
1

Abstract1: The ongoing revision of the POSIX.13 standard
—real-time profiles for portable operating system interfac-
es— proposes adding new services to the Minimum Real-
Time System Profile that are considered useful to the small
embedded applications to which this profile is targeted.
Concerns have been raised that these services may intro-
duce too much overhead or may be difficult to implement. In
this paper we evaluate the implementation of some of these
new services in our MaRTE operating system. The imple-
mented services are the monotonic clock, a high resolution
sleep operation with specifiable clock, execution-time clock
and timers, the sporadic server scheduling policy, and the
timed mutex lock operation. We show that the complexity of
these implementations is small, and the overheads intro-
duced by the new services are fully acceptable.

1. Introduction
POSIX is the acronym for Portable Operating System

Interface. It is a proposed operating system interface stan-
dard based on the popular UNIX operating system; its main
goal is to support application portability at the source-code
level. It is being standardized by the Computer Society of
IEEE as the IEEE standard P1003, and also by ISO/IEC, as
the international standard ISO/IEC-9945 [1].

Because of the need to achieve application portability
for real-time systems, a Real-Time System Services Work-
ing Group was established in POSIX. This group is devel-
oping standards to add POSIX (or UNIX) the OS services
that are needed by real-time applications. The charter of the
POSIX Real-time Working Group is to “develop standards
which are the minimum syntactic and semantic changes or
additions to the POSIX standards to support portability of
applications with real-time requirements.” The real-time
working group has developed several real-time extensions

to the POSIX system interfaces, and the threads and trace
extensions.

Many real-time applications, such those designed for
small embedded systems, have special physical constraints
that require operating systems with a reduced set of func-
tionality. For example, many systems exist which cannot
have a disk drive, do not have a hardware memory manage-
ment unit, and have a small amount of memory. For these
systems it is necessary that the standard allows implemen-
tations to only support a particular subset of the POSIX
functions. The subsets necessary for real-time applications
are also being addressed by the Real-time System Services
Working Group in the POSIX.13 [2] standard. In this stan-
dard four realtime application environment profiles have
been specified: minimal real-time system (for small
embedded systems), real-time controller, dedicated system
(for large embedded systems), and multi-purpose real-time
system. 

Currently there is revision process for the real-time sys-
tem profiles [3]. One of the main objectives of this revision
is to add the new real-time services incorporated into the
POSIX standard since 1998, in particular the additional and
advanced real-time extensions (POSIX.1d and POSIX.1j),
tracing (POSIX.1q), and networking (POSIX.1g). Another
important objective is to modify the existing profiles
according to field experience on their implementation and
use.

Some of the new real-time extensions have been pro-
posed for their inclusion in all of the profiles, including the
smaller one. Concerns have been raised that these services
may be too complex to implement in the context of a very
small kernel, or may introduce too much overhead. It
would be interesting to have an evaluation of the impact of
implementing these services in a small embedded kernel
that follows the POSIX.13 minimal real-time system pro-
file. This paper provides the results of such evaluation, and
proposes a particular way of implementing the new OS ser-
vices.

1. This work has been funded by the Comisión Interministerial de 
Ciencia y Tecnología of the Spanish Government under grant TIC99-
1043-C03-03 and by the Commission of the European Communities under 
contract IST-2001-34140 (FIRST project)

Evaluation of New POSIX Real-Time Operating Systems Services for Small 
Embedded Platforms

Mario Aldea Rivas and Michael González Harbour

Departamento de Electrónica y Computadores
Universidad de Cantabria
39005-Santander, SPAIN
{aldeam,mgh}@unican.es



2

The new services have been implemented in our operat-
ing system MaRTE OS (Minimal Real-Time Operating
System for Embedded Applications) [4], which is a real-
time kernel that follows the Minimal Real-Time POSIX.13
profile, providing both the C and Ada language POSIX
interfaces. It allows cross-development of Ada and C real-
time applications. Mixed Ada-C applications can also be
developed, with a globally consistent scheduling of Ada
tasks and C threads.

The paper is organized as follows: Section 2 gives a
quick overview of the current POSIX real-time profiles and
of their proposed revision. Sections 3 to 7 briefly describe
each of the new services, propose an implementation for
them, and gives the results of the evaluation. Finally, Sec-
tion 8 gives our conclusions.

