
Worst-Case Utilization Bound for EDF Scheduling on Real-Time Multiprocessor
Systems
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Abstract

In this paper we present the utilization bound for Earli-
est Deadline First (EDF) scheduling on homogeneous mul-
tiprocessor systems with partitioning strategies.

Assuming that tasks are pre-emptively scheduled on each
processor according to the EDF algorithm, and allocated
according to the First Fit (FF) heuristic, we prove that the
worst-case achievable utilization is0:5(n + 1), wheren is
the number of processors. This bound is valid for arbitrary
utilization factors. Moreover, if all the tasks have utilization
factors under a value�, the previous bound is raised, and
the new utilization bound considering� is calculated.

In addition, we prove that no pair of uniprocessor
scheduling algorithm-allocation algorithm can provide a
higher worst-case achievable utilization than that of EDF-
FF. Finally, simulation provides the average-case achiev-
able utilization for EDF-FF.

1. Introduction

Dertouzos [3] proved EDF scheduling to be optimal for
any kind of tasks, periodic or not, in uniprocessors. Unfor-
tunately, EDF scheduling is not optimal in multiprocessor
systems [4].

A new issue arises in multiprocessor scheduling with re-
gard to the uniprocessor case; that is which processor exe-
cutes each task at a given time. There are two major strate-
gies to deal with this issue:partitioning strategies, and
non-partitioning strategies(also known as global) [7]. In
a partitioning strategy, once a task is allocated to a proces-
sor, it is executed exclusively on that processor. In a non-
partitioning strategy any instance of a task can be executed
on a different processor, or even be pre-empted and moved
to a different processor, before it is completed.

Partitioning strategies have several advantages over non-

partitioning strategies. Firstly, the scheduling overhead as-
sociated with a partitioning strategy is lower than the over-
head associated with a non-partitioning strategy. Secondly,
partitioning strategies allow us to apply well-known unipro-
cessor scheduling algorithms to each processor.

In this paper, we follow the partitioning strategy, and
we assume that all the tasks allocated to a processor are
pre-emptively scheduled using EDF, as this is the optimal
scheduling algorithm for uniprocessors. Once the scheduler
has been chosen, the only degree of freedom is the alloca-
tion algorithm.

The problem of allocating a set of tasks to a set of pro-
cessors is analogous to the bin-packing problem. In this
case the bin is a processor with a capacity of one, accord-
ing to Liu & Layland’s bound for EDF scheduling [6]. The
bin-packing problem is known to be NP-hard in the strong
sense [5]. Thus, searching for optimal allocation algorithms
is not practical. Several heuristic allocation algorithmshave
been proposed [7], [5], [1], [2], [8]. One of these, known as
the First Fit (FF) algorithm, which is focused on in this pa-
per.

A common metric to compare the performance of differ-
ent allocation algorithms is the expressionN=Nopt, whereN is the number of processors required to allocate the tasks
using a given allocation algorithm, andNopt is the num-
ber of processors required by the optimal allocation algo-
rithm. Using FF allocation, Garey et al. [5] showed thatN � d17Nopt=10e. For high values ofNopt this expres-
sion is approximately equivalent toN=Nopt � 1:7. The
metricN=Nopt is useful to compare different allocation al-
gorithms but not to perform a schedulability test. There are
two reasons for this. Firstly,Nopt can not be calculated in
pseudo-polynomial time. Secondly, even if we did knowNopt, we would not obtain a tight bound. For example, con-
sider a set of10n tasks of utilization factors(0:5+�). In this
caseNopt = 10n, and applying the metricN=Nopt � 1:7 we
would need at least17n processors to guarantee the schedu-



lability of the task set using FF allocation. The total utiliza-
tion of this task set is5n when� ! 0, much less than the
utilization0:5(17n+1), which is presented for17n proces-
sors.

Our paper proves that the worst-case achievable utiliza-
tion for EDF scheduling and FF allocation (EDF-FF) takes
the value UEDF-FF

wc (n) = 0:5(n+ 1) (1)

independent of the number of tasks, wheren is the number
of processors. If all the tasks have an utilization factor under
a value�, the worst-case achievable utilization is proved to
be that given by equation (2).UEDF-FF

wc (n; �) = �n+ 1� + 1 (2)

where� = b1=�
.
Equation (1) is obtained from equation (2) making� =1, and therefore� = 1. As � decreases, both� and the

bound given by equation (2) increase. In the limit, when� ! 0, then� ! 1, and the bound isn. That is, for low
utilization factors EDF-FF is a nearly optimal multiproces-
sor scheduling algorithm.

