
Timing Analysis of Reliable Real-Time Communication in CAN Networks

Luís Miguel Pinho
Department of Computer Engineering
ISEP, Polytechnic Institute of Porto

Porto, Portugal
E-mail: lpinho@dei.isep.ipp.pt

Francisco Vasques
Department of Mechanical Engineering

FEUP, University of Porto
Porto, Portugal

E-mail: vasques@fe.up.pt

Abstract

The Controller Area Network (CAN) is a fieldbus
network with real-time capabilities. It is generally
considered that CAN guarantees atomic multicast
properties, through its extensive error detection/signalling
mechanisms. However, there are error situations where
messages can be delivered in duplicate by some receivers
or delivered only by a subset of the receivers, leading to
inconsistencies in the supported applications.

In order to prevent such inconsistencies, a set of
atomic multicast protocols is proposed, taking advantage
of CAN synchronous properties to minimise its run-time
overhead. This paper presents such set of protocols,
focusing on the timing analysis of the supported reliable
real-time communication. It demonstrates that, in spite of
the extra stack of protocols, the real-time capabilities of
CAN are preserved, since the predictability of message
transfer is guaranteed.

1. Introduction

Controller Area Network (CAN) [1] is a fieldbus
network suitable for small-scale Distributed Computer
Controlled Systems (DCCS). Several studies on how to
guarantee the real-time requirements of messages in CAN
networks are available (e.g. [2]), providing the necessary
pre-run-time schedulability conditions for the timing
analysis of the supported traffic, even for the case of
networks disturbed by temporary errors [3].

CAN networks also have extensive error detection and
signalling mechanisms, which impose the retransmission
of the message when an error is detected. However, it is
known that these mechanisms may fail when an error is
detected in the last but one bit of the frame [4]. This
problem may cause messages to be delivered in duplicate
by some receivers or to be delivered only by a subset of
the receivers.

This may be disastrous if the CAN network is used to
support replicated applications, since these applications
require that replicated components provide the same
results, when they are correct. Thus, the consistency of the
delivered messages must be guaranteed by atomic
multicast mechanisms, which guarantee that messages are
delivered by all (or none) of the component replicas, and
that they are delivered only once. Furthermore, there is the
need to agree in the delivery order of multicasts, and to
consolidate values from replicated inputs.

The DEAR-COTS (Distributed Embedded
ARchitecture using Commercial Off-The-Shelf
components) architecture [5] provides a generic
framework for distributed hard real-time applications,
guaranteeing their timeliness and reliability requirements.
In this architecture, CAN is used as the communication
infrastructure for reliable real-time communication. A set
of protocols is provided in order to guarantee atomic
multicasts and consolidation of replicated components’
outputs. In this paper, the timing characteristics of the
protocols are analysed, demonstrating that the real-time
characteristics of CAN are preserved.

The paper is organised as follows. Section 2 presents
work related to reliable communication in CAN. Then,
Section 3 presents the requirements posed to the
communication infrastructure. Section 4 presents the
proposed protocols for reliable real-time communication
in CAN. Their timing analysis is then described in Section
5, developing the necessary pre-run-time schedulability
conditions. Finally, a numerical example is presented in
Section 6 and some conclusions are outlined in Section 7.

2. Related work

The use of CAN networks to support DCCS
applications requires not only time-bounded transmission
services, but also the guarantee of consistency for the
supported applications. In spite of the extensive CAN
built-in mechanisms for error detection and recovery [1],

there are some known reliability problems [4], which can
lead to an inconsistent state of the supported applications.

Such misbehaviour is a consequence of different error
detection mechanisms at the transmitter and receiver
sides. A message is valid for the transmitter if there is no
error until the end of the transmitted frame. If the message
is corrupted, a retransmission is triggered according to its
priority. For the receiver, a message is valid if there is no
error until the last but one bit of the received frame, being
the value of the last bit treated as 'do not care'. Thus, a
dominant value in the last bit does not lead to an error, in
spite of violating the CAN rule stating that the last 7 bits
of a frame are all recessive.

Error detected
Receiver rejects

the frame

r dReceiver A

Error detected
Sender schedules frame for
retransmission

‘Do not care’ bit
Receiver accepts

 the frame

At this moment, Receiver A has accepted the frame, while
Receiver B has rejected it

- If the sender retransmits the frame, then Receiver B will
have it, while Receiver A will have a duplicate frame
(inconsistent message duplicate)

- If the sender fails before the retransmission, then
Receiver B will never have the frame
(inconsistent message omission)r dSender

ddReceiver B

Receiver B signals the Error,
starting an Error Frame in the
last bit of the frame

Figure 1. Inconsistency in CAN.

Receivers detecting a bit error in the last but one bit of
the frame (Figure 1) reject the frame and send an Error
Frame starting in the following bit (last bit of the frame).
As for receivers the last bit of a frame is a ‘do not care’
bit, other receivers may not detect the error and will
accept the frame. However, the transmitter re-transmits
the frame, as there was an error, thus some receivers will
have an inconsistent message duplicate. The use of
sequence numbers can solve this problem, but it does not
prevent messages from being received in different orders.
Additionally, if the transmitter fails before being able to
retransmit the frame, some receivers will never receive the
frame, which causes an inconsistent message omission.

