF heuristic. From equation (11) and
equation (12) we get

_ pn+1
- B+1

EDF-FF
Uwe

n,q)

(m:



We observe that/EPFFF only depends on the number of Under EDF scheduling, othezasonabléheuristics such

tasks,m, and paramete?, so we finally conclude that asFirst Fit Decreasing(FFD), Best Fit(BF), andBest Fit
Decreasing BFD) have the same worst-case achievable uti-
UEDF-FF — EDF-FR(, ) = pn+1 lization as FF. However, they are computationally more ex-
f+1 u pensive. In addition, neither FFD nor BFD can be applied

Therefore, any set of periodic tasks, with utilization fac- pn-lme. The definition of these heuristics can be found

tors less than or equal tg, and total utilization less than or in [5]. The proof of the worst-case achlevablg qtlhzatlon
for BF is analogous to that shown for FF, so it is not re-

equal to
q peated. The proof for FFD and BFD is direct. Both heuris-
[JEDF-FF _ pn+1 tics require a process of sorting the utilization factorf®be
we (n,0) = B+1 applying the pure FF or BF heuristic. The process of sorting

restricts the possible task sets to allocate with regardeo t
is feasibly scheduled by EDF anprocessors using FF allo-  general task sets considered in the case of pure FF or BF
cation, where3 = |1/a]. This is a tight sufficient schedu-  gjlocation. Therefore, the worst-case achievable utitira
lability condition. For any value of total utilization griest for FED and BFD can not be lower than that of FF and BF.
thanUg " (n, §) itis possible to find a task set with this | addition from Theorem 1, the worst-case achievable uti-
utilization which does notfit into the processors using EDF- jization can not be higher, so finally we conclude that the

FF scheduling. _ worst-case achievable utilization for FFD, BFD, FF, and BF
Having calculated the general expression of the worst- s the same, given by equation (6).
case achievable utilization, and makiag= 1 we remove After observing the coincidence among the worst-case

the restrictionu; < «, so the utilization factors of the tasks  achievable utilization of differemeasonableallocation al-
can now be in the intervaD, 1]. In this case3 = 1,andthe  gorithms, one might think that the worst-case achievable
worst-case achievable utilization is given by utilization may be a constant for all threasonableallo-
cation algorithms. However, this is not the case. For ex-
ample, consider theeasonablellocation algorithm called
Worst Fit (WF), which assigns a task to the processor with
4. Worst-case achievable utilization for other  the lowest capacity, among all the processors with sufficien
allocation heuristics capacity. Consider also a multiprocessor made up &f2
processors, and a setof = 3 tasks of utilization factors

be interesting to know whether it is possible to find other assigned to the first processor, and the second task of uti-

UEDFFR(n, 1) = 0.5(n + 1) (13)

tion than that provided by FF. Theorem 1 stated that task of utilization factof.91 can not be allocated to any of
the two processors, so the worst-case achievable utilizati

UEDFM (1) o) < pn+1 for EDF-WF is less thari0.1 + 0.1 4+ 0.91) = 1.11. This
we R I | value is much lower thai.5, the worst-case achievable uti-

. . . _ . lization for EDF-FF withn = 2.
where AA is an arbitrary allocation algorithm. Since the

worst-case achievable utilization for EDF-FF (given by
equation (6)) equals this bound, it follows that FF alloca-
tion provides the maximum worst-case achievable utiliza-
tion under EDF scheduling with partitioning. Therefore, it [N this section, we analyze the expression of the worst-
coincides with the worst-case achievable utilization unde €ase achievable utilizationl 2" (n, 3), for EDF-FF
EDF scheduling for the optimal allocation algorithm. In ad- 9iven by equation (6), which is repeated below.

5. Analysis of the theoretical results

dition, EDF being the optimal uniprocessor scheduling al- Bn+1
. . . . . EDF-FF _
gorithm, it follows that no pair ofiniprocessor scheduling Une (0, B3) = 511
algorithm-allocation algorithmexists with higher worst-
case achievable utilization than that of EDF-FF. In spite ofn being an integer, the functioiE>FFF(n, 3)

The fact that FF provides the maximum worst-case is represented as a continuous function in Figure 3, with
achievable utilization for EDF scheduling does not preelud the aim of improving its visualization. Figure 3 depicts the
the existence of task sets which can be allocated by othemvorst-case achievable utilization for EDF-FF as a function
algorithms but not by FF. In fact, different allocation algo  of the numbers of processors, for different valueg oThe
rithms should also be compared in terms of average-caseepresentation has been normalized dividiffgP™FF(n, 3)
achievable utilization. by the number of processors, in order to show the average
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Figure 3. Worst-case achievable utilization for
EDF-FF.

degree of utilization of the processors. The addition oheac
new processor increments the worst-case achievableautiliz
tion in the magnitudeﬁ%. Furthermore, any decrement of
a produces an increment 6f= |1/« and an increment of
the worst-case achievable utilization. In the limitgif— 0
thens — oo, and it follows that

. EDF-FF —
(lllﬁ) UWC (’I’L, ﬂ) =n

Hence, if the utilization factor of all the tasks is low, the
multiprocessor system using EDF-FF scheduling approxi-
mates an ideal uniprocessettimes faster than each pro-
cessor of the multiprocessor.