Equation (2) allows us not only to carry out a fast
schedulability test, but also gives the worst-case behaviour
that could be expected from multiprocessor EDF-FF
scheduling. For example, for a multiprocessor made up
of two processors, any task set of total utilization1:5 or
less is schedulable by EDF-FF, which implies an average
utilization of0:75 per processor. If the utilization factors of
the tasks are known to be less than or equal to� = 0:3 then� = 3, and so the worst-case achievable utilization is1:75,
which implies an average utilization of0:875 per processor.

The rest of the paper is organized as follows. Section 2
defines the system we deal with. The expression of the
worst-case achievable utilization given by equation (2) is
proved in Section 3. Section 4 provides the worst-case
achievable utilization for other allocation heuristics under
EDF scheduling. Section 5 analyzes the expression of the
worst-case achievable utilization. Section 6 provides the
achievable utilization for the average-case by means of sim-
ulation. Finally, our conclusions are presented in Section7.

2. System definition

The task set model consists ofm independent periodic
tasksf�1; : : : ; �mg, of computation timesfC1; : : : ; Cmg,
periodsfT1; : : : ; Tmg, and hard deadlines equal to the task
periods. The utilization factorui of any task�i, defined asui = Ci=Ti, is assumed to be0 < ui � � � 1, where�
is the maximum value that can be taken by the utilization

factor of any task. Thus, the total utilization of the task set
defined asU = Pmi=1 ui is less than or equal tom�. No
particular ordering is assumed among the utilization factors.

Tasks are allocated to an array ofn identical proces-
sorsfP1; : : : ; Png, and are executed independently of each
other. Once a task is allocated to a processor, it is executed
only on that processor. Within each processor, tasks are
scheduled pre-emptively using EDF. The allocation is car-
ried out using theFirst Fit (FF) allocation algorithm.

Each periodic task�i, of utilization factorui, is assigned
by the FF heuristic to the first processor,Pj , with enough
capacity. Under EDF scheduling, the capacity of each pro-
cessor is one, i.e, the total utilization of the tasks allocated
to one processor,Uj , must be less than or equal to one [6].
Thus, the task is allocated to the first processor fulfillingui + Uj � 1, whereUj is the total utilization of the tasks
previously allocated to processorPj . Processors are visited
in the orderP1; P2; : : : ; Pn. If no processor has enough
capacity to hold�i, then the periodic task set is said to be
non-schedulable (under EDF scheduling and FF allocation).

3. Worst-case achievable utilization

In this section we obtain the worst-case achievable uti-
lization UEDF-FF

wc for EDF scheduling and FF allocation
(EDF-FF) on multiprocessors, which is defined as follows.

Definition 1 The worst-case achievable utilization for
EDF-FF is defined as the real numberUEDF-FF

wc , fulfilling
the following properties:� Any periodic task set of total utilizationU � UEDF-FF

wc

fits inton processors, using EDF scheduling, and FF
allocation. Therefore, it is schedulable using EDF
scheduling, and FF allocation.� For any total utilizationU > UEDF-FF

wc , it is always
possible to find a periodic task set with that utiliza-
tion, which does not fit inton processors, using EDF
scheduling and FF allocation. Therefore, a task set
with total utilizationU may or may not be schedula-
ble.

Consequently, the worst-case achievable utilization can
be utilized as a sufficient schedulability condition for mul-
tiprocessors.

Before calculating the worst-case achievable utilization,
we introduce the parameter�, defined asthe maximum num-
ber of tasks of utilization factor�, which fit into one proces-
sor. This parameter is a key concept in obtainingUEDF-FF

wc .
Parameter� is a function of�, as given by Lemma 1.