In [4], the probability of message omission and/or
duplicates is evaluated, in a reference period of one hour,
for a 32 node CAN network, with a network load of
approximately 90%. Bit error rates were used ranging
from 10-4 to 10-6, and node failures per hour of 10-3 and
10-4. For inconsistent message duplicates the results
obtained were from 2.87 x 101 to 2.84 x 103 duplicates per
hour, while for inconsistent message omissions the results
ranged from 3.98 x 10-9 to 2.94 x 10-6 omissions per hour.
These values demonstrate that for reliable real-time
communications, CAN built-in mechanisms for error
recovery and detection are not sufficient.

Thus, the use of CAN to support reliable real-time
communications must be carefully evaluated and
appropriate mechanisms must be devised. In [4], a set of

fault-tolerant broadcast protocols is proposed, which solve
the message omission and duplicate problems. However,
such protocols do not take full advantage of the CAN
synchronous properties, therefore producing a greater run-
time overhead under normal operation. For instance, in the
best-case (data message with 8 bytes), the overhead of the
total order protocol (TOTCAN) is approximately 150%.
The problem is that, in order to achieve ordered
multicasts, each receiver must re-transmit an ACCEPT
message, even if there is no error. Other protocols in the
set do not guarantee total order. Therefore, the overheads
introduced by these protocols make them very inefficient.

Another approach would be to use hardware-based
solutions, such as the one described in [6]. This approach
is based in a hardware error detector, which automatically
retransmits messages that could potentially be omitted in
some nodes. It solves the inconsistent message omission
problem, but, in order to achieve order, it is necessary to
restrict hard real-time messages to never compete for the
bus, in a time-slotted approach.

3. Communication requirements

In the DEAR-COTS architecture, a hard real-time
application is constituted by several tasks (processing
units) distributed over the nodes of the system. To
guarantee the reliability requirements of applications,
parts of it must be replicated, in order to tolerate
individual faults. Therefore, the notion of “component” is
introduced, which is the replication unit. Each component
can include tasks and resources from several nodes, or it
can be located in just one node. As an example, Figure 2
shows a real-time application with 4 tasks (τ1, τ2, τ3 and
τ4), and two different components (C1 and C2).

&�

&�·

&�·&�

τ� τ�· τ�·τ�

τ� τ� τ�·τ�·

Figure 2. Hard real-time application.

The communication infrastructure must guarantee that
all messages sent by correct nodes are orderly delivered to
all its recipients. However, there must also be an
all-or-none guarantee for the case of a message sent by an
incorrect node: either all correct nodes deliver that
message, or none of them deliver it. There is also the need
to agree in the order by which broadcasts are delivered,
and to consolidate values from replicated inputs.

In the DEAR-COTS architecture, there is the need for
the following four types of message exchanges: 1-to-1, 1-
to-many, many-to-1 and many-to-many.

For 1-to-1 communication (communication from a non-
replicated component to another non-replicated
component, or communication internal to a component)
there is only the need for a reliable multicast, since there
is no replication, thus order issues are not relevant.
However, when a result is to be disseminated to a group of
replicated components (1-to-many communication),
atomic multicast protocols [7] must be used to guarantee
that replicated receivers get the same information, in the
same order.

When a group of replicated components receives input
from another group of replicated components (many-to-
many communication), it must agree on the value to use.
Thus, an interactive consistency algorithm must be used.
Each of the receiving components must receive all the
values proposed by the replicated transmitters, and agree
on the value to be delivered. If an underlying atomic
multicast mechanism is used to disseminate each value,
then it is guaranteed that every receiver will have the same
input values, and by the same order. The agree decision
can then be performed by a simple Consolidate protocol,
that decides on one of the received values (or on some
value computed from them).

The case of many-to-1 communication is a simplified
version of the previous one. The receiving component has
only to decide from the set of received inputs. The same
Consolidate protocol is used, but using only a reliable data
transfer from the replicated transmitters to the receiver.

4. Reliable CAN communication

In the DEAR-COTS architecture, the Communication
Manager Layer (Figure 3) is the responsible for the
reliable and timely communication. The Filtering layer
allows that only nodes registered to receive a particular
message stream will process messages related to that
stream, decreasing the number of messages in error
situations.

)LOWHULQJ /D\HU

�0

$WRPLF

0XOWLFDVW

&
RQILJ

XUDWLRQ

&RQVROLGDWH

�0�*',0'8QUHO�

Figure 3. Communication Manager structure.

Relying on CAN frames being simultaneously received
in every node, the protocols are based in delaying the
deliver of a received frame for a specific (bounded) time.
The approach is similar to the ∆-protocols [8], where, in
order to obtain order, message delivery is delayed for a
specific time (∆). In the DEAR-COTS approach, delivery
delays are evaluated on a stream by stream basis, where

messages are delayed accordingly to their worst-case
response times, considering the case of a network
disturbed by inaccessibility periods [2] [3]. It is also
assumed that clocks are approximately synchronised, to
guarantee the deterministic behaviour of components [9]
and the correct evaluation of the delivery delays.