2. The POSIX.13 real-time profiles
Because the POSIX standard is so large, subsets are

defined to enable implementations for a wide range of sys-
tems: from small embedded systems to large general-pur-
pose computers with real-time requirements. The main
characteristics of the four real-time profiles defined by
POSIX.13 are:

•PSE51: Minimal real-time system profile. Implementa-
tions of this profile are not required to support multiple
processes, nor a full featured file system. The unit of
concurrency is the thread. Input and output is possible
through predefined device files, but no regular files can
be created. This profile is intended for small embedded
systems. Most of the complexity of a general purpose
operating system is eliminated: PSE51 systems can be
implemented with a few thousand lines of code, and with
memory footprints in the tens of kilobytes range. Our
MaRTE operating system [4] is an implementation of
this profile.

•PSE52: Real-time controller profile. It is similar to the
PSE51 profile with the addition of a file system in which
regular files can be created and read or written. It is
intended for systems like a robot controller, which may
need support for a simplified file system.

•PSE53: Dedicated real-time system profile. It is intended
for large embedded systems, such as an avionics system.
It is an extension of the PSE51 profile adding support for
multiple processes. For this kind of system protection
boundaries are required between different parts of the
application, and processes are required in this profile for
that purpose. A file system is not required.

•PSE54: Multi-purpose real-time system profile. This pro-
file is intended for general-purpose computing systems
running a mixture of applications with real-time and non-
real-time requirements. It requires most of the POSIX

functionality for general purpose systems and, in addi-
tion, most of the real-time services. 

As a consequence of the approval of new POSIX real-
time services, a project as been started by the IEEE to
revise the POSIX.13 standard. In addition to extending the
profiles, in this revision field experience with the imple-
mentation and use of the profiles will be used to make any
modifications to the existing profiles. 

Although the final outcome may change during the stan-
dardization process, the current draft of the revised stan-
dard [3] proposes adding most of the new real-time
services to all of the profiles. One other major proposed
change is to add file system support to the PSE53 profile,
in recognition that many real-time systems now have the
possibility of implementing file capabilities in flash mem-
ory, which has much less stringent mechanical and power
requirements than those of rotating magnetic media.

For the minimal real-time profile the proposed additions
are:

•Monotonic clock

•High-resolution sleep with specifiable clock

•Execution-time clocks and timers

•Sporadic Server scheduling algorithm

•Timed mutex lock operation

Each of these services has been implemented in our
operating system MaRTE OS [4] (Minimal Real-Time
Operating System for Embedded Applications), which fol-
lows the Minimal Real-Time POSIX.13 subset. This imple-
mentation has allowed us to obtain information about the
complexity and overheads added to the operating system,
thus making it possible to evaluate the impact of these new
services in the Minimum Real-Time System Profile. The
results of the evaluation appear in the following sections.
All the time values have been measured on a 1.1 GHz Pen-
tium III computer.

3. Monotonic Clock

3.1. Description

In the current description of the Minimum Real-Time
System Profile there is only one clock defined:
CLOCK_REALTIME. This clock represents the realtime
clock for the system and measures the amount of time, in
seconds and nanoseconds, since the Epoch (zero hours,
zero minutes, zero seconds, on January 1, 1970 Coordi-
nated Universal Time). It is settable by the application via
the clock_settime() function, and as such it is subject
to sudden changes that could severely affect timing behav-
ior. Just imagine the effects of subtracting one second to
the system time (perhaps to synchronize the clock with the
official calendar time) while the system is waiting for its



3

next time event that should happen within one millisecond;
the next deadline would be missed by one second!

In recognition of the need of real-time applications to
have their timing requirements not depend on the official
calendar clock, the POSIX.1j standard introduced another
clock (CLOCK_MONOTONIC), which is defined as a clock
whose value cannot be set and which cannot have back-
ward clock jumps. It measures the amount of time elapsed
from an arbitrary but fixed time instant, such as the system
boot time or the Epoch. 

This new clock is very interesting for real-time applica-
tions because its use ensures that deadlines and timing
requirements are not affected by changes in the system-
wide clock time.

3.2. Implementation and Evaluation

Before adding the monotonic clock to MaRTE OS, its
internal clock was already monotonic. The implementation
of the time events follows the alarm clock model, in which
instead of requiring a periodic interrupt, the hardware timer
is programmed to interrupt the processor exactly at the time
of expiration of the earliest time event. The instants of acti-
vation of all the time events, both absolute and relative,
were expressed as an absolute value referred to that clock.
In this way we were able to order them according to their
degree of urgency in a single queue of time events.