Lemma 1 � = b1=�
 (3)
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Proof:
According to the definition of�, � tasks of utilization factor� fit into one processor. Thus, from the utilization bound
for EDF scheduling we get�� � 1. Finding�, we obtain� � 1=�. Since� is an integer we get� � b1=�
. Since�
is the maximum number of tasks of utilization factor� that
fit into one processor,(� + 1) tasks of utilization factor�
do not fit into one processor. Thus,(� + 1)� > 1. Finding� we obtain� > 1=� � 1. Since� is an integer we get� � b1=�
. In conclusion� = b1=�
. �

The value of� can be used to establish the schedulability
of some task sets. From the definition of�, � tasks of uti-
lization factor� fit into each processor. Since all the tasks
have utilization factors less than or equal to�, at least�
tasks of arbitrary utilization factors (� �) fit into each pro-
cessor. Therefore, a multiprocessor made up ofn proces-
sors can allocate at least�n tasks. Subsequently, if a task
set is made up ofm tasks, with utilization factorsui � �,
andm � �n, the task set is schedulable by EDF and any
reasonableallocation algorithm onn processors. By area-
sonableallocation algorithm we means one which fails to
allocate a task only when there is no processor in the mul-
tiprocessor with sufficient capacity to hold the task. For
example, FF and the optimal allocation algorithm arerea-
sonable.

Figure 1 depicts� as a function of�, also showing the
sufficient schedulability conditionm � �n. For example,
if � is in the interval(1=3; 1=2℄ then� = 2. In this case, the
task set is schedulable if it has2n tasks or less.

Another consequence of the schedulability conditionm � �n, is that it is worthwhile obtaining the value of the
worst-case achievable utilization only for the casem > �n.
Otherwise, the task set is directly schedulable. From now
on we assume thatm > �n, so the above schedulability
condition can not be applied.

The worst-case achievable utilization depends (at most)
on the restrictions of the task set and multiprocessor, that
is, the number of processors,n, the number of tasks,m,
and the maximum reachable utilization factor,�. Thus,
hereafter we useUEDF-FF

wc (m;n; �) to denote it.

Next, we present the strategy for the calculation of the
worst-case achievable utilization under EDF-FF scheduling.

1. Theorem 1 gives an upper bound on the worst-case
achievable utilization for any allocation algorithm.
Therefore, this bound also applies to FF allocation.

2. Lemma 2 is proved. This lemma is necessary in order
to prove Theorem 2.

3. Theorem 2 proves an expression which relates the
worst-case achievable utilization ofm tasks andn pro-
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Figure 1. Representation of the function �(�),
and the associated schedulability condition.

cessors, with the worst-case achievable utilization of(m� �) tasks and(n� 1) processors for EDF-FF.

4. From the result given in step 3, and the bound for
EDF scheduling on uniprocessors, Theorem 3 obtains
a lower bound on the worst-case achievable utilization
for EDF-FF.

5. The upper and lower bounds on the worst-case achiev-
able utilization for EDF-FF given in steps 1 and 4 are
the same. Thus, both coincide with the worst-case
achievable utilization, as stated finally by Theorem 3.

Theorem 1 gives an upper bound on the worst-case
achievable utilization for EDF scheduling, and an arbitrary
allocation algorithm, represented by AA. The proof is based
on finding a task set which does not fit into the processors.

Theorem 1 If m > �n thenUEDF-AA
wc (m;n; �) � �n+ 1� + 1

Proof:
We will prove that a set ofm tasksf�1; : : : ; �mg exists, with
utilization factors0 < ui � � for all i = 1; : : : ;m, and
total utilizationU = (�n+ 1)=(� + 1) + �, being�! 0+,
which does not fit inton processors using any allocation
algorithm and EDF scheduling on each processor.
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We will construct this set ofm tasks as composed of two
subsets: a first subset with(m��n�1) tasks, and a second
subset with(�n+ 1) tasks.

All the tasks of the first subset have the same utilization
factor of value ui = �m
wherei = 1; : : : ; (m� �n� 1).

All the tasks of the second subset have the same utiliza-
tion factor of valueui = 1(� + 1) + �m
wherei = (m� �n); : : : ;m.

It can be seen that the total utilization of the whole task
set is(�n+ 1)=(� + 1) + �.

Firstly, it is necessary to prove that the utilization
factors of both subsets are valid, i.e,0 < ui � � for alli = 1; : : : ;m.

Check of the utilization factors of the first subset.Choos-
ing a small enough value for�, we obtain0 < ui = �m � �.