4.1 Failure assumptions

In the DEAR-COTS architecture it is assumed that:
- A single message can be disturbed by at most kdup

duplicates. As the probability of an inconsistent
message duplicate is approximately 10-4 (the
transmission of 2.87 x 107 messages per hour results
in, at most, 2.84 x 103 duplicate messages [4]), it is
not foreseen the necessity of a kdup greater than 2.

- During a time T, greater than the worst-case delivery
time of any message, at most one single inconsistent
message omission occurs in the network. Considering
the existence of 3.98 x 10-9 to 2.94 x 10-6 inconsistent
message omissions per hour [4], the occurrence of a
second omission error in a period T of, at most,
several seconds has an extremely low probability.

- There are no permanent medium faults, such as the
partitioning of the network. This type of faults must
be masked by network redundancy schemes.

4.2 Atomic multicasts

The Atomic Multicast module provides several
protocols with different failure assumptions and different
behaviours in the case of errors.

7UDQVPLWWHU

5HFHLYHU �

5HFHLYHU �

5HFHLYHU �

0HVVDJH

$XWRPDWLF

5HWUDQVPLVVLRQ

δGHOLYHU 'HOLYHU

δGHOLYHU

'XSOLFDWHG

0HVVDJHV

(UURU GHWHFWHG DQG

VLJQDOOHG E\ 5HFHLYHU � EXW

QRW E\ 5HFHLYHUV � DQG �

Figure 4. IMD protocol.

The IMD (Inconsistent Message Duplicate) protocol
(Figure 4) provides an atomic multicast that just addresses
the inconsistent message duplicate problem. To guarantee
that the duplicates are correctly managed, every node,
when receiving a message marks it as unstable, tagging it
with a tdeliver (current time plus δdeliver). If a duplicate is
received before tdeliver, such duplicate is discarded and
tdeliver is updated (since in a node not receiving the original
message, tdeliver refers to the duplicate).

The 2M (Two Messages) protocol addresses both the
inconsistent message duplicates and inconsistent message
omissions. For the case of inconsistent message omissions
it guarantees that either all or none of the receivers deliver
the message. In this case, not delivering a message is
equivalent to a transmitting node crash before sending the
message.

The 2M protocol is based on the transmission of a
confirmation for every multicast sent in the bus, and, if
needed, the transmission of related aborts. A node wanting
to send an atomic multicast transmits the data message,
followed by a confirmation message, which carries no
data. A receiving node before delivering the message,
must receive both the message and the confirmation. If it
does not receive the confirmation before a specific tconfirm

(Figure 5 presents an example of an inconsistent
confirmation message), it multicasts the corresponding
abort frame.

7UDQVPLWWHU

5HFHLYHU �

5HFHLYHU �

5HFHLYHU �

0HVVDJH
&RQILUPDWLRQ

δFRQILUP

δGHOLYHU

$ERUW

7UDQVPLWWHU IDLOV EHIRUH

UHWUDQVPLWLQJ

5HFHLYHU � VLJQDOV

WKH HUURU

Figure 5. Inconsistent message omission while sending
the confirmation (2M protocol).

This implies that several aborts can be simultaneously
sent (at most one from each receiving node that is
interested in that particular message stream). A message is
only delivered if the node does not receive any related
abort frame until after a specific tdeliver (since a node that
receives the message but not the confirmation does not
know if the transmitter has failed while sending the
message or while sending the confirmation).

When a message is received, the node saves it in the set
of received messages, and marks it as unstable, tagging it
with the tconfirm and tdeliver. A node receiving a duplicate
message discards it, but updates both tconfirm and tdeliver. As
the data message has a higher priority than the related
confirmation, then all duplicates will be received before
the confirmation. Duplicate confirmation messages will
always be sent before any abort (confirmation messages
have higher priority than related abort messages), thus
they will confirm an already confirmed message. No
update is performed in this case to tconfirm and tdeliver since
they are related to the time of reception of the message,
not the confirmation.

The 2M protocol can be modified to guarantee the
delivery of a transmitted message to all the receiving
nodes, if it is correctly received by at least one node. In

the 2M-GD (Guaranteed Delivery) protocol, nodes
receiving the message but not the confirmation, shall
retransmit the message (instead of an abort). This protocol
is however less efficient than the 2M protocol (in error
situations), since messages are retransmitted with the data
field. To guarantee an orderly deliver, it is necessary to
use a tdeliver_after_error to solve inconsistent message
duplicates.

4.3 Consolidation of replicated inputs

The Consolidate module is built on top of the atomic
multicast protocols, in order to guarantee that every
replicated component receives the same set of messages,
in the same order. The Consolidate protocol performs the
decide phase after a specific delay (δdecide), or when it
knows that it will not receive further messages (Figure 6).

WLPH

δGHFLGH

'HFLGH

'HOLYHU � 'HOLYHU �'HOLYHU �

Figure 6. Consolidate in error free situation.