The worst-case achievable utilization provides the max-
imum total utilization guaranteeing the schedulabilityaon

given number of processors. Nevertheless, there are practi
cal cases in which we are interested in the worst number of

processors;EPFFF, required to feasibly schedule a task set
of a given total utilization.

In this paper we have presented two schedulability con-
ditions, from which we obtain different numbers of proces-
sors. The first schedulability condition (see Figure 1) com-
ing from the definition of3 is m < AnEP™FF so finding
nEPFFFand choosing the minimum integer, we obtain

d

The second schedulability condition coming from equa-
tion (6) is

. m
EDF-FF _

wcC

(14)

g+ 1

U<
B+1

so findingnEPFFF(n, 3), and choosing the minimum integer
we obtain

[([3 + 1)U — 1}
B

Equation (15) is not valid fot/ < 1/(3 + 1). However for
any total utilizationlU' < 1 a single processor is enough to
feasibly schedule the task set. From this observation,-equa
tion (14), and equation (15), we get

EDF-FF _
Nhwe =

(15)

e (m, U, ) =

o 4]

min { [E
For example, to guarantee the schedulability @ tasks,
of total utilization15, and utilization factors undéx.25 (i.e.
B = 4), 19 processors are necessary

ifU<1
]} otherwise

(16)
(B+DU-1
B

nEOFFR(100, 15,4) =

e 2]

4
6. Average-case behaviour

(4+1)15-1
4

-

The worst-case achievable utilization is obtained for task
sets which might be infrequent in practice. In order to per-
ceive the pessimism of the worst-case achievable utiliza-
tion, we will define theaverage-case achievable utilization
UEPFFF(m, n, p), for EDF-FF as follows.

Definition 2 A task set made up af tasks, of total utiliza-
tion U = UEPFFF(m, n, p) is schedulable by EDF and FF
onn processors with a probability equal 1o

If task sets made up of tasks with a total utilization
U = UEPFFF(m, n, p) were randomly generategd% of the
task sets would be schedulable by EDF and Fk pnoces-
sors. The othef100 — p)% would correspond to task sets
which do not fit into the processors.

The statistical distribution chosen to generate the task
sets is theBeta Distribution This distribution has two pos-
itive parameters, which allow us to select the mgarand
standard deviationy, of the distribution. In addition, it is
suitable to generate the utilization factors of the taskst a
only generates values in the intergal 1). The maximum
o for a given value ofu is omax = /(1 — p), which is
obtained by considering the restrictions of the Beta digtri
tion. Varying the value of the standard deviation from zero
to the maximum, the utilization factors of the tasks vary
from being equal, to having unlike values. Thus, the stan-
dard deviation of the distribution affects the scheduigpbil
of the task sets.



With the aim of establishing the pessimism of the worst-
case achievable utilization for EDF-FF, given by equa-
tion (6), we have carried out simulation experiments to ob-
tain UEPTF(m,n,p) for p = 99%. At least1000 task
sets were randomly generated using the beta distribution of
probability to obtain each tuplém,n, UEPFF(m, n,p)},
for each value of standard deviation fram= 0.0010max
to o = 0.90max. Figure 4 was obtained as the minimum,
among all the standard deviations fram = 0.0010max
to o0 = 0.90max Of the associated curves of average-case
achievable utilization. Figure 4 also represents the worst
case utilization bound to be compared with the average-case
utilization bound. The difference is significant for tasksse ‘ [‘]EDF_F‘F —

. . : ) . " e (m,n,p = 99%)
with a high number of tasks, since in this case the utiliza- ‘ e I
tion factors of the tasks are small in probability terms. Nev e R I G |
ertheless, for the uniprocessor case, the average-case coi 5 10 15 20 25 30 35
cides with the worst-case achievable utilization, given by Number of tasks (m)
the boundV < 1.

From Figure 4, we observe an achievable utilization of
around80% per processor (with a probability of 99%) for a
multiprocessor made up of four processors. Assuming that
any task set of utilizatiom or less can be scheduled us-
ing non-partitioning, the improvement that may be obtained
by means of non-partitioning is abo2®% per processor.  ing schemes when scheduling independent hard-real time
However in practice, the improvementis much less. Firstly, periodic tasks on multiprocessors.
we must consider the high overload associated with non-
partitioning schemes. Secondly, we must bear in mind that
task sets with total utilization greater than thatgiven B F  References
ure 4 could be schedulable by EDF-FF. In addition, the im-
plementation of non-partitioning schemes is more complex
and less predictable than the implementation of EDF-FF.

Figure 4. Average-case achievable utilization
for arbitrary standard deviation.
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