The implementation of the internal monotonic clock in a
PC architecture (which is currently the only platform for
MaRTE OS; others are under development) depends on the
underlying processor architecture. If a Pentium processor is
available, the measurement of absolute time can be imple-
mented using the “Time-Stamp Counter” (TSC) [7]. This
counter (as implemented in the Pentium and P6 family
processors) is a 64-bit counter that is set to zero following
the hardware reset of the processor. We can use that inter-
nal clock directly as the system’s CLOCK_MONOTONIC
clock.

In 80386 and 80486 processors, the system time is
maintained by periodically programming counter zero of
the “Programmable Interval Timer” (PIT) [8] so that after
each expiration of the counter, the last programmed inter-
val is added to the total time accumulated since the system
boot. With this strategy, the value of the monotonic clock is
obtained by adding the accumulated time since the system
boot plus the current value of counter zero of the PIT.

In any of these implementations, the value of
CLOCK_REALTIME is obtained by adding to the value
obtained from the internal monotonic clock the time of sys-
tem boot, perhaps modified by the changes to the system
time introduced by the application via clock_settime().

Because an internal monotonic clock already existed in
MaRTE OS, implementing the interface has required a very

small modification of the kernel, which only affects the
functions that may operate with several clocks, such as
clock_gettime(), clock_nanosleep(), and
pthread_cond_timedwait(). The modification consists
of checking which clock is requested and, in the case of the
realtime clock, adding or subtracting the system boot time,
as appropriate. The number of new instructions is therefore
very small, and has a minimal impact on the overhead of
these functions, basically a simple check. The monotonic
clock itself is faster than the realtime clock, because there
is no need to adapt values representing a calendar time to
the internal time format used by the system.

4. High Resolution Absolute Sleep 
Operation with Specifiable Clock 

4.1. Description

Currently, the Minimum Real-Time System Profile
includes an operation for a high resolution relative suspen-
sion of threads (nanosleep()). This operation always
uses CLOCK_REALTIME.

In the current revision of the profiles a new suspension
operation called clock_nanosleep() has been proposed.
This operation allows a thread to suspend itself until a rela-
tive time interval has passed, or an absolute value of time is
reached. In addition, the clock to be used for this suspen-
sion is specifiable. The absolute time option of this new
version of the high resolution sleep allows applications to
easily write periodic threads because with absolute time we
can avoid the race condition that can occur if the thread is
preempted between the thread’s read of the clock and the
sleep operation. In addition, the monotonic clock may be
used so that there are no dependencies on the application
setting the calendar time.

4.2. Implementation and Evaluation

The implementation of this functionality only implies
incorporating the clock_nanosleep() function in the
kernel, and therefore there is no overhead impact for the
rest of the services. The size of this function is 35 lines, and
thus this represents a minimal impact on the size of the ker-
nel.

Table 1 shows some performance metrics for the
clock_nanosleep() operation, and their comparison
with those of the relative nanosleep() function. The first
four rows in the table show the time elapsed from the
instant when a high priority thread suspends itself with one
of these operations, until another lower priority thread that
was ready starts executing. The differences between the
two functions are due to the larger number of parameters
and operation modes of the clock_nanosleep() function. 



4

The fifth row in Table 1 shows an opposite situation, in
which a low priority thread is preempted by a high priority
thread that had been previously suspended with one of the
high resolution sleep operations. In this case there is no dif-
ference between the two functions.

Finally, the last four rows in the table show the differ-
ence between the requested thread activation time and the
real observed time at which the thread starts executing.
These metrics include one context switch, and would
include any possible jitter or delay introduced by the timer
interrupt mechanism used to handle time events. As it can
be seen, both of the high resolution sleep operations are
extremely precise, within one microsecond, and with a neg-
ligible advantage for the absolute sleep operation.

5. Execution-Time Clocks and Timers

5.1. Description

The proposed revision of the POSIX.13 standard
includes the execution-time clocks and timers in all the
real-time profiles, including the minimal PSE51. When this
functionality is supported in a system, a CPU-time clock is
created for each thread (and for each process, if multiple
processes are present). These clocks are managed using the
standard POSIX interface for clocks and timers, so, it is
possible to define timers based on those clocks.