Check of the utilization factors of the second subset.By
definition of�, (� + 1) tasks of utilization factor� do not
fit into one processor, therefore(� + 1)� > 1, and� > 1(� + 1)
It is always possible to find one real number between two
real numbers. Hence, a positive value� exists such that� > 1(� + 1) + �m = ui
which proves that the utilization factors of the second
subset are less than� when � ! 0+. In addition, the
utilization factors of the second subset are obviously
greater than zero.

From the above results, we conclude that the proposed
task set is valid. Below we prove that it does not fit inton
processors, using EDF scheduling and any allocation algo-
rithm.

There are(�n + 1) tasks in the second subset. Hence at
least one processor of then available should allocate(�+1)
or more of these tasks. However, no processor can allocate(�+1) or more tasks of the second subset, since(�+1) of
these tasks together have an utilization over one.(� + 1)� 1� + 1 + �m� > 1

We conclude that the proposed task set of total utiliza-
tion (�n + 1)=(� + 1) + � does not fit inton processors
when � ! 0+, so the worst-case achievable utiliza-
tion, UEDF-AA

wc (m;n; �), must be less than or equal to(�n+ 1)=(� + 1).
NOTE: the tasks of the first subset are necessary in the
proof only to fulfil the restriction of havingm tasks. �

The proof of Theorem 2 requires Lemma 2, which is
proved below. It relates the worst-case achievable utiliza-
tion for the same number of processors but a different num-
ber of tasks, using anyreasonableallocation algorithm, rep-
resented by RA. The result is valid for FF allocation, as it is
for anyreasonableallocation algorithm.

Lemma 2UEDF-RA
wc (q; n; �) � UEDF-RA

wc (m;n; �) for all q < m
Proof:
This lemma will be proved by contradiction.

Let us suppose that a pair of integersq andm exists, such
thatq < m, andUEDF-RA

wc (q; n; �) < UEDF-RA
wc (m;n; �). Be-

tween two real numbers, it is always possible to find another
real number, so we can find an� > 0 such thatUEDF-RA

wc (q; n; �) < UEDF-RA
wc (m;n; �)� �< UEDF-RA
wc (m;n; �)

According to the definition of worst-case achievable utiliza-
tion, there exists at least one set ofq tasks,f�1; : : : ; �qg, of
total utilizationqXi=1 ui = UEDF-RA

wc (m;n; �)� �
(greater than the worst-case achievable utilization forq
tasks), which does not fit inton processors. Next, we prove
that this gives rise to a contradiction.

If we add to this task set(m � q) new tasks,f�q+1; : : : ; �mg, each of utilization factor�=(m � q),
we obtain a task set made up ofm tasks of total utilizationPmi=1 ui = UEDF-RA

wc (m;n; �), which fits inton processors.
Hence, the firstq tasks fit inton processors, which is a
contradiction. �

Next, we prove an expression which relates the worst-
case achievable utilization of multiprocessors withn and(n� 1) processors for EDF-FF. This will allow us to obtain
a lower bound on the worst-case achievable utilization for
EDF-FF, going from the casen = 1 (uniprocessor case) to
a general multiprocessor case with an arbitraryn.

Theorem 2 If m > �n thenUEDF-FF
wc (m;n; �) � �� + 1 + UEDF-FF

wc (m� �; n� 1; �)
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�1 � � � �k�1 �k �k+1 � � � �m�� � � � �mUEDF�FFw
 (m� �; n� 1; �) �uk;1u1 uk�1 uk uk+1 um�� ummPi=k uim��Pi=1 uik�1Pi=1 ui
Figure 2. General situation in Case 2of Theo-
rem 2.

Proof:
We will prove that any set ofm tasksf�1; : : : ; �mg, with
utilization factors0 < ui � � for all i = 1; : : : ;m, and
total utilization less than or equal to�� + 1 + UEDF-FF

wc (m� �; n� 1; �)
fits inton processors using EDF scheduling on each proces-
sor and FF allocation.
There are two possible cases:

Case 1: The first (m � �) tasks have total utilization
less than or equal toUEDF-FF

wc (m � �; n � 1; �), that is,Pm��i=1 ui � UEDF-FF
wc (m � �; n � 1; �). In this case the

whole set ofm tasks always fits inton processors, because
the first(m � �) tasks fit into the first(n � 1) processors
(since their total utilization is below the bound), and the
remaining� tasks fit into the last processor, since the def-
inition of � implies that a least� tasks always fit into one
processor.