For the case of many-to-1 communication, there is no
need to use underlying protocols that solve the
inconsistent message omission problem, since just one
node will deliver the message. However, it is still
necessary to address the inconsistent message duplicate
problem, as the receiving node may have duplicate
messages. Thus, it is sufficient to use the IMD protocol.

5. Response time analysis

In order to guarantee the timeliness requirements of
real-time applications it is necessary to previously analyse
the response time of the proposed protocols. As these
protocols are based on delaying of the delivery and
consolidation phases, the response time analysis is
constrained by the evaluation of these delays.

In the following analysis, it is considered a CAN
network with n message streams defined as:

),,(mmmm DTCS = (1)

where Sm defines a message stream m characterised by a
unique identifier. Cm is the longest message duration of
stream Sm and Tm is the periodicity of stream Sm requests.
In order to have a timing analysis independent from the
model of the tasks, it is assumed that this periodicity is the
minimum time interval between two consecutive arrivals
of Sm requests to the outgoing queue. Finally, Dm is the
relative deadline of a message; that is, the maximum time
interval between the instant when the message request is

placed in the outgoing queue and the instant when the
message is delivered.

The response time analysis of CAN networks has been
addressed in [2], considering fixed priorities for message
streams and a non-preemptive scheduling model. In [3],
this response time analysis is extended to integrate
temporary periods of network inaccessibility (introduced
in [10]). In such analysis, the worst-case response time of
a queued message, measured from the arrival of the
message request to its complete transmission, is:

mmm CIR += (2)

The schedulability of the message stream set is
guaranteed if every message has a response time smaller
than its deadline. The term Im represents the worst-case
queuing delay - longest time interval between the arrival
of the message request and the start of its transmission. Cm

represents the actual transmission time of the message.
Considering the deadline monotonic (DM) priority

assignment, the worst-case queuing delay of a message of
message stream Sm is:

()
)(m

mhpj
j

j

bitm
mm IInaC

T

I
BI +










×











 ++= ∑
∈∀

τ (3)

where Bm is the worst-case blocking factor, which is equal
to the longest duration of a lower priority message, τbit is
the duration of a bit transmission and hp(m) is the set of
message streams with higher-priority than Sm. Ina(Im)
integrates the temporary periods of inaccessibility caused
by errors in frame transmission [3], including the time
necessary to re-transmit failed messages. As a duplicate
message is a consequence of the retransmission of an
inconsistently failed message, the duration of its
transmission is also included in the Ina(Im) term.

Some (or all) of these message streams may use the
atomic multicast protocols presented in the previous
Section. Therefore, they may involve the exchange of
extra messages in the network, either from errors
(duplicate messages) or from protocol-related messages
(confirmation, abort and retransmission messages). Extra
messages related to a message stream Sm are referred
respectively has Sm

dup
 , Sm

conf
, Sm

ab
 and Sm

retrans.

5.1 IMD protocol

The IMD protocol delay (δdeliver) is used to guarantee
that a message is only delivered when it is known that
there will be no more duplicates. A duplicate message
appears when there is an error in the last but one bit of a
frame and some nodes do not detect it. Thus, the sender
will automatically retransmit the failed message. As the
receiving node must evaluate such delay based in local
information, it must take the arrival instant as its time

reference. It must delay the delivery until the time it takes
to completely retransmit a failed message. In the presence
of a duplicate message (Figure 7), δdeliver is reset.

7UDQVPLWWHU

5HFHLYHU �

5HFHLYHU �

5HFHLYHU �

0HVVDJH

$XWRPDWLF

5HWUDQVPLVVLRQ

δGHOLYHU 'HOLYHU

δGHOLYHU

'XSOLFDWHG

0HVVDJH

:,0'

5P

&P

Figure 7. IMD protocol with one duplicate message.

Thus, δdeliver must be greater or equal to the worst-case
response time of the duplicate message. This response
time is equivalent to the worst-case response time of the
original message, as it has the same priority. However, as
the transmitter automatically tries to retransmit the failed
frame, this retransmitted frame will not be blocked by any
lower priority message:

0=∧= dup
m

dup
mdeliver BRδ (4)

Considering the IMD protocol, the worst-case delivery
time for message stream Sm is the sum of the message
worst-case response time plus the delay introduced by
each one of its duplicates:

deliverdupm
IMD

m kRW δ*)1(++= (5)

The best-case delivery time is when a message is
transmitted with its best-case response time (actual
transmission time) and no duplicate is transmitted:

deliverm
IMD
m CB δ+= (6)

5.2 2M protocol

For the 2M protocol, two different delays must be
considered: δconfirm and δdeliver. For δconfirm, it is considered
that the message and the confirmation are both put in the
transmission queue atomically, and that any delays needed
to handle the transmission of the confirmation message by
the sender node are inferior to the transmission time of the
message. Thus, the evaluation of δconfirm considers that the
confirmation message will not suffer any blocking:

0=∧= conf
m

conf
mconfirm BRδ (7)

Although network disturbances may lead to the
duplication of confirmation messages, the Ina(Im) term of

equation (3) already integrates these duplicates in the
evaluation of the response time.