This functionality is very useful for real-time applica-
tions, because execution-time timers can be used to detect
the consumption of an excessive amount of execution time
by a thread, allowing run-time detection of software errors
or of errors made in the estimation of the worst-case execu-
tion times. Detecting when a thread exceeds the worst-case
execution time assumed during the analysis phase is very
important in robust time-critical systems, because if the
assumptions are violated, the results of the schedulability
analysis are no longer valid, and the system could miss its
deadlines. Execution-time clocks allow detecting when an
execution-time overrun occurs, and activating the appropri-

ate error handling actions. They are also very useful for
implementing at the application level various scheduling
policies that require execution-time budgeting, such as the
constant bandwidth server (CBS) [9].

5.2. Implementation and Evaluation

Execution-time clocks are implemented by accounting
at each context switch for the execution time consumed by
the running thread. This requires reading the monotonic
clock and storing its value as the activation time of the new
thread, for later accounting, and increasing the amount of
execution time of the old thread by an interval equal to the
difference between the current time and the activation time
of that old thread. 

In addition, because the application may create execu-
tion-time timers, there is a new kind of time event that
expires when the execution time of a given thread has
reached a specific value. In addition to supporting the tim-
ers, these events are used in MaRTE OS to implement the
round robin and the sporadic server policies, as we will
describe later.

Execution-time events are not queued in the regular
time-events queue, to prevent multiple queueing and
dequeueing operations that would be required each time the
system switched to a different running thread. Instead, exe-
cution-time events are kept on a thread-by-thread basis.
Because in a single processor only one thread is running,
the system need only pay attention to the execution-time
events of that particular thread. In the MaRTE implementa-
tion we have chosen to use a singly linked list for the exe-
cution-time events of each thread, ordered by execution
time, because usually the number of such events per thread
is very low (probably just one), and a singly linked list is
faster than a priority queue for a small number of items.

Before the new thread is executed, the hardware timer is
programmed to produce an interrupt at the time of the most
urgent event in the system. This event is the most urgent

Table 1: Performance of the clock_nanosleep() function (Pentium III 1.1GHz)

Description Time (µs)

Suspension using nanosleep() 0.89

Relative suspension using clock_nanosleep() 0.93

Absolute suspension using clock_nanosleep(CLOCK_MONOTONIC) 0.93

Absolute suspension using clock_nanosleep(CLOCK_REALTIME) 0.94

Wake up after suspension operation (nanosleep() or clock_nanosleep()) 0.75

Resolution of nanosleep() 1.0

Resolution of relative clock_nanosleep() 1.0

Resolution of absolute clock_nanosleep(CLOCK_REALTIME) 0.9

Resolution of absolute clock_nanosleep(CLOCK_MONOTONIC) 0.9



5

between the head of the time-events queue, and the head of
the execution-time-events queue of the running thread.

This implementation of clocks and execution-time tim-
ers has implied adding around 10 lines of code to the con-
text switch routine (to measure consumed execution time)
and another 50 lines added to the clock and timer opera-
tions. In addition, we added a list of execution-time events
to each thread, which implied a few new fields in the thread
control block, and no additional lines for the data structure,
because it was already included for implementing other
features of MaRTE OS.

MaRTE OS can be configured at kernel compile time to
either support or not execution-time clocks and timers. If
this functionality is configured out, no measurement of
execution time is made, and so an application not interested
in this functionality needs not pay its overhead. Table 2
shows the increase in the context switch time that enabling
execution-time clocks and timers introduces in threads
scheduled under the SCHED_FIFO scheduling policy. The
context switch time was measured as the time interval
elapsed between a thread invoking a yield operation, and
the next thread starting to execute

In summary, we have shown that the implementation of
execution-time clocks and timers in MaRTE OS has a very
small impact on the size of the kernel. The overhead associ-
ated with these services is very low, at least in modern
architectures in which reading the clock is a very fast oper-
ation (like in the Pentium processors when the “Time
Stamp Counter” is used). 

The use of execution-time clocks and timers allows the
application to detect and handle execution-time overruns.
In our view, this feature is extremely important in today’s
real-time systems in which execution times are very diffi-
cult to measure correctly, and the small overhead of the
implementation is fully acceptable.