Case 2:The first(m � �) tasks have a total utilization
greater thanUEDF-FF

wc (m��; n� 1; �), that is,
Pm��i=1 ui >UEDF-FF

wc (m � �; n � 1; �). In this case we will prove that
the whole set ofm tasks still fits inton processors if the
total utilization is equal toUEDF-FF

wc (m � �; n � 1; �) + �,
provided� 2 R, and� � ��+1 .

A task�k must exist, whoseuk added to the previous uti-
lizationsui, causes the boundUEDF-FF

wc (m� �; n� 1; �) to
be exceeded. This situation is depicted in Figure 2, which is
a graphical representation of the utilization factors of each
task and the relationships between several quantities and
summations used through this proof. The value ofk is ob-
tained as the integer which fulfillsk�1Xi=1 ui � UEDF-FF

wc (m� �; n� 1; �) < kXi=1 ui
Note thatk � m�� (if k > m�� we would be inCase 1).

It can be seen that the first(k � 1) tasks fit into the first(n� 1) processors. The total utilization of the first(k � 1)
tasks fulfillsk�1Xi=1 ui � UEDF-FF

wc (m� �; n� 1; �)
Applying Lemma 2 with(m � �) > (k � 1) and RA=FF,
we getUEDF-FF

wc (m� �; n� 1; �) � UEDF-FF
wc (k � 1; n� 1; �)

and thus k�1Xi=1 ui � UEDF-FF
wc (k � 1; n� 1; �)

Therefore, the first(k � 1) tasks fit into the first(n � 1)
processors. It is sufficient to prove that the remaining(m�k + 1) tasks fit into the last processor.

We will assume without loss of generality that all the
tasks�i in f�k; : : : ; �mg haveui > uk;1, whereuk;1 = UEDF-FF

wc (m� �; n� 1; �)� k�1Xi=1 ui
as shown in Figure 2. Note that if there were a task�i inf�k; : : : ; �mg with ui � uk;1, we could always allocate this
task to the first(n � 1) processors (since the addition of
this new task does not cause the total utilization to exceed
the bound), and we would be in a situation analogous to the
current one, withk one unit greater. This reasoning can be
repeated until no task�i with ui � uk;1 exists among the
last(m� k + 1) tasks, or until we are inCase 1.

In order to prove that the last(m � k + 1) tasks fit into
the last processor we have to prove that the total utilization
of these tasks is not greater than one, that is,mXi=k ui � 1
Figure 2 shows thatmXi=k ui = uk;1 +� (4)

As already stated, all the utilization factorsui in this sum-
mation are greater thanuk;1, so(m� k + 1)uk;1 < uk;1 +�< uk;1 + �� + 1 by the definition of�
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and we can finduk;1.uk;1 < �(� + 1)(m� k) (5)

Substituting the value ofuk;1 from (5) into (4) we obtainmXi=k ui < �(� + 1)(m� k) + �< �(� + 1)(m� k) + �(� + 1) by def. of�= (m� k + 1)�(� + 1)(m� k)= 1 + 1=(m� k)1 + 1=�
We know thatk � (m � �) in Case 2, so (m � k) � �.
Therefore, mXi=k ui � 1
This equation shows that the last(m � k + 1) tasks meet
the EDF schedulability condition, so they fit into the last
processor.

We have proved that any task set withm tasks and a
total utilizationUEDF-FF

wc (m� �; n� 1; �) + � �UEDF-FF
wc (m� �; n� 1; �) + �� + 1

fits into n processors, so the worst-case utilization bound,UEDF-FF
wc (m;n; �), must be greater than or equal toUEDF-FF
wc (m � �; n � 1; �) + ��+1 , and the theorem is

proved. �
The worst-case achievable utilization for EDF-FF is ob-

tained from Theorem 1 and Theorem 2.

Theorem 3 If m > �n thenUEDF-FF
wc depends only onn,

and�, and is given byUEDF-FF
wc (n; �) = �n+ 1� + 1 (6)

Proof:
Firstly, we obtain a lower bound for the worst-case achiev-
able utilization for a set ofm tasks on a multiprocessor withn processors.