7UDQVPLWWHU

5HFHLYHU �

5HFHLYHU �

5HFHLYHU �

0HVVDJH

&RQILUPDWLRQ

δFRQILUP

δGHOLYHU

$ERUW

:�0

∆QRGH 5P
DERUW

5P

&P ∆QRGH

Figure 8. 2M protocol with confirm omission.

The δdeliver bound must be determined considering that
every receiver must wait until it is known that it will not
receive any abort message. These abort messages will be
sent after δconfirm by the nodes that do not receive the
confirmation message (Figure 8). However, it must also
be taken into account the response time of the node itself
(∆node), between detecting a missed confirmation until it
places the abort message in the outgoing queue:

abort
mnodeconfirmdeliver R+∆+= δδ (8)

Note that several abort messages may be transmitted in
the network, in relation to the same omission error.
However, to determine the δdeliver bound it is only
necessary to consider the first one to be transmitted, thus
to consider the smaller ∆node of all receiving nodes. The
possible existence of several aborts in the network in case
of error must be properly considered for the response-time
evaluation of less priority messages.

δFRQILUP

7UDQVPLWWHU

5HFHLYHU �

5HFHLYHU �

5HFHLYHU �

0HVVDJH

&RQILUPDWLRQ

δGHOLYHU

$ERUW

:�0

∆QRGH 5P
DERUW

5P

∆QRGH

'XSOLFDWH

δFRQILUP

Figure 9. 2M protocol with message duplicate followed
by confirm omission.

The worst-case delivery time of message stream Sm,
considering the 2M protocol, is when a message is
transmitted with its worst-case response time with

possible duplicates (Figure 9), thus resetting both δconfirm

and δdeliver. Therefore, the worst-case delivery time must
consider an extra δconfirm for each assumed duplicate
message.

deliverconfirmdupm
M

m kRW δδ ++= *2 (9)

The best-case delivery time is obtained when the
message has its best-case response time (actual message
transmission time) and there are no duplicates or
omissions:

deliverm
M

m CB δ+=2 (10)

5.3 2M-GD protocol

The 2M-GD protocol has the same behaviour as the 2M
protocol. For δconfirm and δdeliver it is only necessary to
replace the worst-case response time of the abort message
(Rm

abort) in equation (8) with the worst-case response time
of the retransmission message (which is equal to the
worst-case response time of the original message).
Multiple retransmissions need also to be considered for
the response time evaluation of lower priority messages.

7UDQVPLWWHU

5HFHLYHU �

5HFHLYHU �

5HFHLYHU �

0HVVDJH

δFRQILUP

5HWUDQVPLVVLRQ

'HOLYHU

:�0�*'

∆QRGH

5P

5P
UHWUDQV

δGHOLYHUBDIWHUBHUURU

Figure 10. 2M-GD protocol with message omission
followed by transmitter failure.

An extra delay δdeliver_after_error must be determined
(Figure 10). This delay must be imposed within each node
when a retransmission is received, since it can not
guarantee that other nodes have already received it (due to
inconsistent retransmission duplicates). Thus, it is
necessary to follow a similar approach to the IMD
protocol, and delay the delivery until all duplicates are
correctly received. Hence, δdeliver_after_error is equal to the
worst-case response time of a duplicated retransmission
message:

0__ =∧= retrans
m

retrans
merrorafterdeliver BRδ (11)

The worst-case and best-case delivery time of the 2M-
GD protocol are then given by considering that the worst-

case is when an inconsistent message omission occurs,
and retransmissions are needed. Duplicate retransmission
messages must be taken into account, since it must be
guaranteed that every node delivers the message at the
same time (once again, this response time is determined
without blocking, since duplicates are immediately re-
scheduled).

7UDQVPLWWHU

5HFHLYHU �

5HFHLYHU �

5HFHLYHU �

0HVVDJH

δFRQILUP

5HWUDQVPLVVLRQ

'HOLYHU

δGHOLYHUBDIWHUBHUURU
:�0�*'

∆QRGH

5P

5P
UHWUDQV

Figure 11. 2M-GD Protocol with retransmissions.

However, the possible existence of multiple
retransmissions must also be considered (Figure 11). A
node receiving a second retransmission will consider it as
a duplicate retransmission, as the messages are equivalent,
and it will update δdeliver_after_error accordingly. Therefore,
the worst-case response time must also consider the
maximum number of retransmissions it will receive (nm

rec

is the number of receivers of message stream Sm):

errorafterdeliverdup
rec
m

deliverconfirmdupm
GDM

m

kn

kRW

__

2

*)(

*

δ

δδ

++

+++=−

(12)

deliverm
GDM

m CB δ+=−2 (13)

5.4 Consolidate protocol

The Consolidate protocol has to delay the decide phase
for a specific time (δdecide), until it knows that it will not
receive any more messages. This time is dependent on the
worst-case delivery for each of the replicated messages.
However, this worst-case time must be referred to an
initial time reference, common to all nodes sending these
messages. This common time reference must be the
release time of the task that sends the message. Therefore,
the worst-case delivery time of the messages must also
take into account the worst-case response time of the tasks
that send the message.