6. Sporadic Server Scheduling Policy

6.1. Description

When the realtime application environment profiles
where specified, the POSIX standard only had two schedul-
ing policies: FIFO within priorities (SCHED_FIFO) and
round-robin within priorities (SCHED_RR). A a new sched-
uling policy was defined recently in the POSIX standard

that implements the sporadic server scheduling algorithm
(SCHED_SPORADIC)[5]. This policy can be used to process
unbounded aperiodic events at the desired priority level,
while making it possible to guarantee the timing require-
ments of lower priority threads. The sporadic server pro-
vides fast response times and makes systems with aperiodic
events predictable. It is also useful to reduce the negative
effects that input jitter has on the schedulability of lower
priority threads [6].

The sporadic server scheduling policy assigns a limited
amount of execution time to a given thread. The thread is
allowed to use that amount of execution time at the desired
priority level. Once the thread has consumed its available
execution time, its priority is switched to a background
level, lower than the priorities of any other threads with
real-time requirements. Each portion of consumed execu-
tion time is replenished at a time equal to the activation
time of that computation plus an interval called the replen-
ishment period. In this way, the sporadic server guarantees
a bandwidth for its thread equal to the initial execution-
time capacity every replenishment period; and it also guar-
antees that the effects of that thread on lower priority
threads are no worse than the effects of an equivalent peri-
odic thread with an execution time and period respectively
equal to the initial capacity and replenishment period.

The current proposed revision of the POSIX.13 standard
proposes this scheduling policy for all the real-time pro-
files, and thus also for the Minimum PSE51 profile. 

6.2. Implementation and Evaluation

The implementation of the sporadic server policy is
rather complex, but part of its complexity comes from the
need to compute and limit execution time, which is already
available in MaRTE OS. Limiting the execution time of a
thread running under the SCHED_SPORADIC policy is
easy, by using an execution-time event similar to those
described in Section 5 for the execution-time timers. The
implementation of this policy has been unified with the
round robin policy; in the latter, an execution-time event is
used for determining the end of a time quantum. By inte-
grating the treatment of these scheduling policies with the
execution-time events, the complexity of the kernel is
reduced.

An alternate solution for the execution-time events
caused by the sporadic server and round robin policies
would have been to include these events among the ordi-
nary (non-execution-time) time events. This solution would
imply adding the thread to the time-events queue each time
a thread with one of these policies was made runnable, and
dequeueing the event every time the thread was blocked or
preempted. This would imply significantly increasing the
worst-case execution time of the context switch operation.

Table 2: Impact of CPU-Time accounting in context 
switch performance (Pentium III, 1.1GHz)

CPU-time accounting enabled?
Context Switch 
Time (µs)

NO 0.42

YES 0.44



6

For this reason we have chosen an integrated approach with
the execution-time events.

For those threads scheduled under the
SCHED_SPORADIC policy, in addition to limiting the
execution time to the available capacity it is necessary to
program the replenishment operations, to restore a portion
of spent execution capacity at the appropriate time.
Because these operations must occur at a particular abso-
lute time not related with the execution time of any thread,
they are enqueued in regular time-events queue. 

The implementation in MaRTE OS of the sporadic
server policy according to the design described above has
required adding around 60 lines of code, of which 20 lines
are shared with the round-robin policy and the execution-
time timers. In addition, we have added 30 lines of code to
handle the new scheduling parameters associated with the
threads running under this policy.

MaRTE OS has a configuration parameter that allows
the application developer to compile the kernel with or
without sporadic server support. In this way applications
not using the sporadic server policy don’t have to pay the
overhead associated with it. This configuration parameter
makes it easy to determine the overhead effects that the
scheduling policy has on the context switch times. Table 3
shows the context switch times between threads scheduled
under the SCHED_FIFO policy with or without the spo-
radic server policy enabled. We can see that enabling the
sporadic server policy has a minimal impact on the context
switches when no threads are scheduled with the sporadic
server policy. The effect is approximately the same as that
for adding execution-time clocks and timers, because the
actions to be performed by the context switch routine are
basically the same in both cases.

If the application has threads running under the sporadic
server policy, some context switches may be longer due to
the execution of the code implementing the sporadic server
rules; in particular, the exhaustion of the execution capacity

and the replenishment operations increase the context
switch times. However, as we can see in Table 4, the
increase in the context switch time is always under the one
microsecond range, and thus is fully acceptable, even for
the most stringent applications. For example for a periodic
thread running at a frequency of 1KHz the overhead of a
double context switch for each period would not exceed
0.26% of its period.