Theorem 2 relates the worst-case achievable utilization
of sets ofm tasks on multiprocessors ofn processors, with

the worst-case achievable utilization of sets of(m��) tasks
on multiprocessors with(n� 1) processors.UEDF-FF

wc (m;n; �) ��� + 1 + UEDF-FF
wc (m� �; n� 1; �) (7)

Theorem 2 also relates the worst-case achievable utilization
of sets of(m� �) tasks on multiprocessors of(n� 1) pro-
cessors, with the worst-case achievable utilization of sets of(m� 2�) tasks on multiprocessors of(n� 2) processors.UEDF-FF

wc (m� �; n� 1; �) ��� + 1 + UEDF-FF
wc (m� 2�; n� 2; �) (8)

Substituting (8) into (7) we getUEDF-FF
wc (m;n; �) �2�� + 1 + UEDF-FF

wc (m� 2�; n� 2; �)
This procedure can be repeated, until finally relating the
worst-case achievable utilization of sets ofm tasks on mul-
tiprocessors ofn processors, with the worst-case achievable
utilization of sets of(m� (n� 1)�) tasks on an uniproces-
sor.UEDF-FF

wc (m;n; �) �(n� 1)�� + 1 + UEDF-FF
wc (m� (n� 1)�; 1; �) (9)

The worst-case achievable utilization for(m � (n � 1)�)
tasks and one processor is one, independently of the values
of m or�. UEDF-FF

wc (m� (n� 1)�; 1; �) = 1 (10)

Substituting (10) into (9), we obtain a lower bound on the
worst-case achievable utilization ofm tasks onn proces-
sors. UEDF-FF

wc (m;n; �) � �n+ 1� + 1 (11)

Theorem 1 proved thatUEDF-AA
wc (m;n; �) � �n+ 1� + 1 (12)

where AA is an arbitrary allocation algorithm. Hence, it
also applies to the FF heuristic. From equation (11) and
equation (12) we getUEDF-FF

wc (m;n; �) = �n+ 1� + 1
6



We observe thatUEDF-FF
wc only depends on the number of

tasks,m, and parameter�, so we finally conclude thatUEDF-FF
wc = UEDF-FF

wc (n; �) = �n+ 1� + 1 �
Therefore, any set of periodic tasks, with utilization fac-

tors less than or equal to�, and total utilization less than or
equal to UEDF-FF

wc (n; �) = �n+ 1� + 1
is feasibly scheduled by EDF onn processors using FF allo-
cation, where� = b1=�
. This is a tight sufficient schedu-
lability condition. For any value of total utilization greater
thanUEDF-FF

wc (n; �) it is possible to find a task set with this
utilization which does not fit into the processors using EDF-
FF scheduling.

Having calculated the general expression of the worst-
case achievable utilization, and making� = 1 we remove
the restrictionui � �, so the utilization factors of the tasks
can now be in the interval(0; 1℄. In this case� = 1, and the
worst-case achievable utilization is given byUEDF-FF

wc (n; 1) = 0:5(n+ 1) (13)

4. Worst-case achievable utilization for other
allocation heuristics

This paper focuses on the FF heuristic. However it would
be interesting to know whether it is possible to find other
heuristics providing higher worst-case achievable utiliza-
tion than that provided by FF. Theorem 1 stated thatUEDF-AA

wc (m;n; �) � �n+ 1� + 1
where AA is an arbitrary allocation algorithm. Since the
worst-case achievable utilization for EDF-FF (given by
equation (6)) equals this bound, it follows that FF alloca-
tion provides the maximum worst-case achievable utiliza-
tion under EDF scheduling with partitioning. Therefore, it
coincides with the worst-case achievable utilization under
EDF scheduling for the optimal allocation algorithm. In ad-
dition, EDF being the optimal uniprocessor scheduling al-
gorithm, it follows that no pair ofuniprocessor scheduling
algorithm-allocation algorithmexists with higher worst-
case achievable utilization than that of EDF-FF.

The fact that FF provides the maximum worst-case
achievable utilization for EDF scheduling does not preclude
the existence of task sets which can be allocated by other
algorithms but not by FF. In fact, different allocation algo-
rithms should also be compared in terms of average-case
achievable utilization.