Knowing the worst-case delivery time for each of the
replicated messages, δdecide may be determined assuming
that the first message to arrive has been transmitted with
its best-case delivery time, and that the last message to

arrive will be the one with the greater worst-case delivery
time. Therefore:

{ } { } εδ +−=
∈∀∈∀ i

replicasi
i

replicasi
decide BW minmax (14)

where Wi is the worst-case delivery time of message i and
Bi is the best-case delivery time of message i, considering
a common time reference. ε is the maximum deviation
between nodes’ synchronised clocks.

5.5 Response time of message streams

In order to determine the response time of each
message stream in the network, it is also necessary to
consider the interference of confirmation messages and
possible aborts or retransmissions of higher priority
message streams that use the 2M or 2M-GD protocols.
Equation (3) must be updated to account for these new
periods of interference:

()

{ }j
mhpj

m

mhpj

extra
jj

j

bitm
mm

msgextraIIna

CC
T

I
BI

_max)(

)(

)(∈∀

∈∀

++

+









+×











 ++= ∑
τ

(15)

where Cj
extra is the interference caused by the confirmation

message, which is:





=
0

conf
jextra

j

C
C

2M or 2M-GD protocol

otherwise
(16)

Additionally, max{extra_msgj} accounts for the aborts
or retransmissions in the network, due to inconsistent
message omissions. As it is assumed the existence of a
single inconsistent message omission during a period T
(greater than the largest worst-case delivery time), each
message stream needs only to consider the effect of one
abort/retransmission due to inconsistent message omission
per receiver of message j, that is:








=

0

*

*

_ retrans
j

rec
j

abort
j

rec
j

j Cn

Cn

msgextra

2M protocol

2M-GD protocol

otherwise

(17)

The Ina(Im) term in equation (15) integrates the periods
of network inaccessibility caused by errors in frame
transmission, therefore it includes the retransmissions of
inconsistently failed messages (that is, duplicates).

5.6 Network utilisation

The network utilisation is given by the sum of the ratio
transmission delay versus period of all message streams.
Additionally, periods of temporary network inaccessibility

(due to on-going error detection and recovery
mechanisms) must also be considered [3]:

ina
m m

m U
T

C
U +





= ∑

∀

(18)

The Uina term accounts for the network utilisation due
to errors in frame transmission, therefore, as already
referred, it includes the network utilisation related to
duplicate messages.

Considering the proposed atomic multicast protocols,
equation (18) must be updated to account for the extra
messages in the network. For each message stream
transmitted with the 2M or 2M-GD protocol, an extra
confirmation message must be added (Cm

extra) to the first
term of equation (18). Furthermore, a third factor is
included in equation (19) to account for network
utilisation related to inconsistent message omissions (one
for each period T).

T

msgextra
U

T

CC
U

m
m

ina
m m

extra
mm

}_{max
∀

∀
++







 += ∑
(19)

6. Numerical example

In order to clarify the use of the presented model, a
simple example is used. In this example (Figure 12), a
system where a distributed hard real-time application
executes is considered. The system is constituted by four
nodes, connected by a CAN network at a rate of 1
Mbit/sec.

&�

&�··

&�·

&�

τ� τ�··

τ�· τ� τ�·τ�·

&�·

τ� τ�

&�

τ�··

&�··

τ�··

$SSOLFDWLRQ &RQILJXUDWLRQ

&$1

τ� τ� τ� τ�

$SSOLFDWLRQ 6WUXFWXUH

M1 M3 , M4 , M5

0HVVDJHV

M2

Figure 12. Application example.

The application is constituted by four tasks (τ1..τ4),
which are spread over the nodes. As component
replication is also used, then some of these tasks are also
replicated. In this simple application, each task outputs its
results to the following task.

The application is divided in three components:
component C1 encompasses tasks τ1, component C2
encompasses τ2 and τ3, and finally component C3 is just
τ4. Component C2 and C3 are replicated in three replicas,
while component C1 is not replicated. Node 1
encompasses component C1 (τ1) and C2’ (τ2’, τ3’), node 2
component C2 (τ2, τ3) and C3 (τ4), node 3 component C3’
(τ4’) and C2’’ (but just τ2’’) and node 4 component
C3’’(τ4’’) and C2’’ (but just τ3’’).

Table 1. Tasks’ characteristics.

Task Type WCET Period Comp. Nodes
τ1 Per. 2 5 C1 1
τ2 Per. 2 10 C2 1,2,3
τ3 Spo. 3 10 C2 1,2,4
τ4 Per. 4 15 C3 2,3,4

Table 1 presents each task’s characteristics, while
Table 2 presents the characteristics of the necessary
message streams (all values are in milliseconds).

Table 2. Messages streams’ characteristics.

Msg Bytes Period From To Prot.
M1 4 5 τ1 τ2,τ2’,τ2’’ 2M-GD

M2 8 10 τ2’’ τ3’’ IMD

M3 6 10 τ3 τ4,τ4’,τ4’’ 2M

M4 6 10 τ3’ τ4,τ4’,τ4’’ 2M

M5 6 10 τ3’’ τ4,τ4’,τ4’’ 2M

Note that messages from τ2 to τ3 and τ2’ to τ3’ are
internal to the node, since they are intra-component, and
both tasks are in the same node. Since message M1 is a 1-
to-many communication, the 2M-GD protocol is used in
order to guarantee that every replica of task τ2 delivers the
message. Therefore, there will be an extra confirmation
message with the same period of M1, but without data
bytes. Since it is considered that an inconsistent message
omission may occur, then it is also necessary to account
for the possible 3 retransmission messages (one from each
receiving node).