In summary, we can conclude that the implementation of
the sporadic server scheduling policy has a very small com-
plexity, and that the overheads introduced by this policy as
compared with those of the regular SCHED-FIFO policy
are always under one microsecond, and therefore fully
acceptable given the advantages obtained relative to the
scheduling of aperiodic activities.

7. Timed Mutex Lock

7.1. Description

Mutexes are the objects defined in POSIX for the mutu-
ally exclusive synchronization of threads when accessing
shared resources. The basic operations of a mutex are lock
and unlock. Initially a mutex is unlocked. When a thread
locks a mutex it becomes the owner of that mutex, and no
other thread can lock the mutex until unlocked by the
owner. The “lock” operation suspends the calling thread if
the mutex is not available, i.e., if it is owned by some other
thread. 

Table 3: Impact of the SCHED_SPORADIC policy on 
context switch performance (Pentium III, 1.1GHz)

SCHED_SPORADIC policy enabled?
Context Switch 
Time (µs)

NO 0.42

YES 0.44

Table 4: Context switch performance for SCHED_SPORADIC threads (Pentium III, 1.1GHz)

Thread leaving the processor Thread taking the processor
Context Switch 
Time (µs)

SCHED_FIFO thread that invokes 
sched_yield()

SCHED_SPORADIC thread 0.5

SCHED_SPORADIC thread that invokes 
sched_yield()

SCHED_FIFO thread 0.45

SCHED_SPORADIC thread that invokes 
sched_yield()

SCHED_SPORADIC thread 0.47

SCHED_SPORADIC thread that reaches the limit 
imposed to its execution time

SCHED_FIFO thread 1.2

SCHED_FIFO thread SCHED_SPORADIC thread that replenishes 
its execution capacity

1.3



7

If by programming error or because of a software or
hardware fault the owner does not unlock the mutex, the
thread(s) awaiting at a lock operation would remain
blocked forever. For this reason, the new POSIX realtime
extensions defined a timed version of the mutex lock opera-
tion, in which an absolute timeout can be specified. This
timeout is based on the CLOCK_REALTIME clock.

7.2. Implementation and Evaluation

The implementation of this service has been very sim-
ple, implying:

•A change to the unlock operation, to eliminate the time-
out event if present.

•Adding the new function, pthread_mutex_-

timedlock().

•Adding the code to execute the timeout, which has to
eliminate the waiting thread from the mutex’s queue.

No changes to other functions were necessary, except
that we added a new field to the time-event data structure,
to identify the mutex in which the thread is blocked. The
treatment of the new time event is similar to the one imple-
mented for pthread_cond_timedwait(). The total num-
ber of additional lines required to add the new service is 59.

The performance of the new service compared with the
regular mutex lock operations is shown in Table 5, for
mutexes with the priority ceiling synchronization protocol
enabled. This protocol is called PRIO_PROTECT in POSIX
and is used to avoid unbounded priority inversion effects.
The first two rows show that locking a free mutex takes the
same time regardless of the kind of operation used. If the
mutex is locked and the function suspends the calling
mutex, the time of pthread_mutex_timedlock() is

longer, because in this case a new time event must be pro-
grammed. The results in rows three and four of the table
show the time needed to execute the lock operation for this
situation, measured until a context switch is made and a
new thread starts executing. If we lock and then unlock a
free mutex there is no timeout event, and thus there is no
difference in performance between the two functions; nor
there is a measurable difference before or after implement-
ing the new timed mutex lock operation.

Rows 4 and 5 of Table 5 show that the unlock operation
has more overhead in the case of unlocking a mutex with a
timeout, because the time event needs to be eliminated
from the queue of time events. But the difference is less
than 80 ns.

The last row in the table shows the time required to per-
form a context switch between a low priority thread and a
high priority thread that is activated because it’s timeout
had expired. We can see that this time is comparable with
the time spent in the activation of a thread that suspended
itself with the nanosleep() operation, which is 0.75µs.

In summary, adding the timed mutex lock operation did
not cause any measurable overhead to the regular mutex
operations. The overhead of the timed mutex operations
themselves are similar to those of other timed operations.
In addition, the complexity of adding this service to the
kernel is very small.