Under EDF scheduling, otherreasonableheuristics such
asFirst Fit Decreasing(FFD), Best Fit (BF), andBest Fit
Decreasing(BFD) have the same worst-case achievable uti-
lization as FF. However, they are computationally more ex-
pensive. In addition, neither FFD nor BFD can be applied
on-line. The definition of these heuristics can be found
in [5]. The proof of the worst-case achievable utilization
for BF is analogous to that shown for FF, so it is not re-
peated. The proof for FFD and BFD is direct. Both heuris-
tics require a process of sorting the utilization factors before
applying the pure FF or BF heuristic. The process of sorting
restricts the possible task sets to allocate with regard to the
general task sets considered in the case of pure FF or BF
allocation. Therefore, the worst-case achievable utilization
for FFD and BFD can not be lower than that of FF and BF.
In addition from Theorem 1, the worst-case achievable uti-
lization can not be higher, so finally we conclude that the
worst-case achievable utilization for FFD, BFD, FF, and BF
is the same, given by equation (6).

After observing the coincidence among the worst-case
achievable utilization of differentreasonableallocation al-
gorithms, one might think that the worst-case achievable
utilization may be a constant for all thereasonableallo-
cation algorithms. However, this is not the case. For ex-
ample, consider thereasonableallocation algorithm called
Worst Fit (WF), which assigns a task to the processor with
the lowest capacity, among all the processors with sufficient
capacity. Consider also a multiprocessor made up ofn = 2
processors, and a set ofm = 3 tasks of utilization factors0:1, 0:1 and0:91. The first task of utilization factor0:1 is
assigned to the first processor, and the second task of uti-
lization 0:1 to the second processor. After that, the third
task of utilization factor0:91 can not be allocated to any of
the two processors, so the worst-case achievable utilization
for EDF-WF is less than(0:1 + 0:1 + 0:91) = 1:11. This
value is much lower than1:5, the worst-case achievable uti-
lization for EDF-FF withn = 2.

5. Analysis of the theoretical results

In this section, we analyze the expression of the worst-
case achievable utilization,UEDF-FF

wc (n; �), for EDF-FF
given by equation (6), which is repeated below.UEDF-FF

wc (n; �) = �n+ 1� + 1
In spite ofn being an integer, the functionUEDF-FF

wc (n; �)
is represented as a continuous function in Figure 3, with
the aim of improving its visualization. Figure 3 depicts the
worst-case achievable utilization for EDF-FF as a function
of the numbers of processors, for different values of�. The
representation has been normalized dividingUEDF-FF

wc (n; �)
by the number of processors, in order to show the average
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Figure 3. Worst-case achievable utilization for
EDF-FF.

degree of utilization of the processors. The addition of each
new processor increments the worst-case achievable utiliza-
tion in the magnitude ��+1 . Furthermore, any decrement of� produces an increment of� = b1=�
 and an increment of
the worst-case achievable utilization. In the limit, if� ! 0
then� !1, and it follows thatlim�!0UEDF-FF

wc (n; �) = n
Hence, if the utilization factor of all the tasks is low, the
multiprocessor system using EDF-FF scheduling approxi-
mates an ideal uniprocessorn-times faster than each pro-
cessor of the multiprocessor.

The worst-case achievable utilization provides the max-
imum total utilization guaranteeing the schedulability ona
given number of processors. Nevertheless, there are practi-
cal cases in which we are interested in the worst number of
processors,nEDF-FF

wc , required to feasibly schedule a task set
of a given total utilization.

In this paper we have presented two schedulability con-
ditions, from which we obtain different numbers of proces-
sors. The first schedulability condition (see Figure 1) com-
ing from the definition of� is m � �nEDF-FF

wc , so findingnEDF-FF
wc and choosing the minimum integer, we obtainnEDF-FF

wc = �m� � (14)

The second schedulability condition coming from equa-
tion (6) is U � �nEDF-FF

wc + 1� + 1

so findingnEDF-FF
wc (n; �), and choosing the minimum integer

we obtain nEDF-FF
wc = � (� + 1)U � 1� �

(15)

Equation (15) is not valid forU � 1=(� + 1). However for
any total utilizationU � 1 a single processor is enough to
feasibly schedule the task set. From this observation, equa-
tion (14), and equation (15), we getnEDF-FF

wc (m;U; �) =(1 if U � 1minnlm� m ; l (�+1)U�1� mo
otherwise

(16)

For example, to guarantee the schedulability of100 tasks,
of total utilization15, and utilization factors under0:25 (i.e.� = 4), 19 processors are necessarynEDF-FF

wc (100; 15; 4) =min��1004 � ;� (4 + 1)15� 14 �� = 19
6. Average-case behaviour

The worst-case achievable utilization is obtained for task
sets which might be infrequent in practice. In order to per-
ceive the pessimism of the worst-case achievable utiliza-
tion, we will define theaverage-case achievable utilization,UEDF-FF

ac (m;n; p), for EDF-FF as follows.