Message M2 is internal to a component (although the
component is spread between nodes 3 and 4), and it is a 1-
to-1 communication. Therefore, it is sufficient to use the
IMD protocol, since only duplicates are to concern.
Messages M3 to M5 are messages from replicated τ3 to
replicated τ4, therefore they need consolidation in every
replica of τ4. As this consolidation will mask node failures
of the senders, then it is sufficient to use to 2M protocol
for the transmission of messages. Therefore there will be
an extra confirmation message for each message sent (and
possible abort messages).

In this analysis, the model of [3] is used, with the
following error assumptions:
- a maximum of 2 errors in each 10 ms time interval,

resulting from a bit error rate of approximately 10-4,
which is an expectable range for bit error rates in
aggressive environments;

- possible existence of an inconsistent message
omission during the period of analysis;

- possible existence of one duplicate in the
transmission of a message (kdup = 1);

- a ∆node equal to 100 µS and a maximum deviation
between clocks (ε) of 100 µS.

The target of this example is to analyse the responsiveness
of the proposed protocols, for both the response time and
the delivery time of messages. Response time is
considered as the time interval between requesting a
message transfer until the message is fully received at the
receiver side. Delivery time is considered as the time
interval between requesting a message transfer until the
Communication Manager delivers the message to the
upper layers. If multicast protocols are not used, these
times are equivalent, as it can be assumed that messages
are delivered when they are correctly received.

Table 3. Messages’ response time without protocols.

Msg P Cm Rm
NP

M1 5 0.089 0.519
M2 10 0.127 0.630
M3 10 0.108 0.741
M4 10 0.108 0.852
M5 10 0.108 0.852
U 6.590 %

Table 3 presents the response time for each message
stream and the network load when multicast protocols are
not used, that is, the Unreliable protocol is used instead of
IMD/2M/2M-GD protocols. Rm

NP represents the worst-
case response time (NP: no protocols), P is the periodicity
and Cm is the actual time taken to transmit a message. U is
the network utilisation.

As it can be seen, the worst-case response time of
messages is considerably greater than its actual
transmission time. Although interference from higher
priority messages is one of the factors leading to such
difference, the main factor is the network bit error rate.
For instance, a message of stream M1 in an error free
environment would have a worst-case response time of
0.219 ms. The possible existence of errors in the network
more than duplicates its worst-case response time, even
when multicast protocols are not used.

Tables 4 and 5 present the messages’ delays and
delivery times considering the use of the proposed
multicast protocols. Rm

MP represents the worst-case
response time of a message stream when multicast

protocols (MP) are considered. Wm and Bm are,
respectively, the worst- and best-case delivery time for
message stream Mm.

Table 4. Protocol-related delays.

Msg Prot. δconfirm δdeliver δdel_aft_er

M1 2M-GD 0.350 0.969 0.389
M2 IMD - 0.848 -
M3 2M 0.901 2.013 -
M4 2M 1.065 2.341 -
M5 2M 1.229 2.558 -

Table 5. Messages’ delivery time considering protocols.

Msg Rm
MP Wm Bm Wm/Rm

MP

M1 0.519 3.394 1.058 6.54
M2 0.959 2.655 0.975 2.77
M3 1.070 3.984 2.121 3.72
M4 1.234 4.640 2.449 3.76
M5 1.287 5.074 2.666 3.94
U 9.09 %

As it can be seen in Table 5, the worst-case delivery
time is greater than the related worst-case response time,
because apart from the multicast-related introduced
delays, it is assumed that each message may be disturbed
by one duplicate. For instance, the worst-case delivery
time for message stream M5 is not only given by the
message stream response time plus its δdeliver, but also by
summing an extra δconfirm due to the possible existence of a
message duplicate.

The last column of Table 5, presents the ratio worst-
case delivery time/worst-case response time, when
considering the use of multicast protocols. It is obvious
that the IMD protocol is the one that introduces smaller
delays (Message M2), while the 2M-GD protocol is the
one with the higher delays (Message M1). Therefore, the
system’s engineer can use this reasoning to better balance
reliability and efficiency in the system. Moreover, the
multicast protocols increase network utilisation less than
50%, since multicast-related retransmissions only occur in
inconsistent message omission situations. Although this
network load increase is still large, it is much smaller than
in other approaches, and it is the strictly necessary to cope
with inconsistent message omission using a software-
based approach.

Since messages from replicated task τ3 to replicated
task τ4 need to be consolidated, it is necessary to
determine the δdecide parameter of the Consolidate
protocol. As stated, it is necessary to find the worst-case
and best-case delivery time of each one of the messages
(M3 to M5). However, these delivery times must refer to a
common time base. Thus, it is necessary to determine the
best-case and worst-case response time of replicated tasks

τ3. This task is a sporadic task released by τ2. Hence, its
response time is dependent of the response time of τ2.