8. Conclusions
We have implemented in our MaRTE OS some of the

new real-time operating system services proposed for the
Minimum real-time System Profile in the new revision of
the POSIX.13 standard. The services implemented are the

Table 5. Performance of the pthread_mutex_timedlock() function (Pentium III, 1.1GHz)

Description POSIX function used Time (µs)

Lock a free mutex
pthread_mutex_lock() 0.15

pthread_mutex_timedlock() 0.15

Attempt to lock an already locked mutex and 
subsequent context switch

pthread_mutex_lock() 0.5

pthread_mutex_timedlock() 0.65

Lock and unlock a free mutex

pthread_mutex_lock() and 
pthread_mutex_unlock()

0.35

pthread_mutex_timedlock() and 
pthread_mutex_unlock()

0.35

Unlock a mutex with a thread waiting on it via a 
pthread_mutex_lock() operation

pthread_mutex_unlock() 0.570

Unlock a mutex with a thread waiting on it via a 
pthread_mutex_timedlock() operation

pthread_mutex_unlock() 0.645

Timeout expiration and context switch pthread_mutex_timedlock() 0.82



8

monotonic clock, the high resolution sleep operation with
specifiable clock, execution-time clocks and timers, the
sporadic server scheduling policy, and the timed mutex
lock operation.

This implementation has allowed us obtaining informa-
tion about the impact that their incorporation has on the
operating system both in terms of size and overhead.

In the cases of the monotonic clock and the high resolu-
tion sleep, the impact is almost negligible. 

The two services requiring measurement of execution
time, i.e., execution-time clocks and timers and the spo-
radic server scheduling policy, have a very small overhead
in the execution time of the context switch operation of
regular threads, adding around 20 ns only. They also have a
minimal impact in the size of the kernel, requiring the addi-
tion of only a few tens of lines. For threads using sporadic
server scheduling the overheads are somehow higher, but
they remain in the order of one microsecond. We believe
that this very small overhead is an acceptable price to pay
given the important increase in functionality and flexibility
that the incorporation of these services implies.

Finally, the introduction of the timed mutex lock opera-
tion did not cause any measurable overhead to the regular
mutex operations, and the overheads of the new service are
similar to those of other timed operations.

As a consequence our view is that the concerns raised
about the complexity and overhead of these services for
small embedded systems have been addressed, and as a
result of their evaluation our recommendation is to support
their incorporation in the revised POSIX Minimal Realtime
System Profile.

References
[1] POSIX.1 (2001). IEEE Std 1003.1:2001. Standard for

Information Technology -Portable Operating System Interface
(POSIX). The Institute of Electrical and Electronic Engineers,
2001.

[2] POSIX.13 (1998). IEEE Std. 1003.13-1998. Information
Technology -Standardized Application Environment Profile-
POSIX Realtime Application Support (AEP). The Institute of
Electrical and Electronics Engineers, 1998

[3] IEEE Draft Standard P1003.13-Draft 2, Draft Standard for
Information Technology -Standardized Application
Environment Profile- POSIX Realtime Application Support
(AEP). The Institute of Electrical and Electronics Engineers,
2002.

[4] M. Aldea and M. González. “MaRTE OS: An Ada Kernel for
Real-Time Embedded Applications”. Proceedings of the
International Conference on Reliable Software Technologies,
Ada-Europe-2001, Leuven, Belgium, Lecture Notes in
Computer Science, LNCS 2043, May, 2001.

[5] B. Sprunt, L. Sha and J.P. Lehoczky. “Aperiodic Task
Scheduling for Hard-Real-Time Systems”. The Journal of
Real-Time Systems, Kluwer Academic Publishers, 1, pp. 27-
60, 1989.

[6] J.J. Gutiérrez García and M. González Harbour. “Increasing
Schedulability in Distributed Hard Real-Time Systems”.
Proceedings of 7th Euromicro Workshop on Real-Time
Systems, IEEE Computer Society Press, pp. 99-106, June
1995.

[7] Intel. Intel Architecture Software Developer’s Manual. Vol. 3.
System Programming. (ftp://download.intel.nl/design/
pentiumii/manuals/24319202.pdf).

[8] W.A. Triebel, “The 80386DX Microprocessor. Hardware,
Software, and Interfacing”. Prentice-Hall International
Editions, 1992.

[9] L. Abeni and G. Buttazzo. “Integrating Multimedia
Applications in Hard Real-Time Systems”. Proceedings of the
IEEE Real-Time Systems Symposium, Madrid, Spain,
December 1998