Definition 2 A task set made up ofm tasks, of total utiliza-
tion U = UEDF-FF

ac (m;n; p) is schedulable by EDF and FF
onn processors with a probability equal top.

If task sets made up ofm tasks with a total utilizationU = UEDF-FF
ac (m;n; p) were randomly generated,p% of the

task sets would be schedulable by EDF and FF onn proces-
sors. The other(100 � p)% would correspond to task sets
which do not fit into the processors.

The statistical distribution chosen to generate the task
sets is theBeta Distribution. This distribution has two pos-
itive parameters, which allow us to select the mean,�, and
standard deviation,�, of the distribution. In addition, it is
suitable to generate the utilization factors of the tasks, as it
only generates values in the interval(0; 1). The maximum� for a given value of� is �max = p�(1� �), which is
obtained by considering the restrictions of the Beta distribu-
tion. Varying the value of the standard deviation from zero
to the maximum, the utilization factors of the tasks vary
from being equal, to having unlike values. Thus, the stan-
dard deviation of the distribution affects the schedulability
of the task sets.
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With the aim of establishing the pessimism of the worst-
case achievable utilization for EDF-FF, given by equa-
tion (6), we have carried out simulation experiments to ob-
tain UEDF-FF

ac (m;n; p) for p = 99%. At least 1000 task
sets were randomly generated using the beta distribution of
probability to obtain each tuplefm;n; UEDF-FF

ac (m;n; p)g,
for each value of standard deviation from� = 0:001�max

to � = 0:9�max. Figure 4 was obtained as the minimum,
among all the standard deviations from� = 0:001�max

to � = 0:9�max, of the associated curves of average-case
achievable utilization. Figure 4 also represents the worst-
case utilization bound to be compared with the average-case
utilization bound. The difference is significant for task sets
with a high number of tasks, since in this case the utiliza-
tion factors of the tasks are small in probability terms. Nev-
ertheless, for the uniprocessor case, the average-case coin-
cides with the worst-case achievable utilization, given by
the boundU � 1.

From Figure 4, we observe an achievable utilization of
around80% per processor (with a probability of 99%) for a
multiprocessor made up of four processors. Assuming that
any task set of utilizationn or less can be scheduled us-
ing non-partitioning, the improvement that may be obtained
by means of non-partitioning is about20% per processor.
However in practice, the improvement is much less. Firstly,
we must consider the high overload associated with non-
partitioning schemes. Secondly, we must bear in mind that
task sets with total utilization greater than that given by Fig-
ure 4 could be schedulable by EDF-FF. In addition, the im-
plementation of non-partitioning schemes is more complex
and less predictable than the implementation of EDF-FF.
Therefore, from a practical point of view, EDF-FF is supe-
rior to non-partitioning schemes for scheduling independent
hard-real time periodic tasks on multiprocessors.

7. Conclusions

A schedulability bound based on utilizations has been
obtained for real-time scheduling of periodic tasks using
EDF-FF. This bound is a function of the number of pro-
cessors and the maximum value that can be reached by any
utilization factor of the task set. For the case of tasks with
low utilization factors, the bound is greatly raised, reaching
asymptotically the valuen when all the utilization factors
are close to zero.

Among all the partitioning scheduling algorithms, EDF-
FF has been proved to be optimal in terms of worst-case
achievable utilization.

Simulation has provided an average-case achievable uti-
lization bound much higher than the worst-case achievable
utilization, showing the pessimism of equation (6).

Finally, simulation indicated that in general EDF-FF
scheduling is more practical than non-partitioning schedul-

0.511.522.533.544.5

5 10 15 20 25 30 35n = 1n = 2n = 3n = 40:001�max � � � 0:9�maxNumber of pro
essors (n)
UEDF-FFa
 (m;n; p = 99%)UEDF-FFw
 (n; � = 1)Number of tasks (m)

Figure 4. Average-case achievable utilization
for arbitrary standard deviation.

ing schemes when scheduling independent hard-real time
periodic tasks on multiprocessors.
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