Table 6. Consolidation.

Task WCRT BCRT Msg W B
τ3 5 5 M3 8.984 7.121
τ3’ 9 7 M4 13.64 9.449
τ3’’ 7.655 5.975 M5 12.729 8.641

Table 6 presents the best-case and worst-case response
time of replicated tasks τ3, and the associated worst-case
and best-case delivery time of messages M3 to M5 (all
referring to the common release time of task τ2).
Therefore, using equation (14):

δdecide = 13.64 – 7.121 + 0.1 = 6.619 ms (20)

The worst-case response time of the consolidation
(from the time that the first message is scheduled for
transmission) is determined assuming that messages are
delivered at their worst-case delivery time, but there is a
message that is lost. In this case (assuming that the lost
message is the one with the lower worst-case response
time (M3)), message M4 will arrive with its worst-case
response time of 4.640, which summed to the δdecide gives
a worst-case consolidation time of:

WConsolidate = RM4 + δdecide = 11.259 ms (21)

Although, this type of consolidation introduces delays
in the system, its advantage is that no extra overhead is
introduced in the network, preserving at the same time the
predictability of the system. One of the main targets of the
proposed multicast protocols is to introduce reliability in
CAN communication, while at the same time preserving
CAN real-time characteristics (thus allowing the offline
analysis of messages’ response times). Such target is
achieved with the proposed multicast protocols, since the
predictability of message transfers is guaranteed.

7. Conclusions

In spite of its built-in error detection/signalling
mechanisms, CAN networks may cause inconsistencies in
the supported applications, as messages can be delivered
in duplicate by some receivers or delivered only by a
subset of the receivers. In order to preclude such incorrect
behaviour, a set of atomic multicast protocols is proposed.
Total order is guaranteed through the transmission of just
an extra message (without data) for each message that
must tolerate inconsistent message omissions. Only in
case of an inconsistent message omission (low
probability) there will be more protocol-related
retransmissions. Consolidation of replicated inputs is
considered through the use of a consolidate protocol, built
on top of the multicast protocols.

These protocols explore the CAN synchronous
properties to minimise their run-time overhead, and thus
to provide a reliable and timely service to the supported
applications. This paper also presents the model and
assumptions for the evaluation of the response time of the
protocols and message streams, demonstrating that the
real-time capabilities of CAN are preserved, since
predictability of message transfers is guaranteed.

Acknowledgements

The authors would like to thank the anonymous
referees for their helpful comments. This work was
partially supported by FCT (project DEAR-COTS
14187/98) and IDMEC.

References

[1] ISO 11898. (1993). Road Vehicle - Interchange of Digital
Information - Controller Area Network (CAN) for High-Speed
Communication. ISO.
[2] Tindell, K., Burns, A. and Wellings, A. (1995).
Calculating Controller Area Network (CAN) Message Response
Time. In Control Engineering Practice, 3(8), pp. 1163-1169.
[3] Pinho, L., Vasques, F. and Tovar, E. (2000). Integrating
inaccessibility in response time analysis of CAN networks. In
Proceedings of the 3rd IEEE International Workshop on Factory
Communication Systems, pp. 77–84, Porto, Portugal, September
2000.
[4] Rufino, J., Veríssimo, P., Arroz, G., Almeida, C. and
Rodrigues, L. (1998). Fault-Tolerant Broadcasts in CAN. In
Proc. of the 28th Symposium on Fault-Tolerant Computing,
Munich, Germany, June 1998.
[5] Veríssimo, P., Casimiro, A., Pinho, L. M., Vasques, F.,
Rodrigues, L. and Tovar, E. (2000). Distributed Computer-
Controlled Systems: the DEAR-COTS approach. In Proc. of the
16th IFAC Workshop on Distributed Computer Control Systems,
Sydney, Australia, November 2000.
[6] Kaiser, J. and Livani, M. (1999). Achieving Fault-Tolerant
Ordered Broadcasts in CAN. In Proc. of the 3rd European
Dependable Computing Conference, Prague, , Czech Republic,
September 1999, pp. 351-363
[7] Hadzilacos, V. and Toueg, S. (1993). Fault-Tolerant
Broadcasts and Related Problems. In Mullender, S. (Ed.),
Distributed Systems, 2nd Ed., Addison-Wesley, 1993.
[8] Cristian, F., Aghili, H., Strong, R. and Dolev, D. Atomic
Broadcast: From Simple Message Diffusion to Byzantine
Agreement. In Information and Control, 118:1, 1995.
[9] Poledna, S., Burns, A., Wellings, A. and Barret, P. (2000).
Replica Determinism and Flexible Scheduling in Hard Real-
Time Dependable Systems. IEEE Transactions on Computers,
49(2), pp. 100-111, 2000.
[10] Rufino, J. and Veríssimo, P. (1995). A Study on the
Inaccessibility Characteristics of the Controller Area Network.
In Proc. of the 2nd International CAN Conference, London,
United Kingdom, October 1995.

