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Abstract
An Early Quantum Task (EQT) is a Quantum EDF task that
has shrunk its first period into one quantum time slot. Its
purpose is to be executed as soon as possible, without caus-
ing deadline overflow of other tasks. We will derive the con-
ditions under which an EQT can be admitted and can have
an immediate start. The advantage of scheduling EQTs is
shown by its use in a buffered multimedia server. The EQT
is associated with a multimedia stream and it will use its
first invocation to fill the buffer, such that a client can start
receiving data immediately1.

Keywords: real-time scheduling, admission control, con-
tinuous media server, buffer management.

1. Introduction

Early Quantum Scheduling is a real-time scheduling
method that solves the problem of a too long waiting time
for a task to enter the system. This waiting time occurs af-
ter the acknowledgement for the admission of a task, and is
due to the regular scheduling rules. These rules normally
determine that a task may execute when it has the highest
priority. For instance, under Earliest Deadline First (EDF)
this is the task with the earliest deadline. By breaking the
priority rules temporarily the scheduler can speed up the
start of a task considerably.

Consider for instance a multimedia client/server system,
in which one or more media servers send media streams to
consumers. Such a consumer may request a media stream
and waits for the acknowledgement of the admittance. Af-
ter the acknowledgement the server may then schedule the
admitted stream amongst all the others, however, the new
stream has to await its regular turn for the first filling of its
communication buffer. We can speed up the start of such
a stream, by filling this buffer at the earliest time possi-
ble. This paper describes the conditions under which such
in-time buffer filling can be arranged, without endangering
the deadlines of all other streams.

1This research is supported by the IBM Equinox programme.

In the context of this paper we assume a single proces-
sor in which all tasks are non-preemptive and need a unit
of computation time, and are started and ended at integer-
time values. The computation units are called synchronous
quantum units or quanta. The tasks are scheduled by EDF
and we will denote this type of scheduling as Quantum
EDF (QEDF). QEDF scheduling simplifies the admission
criteria of the newcomers to a simple algorithm. If the tasks
are used to send or receive media, a task can be associated
with a stream.

An Early Quantum Task (EQT) is derived from a nor-
mal QEDF task, however, it executes its first invocation as
soon as possible. We will illustrate the use of EQTs with
a multimedia client/server. The advantage is a server can
start filling the buffer immediately.

The structure of the paper is as follows. Section 2 refers
to the related work. Section 3 introduces QEDF, section 4
describes EQTs and section 5 explains admission control
of EQTs. Section 6 shows the use of EQTs in a multimedia
server, explains how to avoid buffer over- and underflow.
In section 7 the conclusions are drawn.

2. Related work

An EQT is constructed from a normal QEDF task in two
steps. In the first step the QEDF task is transformed to
an intermediate form, the Push-In Task (PIT), and in the
second step the PIT is transformed to an EQT. The PIT
may execute its invocations always immediately and does
not have to await its EDF turn. This PIT can be used as
the ideal aperiodic server that may execute an aperiodic re-
quest immediately after having respected the inter-arrival
times of the requests. It belongs to the class of dynamic
servers as presented in Buttazzo’s book [1]. These servers
both work in the EDF domain of preemptable tasks and
are called dynamic because they use EDF which is consid-
ered to embody a dynamic priority scheme. A PIT is close
to a quantum task version of the total bandwidth server,
or closer, to a quantum task version of the improved total
bandwidth server from Spuri and Buttazzo [2], [3].

The total bandwidth server executes in a preemptable
EDF environment. It is a task that serves aperiodic re-
quests. When the kth aperiodic request arrives at time t = rk
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it receives a deadline dk = max(rk, dk−1)+Ck/Us, where Ck

is the execution time of the request and Us is the server
utilisation. After assignment of this deadline the request is
inserted into the “released queue” and scheduled as a nor-
mal EDF invocation.

The improved total bandwidth server shifts the actual
execution to the earliest possible point in time, without en-
dangering the deadlines of the other EDF tasks, thus giv-
ing the best service possible to the server. A disadvan-
tage is, however, that this operation needs rather complex
computation. We will show that our PIT does not need to
do any computation and guarantees immediate execution
without endangering the other deadlines. Furthermore, we
will exploit our PIT to speed up the start of QEDF tasks or
streams.

Quantum tasks have been proposed earlier. Baruah
et al. [4] introduced a theory related to quantum tasks called
Pfair scheduling. The scheduling algorithm was called PD
and it can be used to schedule tasks in a parallel envi-
ronment. Under Pfair conditions a uniform execution rate
is guaranteed by breaking tasks into quantum-length sub-
tasks. Each sub-task must be executed within a window of
time slots, the last of which must be the deadline. Ander-
son et al. [5] continued to work on this idea. They devel-
oped fundamental properties inherent to Pfair scheduling
and could simplify the priority conditions of PD.

Buffered client/server systems are widely used and cer-
tainly not new. However, scheduling continuous media
streams involves also the need to avoid buffer under- or
overflow. Korst et al. [6] compared a number of disk
scheduling algorithms that can be used in a multimedia
server for sustaining multiple variable-bit-rate (VBR) data
streams and paid attention to the buffer under- and over-
flow. We assume a constant bit rate for the streams. Ac-
cording to Anastasiadis et al. [7] and Bosch [8] this is ac-
ceptable for variable bit rates when buffering big chunks of
data.

3. Early Quantum EDF tasks

A PIT is a promoted QEDF task, that executes its new
invocations as soon as possible. We need a PIT as an in-
termediate step to transform a QEDF task into a EQT. To
describe this transformation process we will proceed as fol-
lows. First we introduce an EDF task set Γ and describe its
well-known properties. Then we rewrite these properties
to apply for QEDF tasks. Next we select one of the tasks
to become a PIT. Successively we show that this task can
execute its periodic invocations immediately after their re-
leases without endangering the deadlines of the other tasks.

Given a task set Γ = {τ1, . . . , τn} of n tasks with, for each
1 ≤ i ≤ n:

τi = (Di, Ti,Ci)

where

Di: the relative deadline. For quantum tasks Di = Ti is a
positive integer value.

Ti: the period, the duration between two successive in-
vocations.

Ci: the maximum run-time τi takes to complete each in-
vocation. For quantum tasks Ci = 1.
We order tasks by deadline with the shortest deadline

first. Quantum tasks are synchronous, and events such as
release, activation, finalisation (the end of an activation),
and deadline occur at integer times.

The utilisation, as defined by Liu and Layland [9], de-
termines the fraction of processor time spent in execution
of a task set. It is defined as:

U =
n∑

i=1

Ci

Ti
(1)

which can be rewritten for quantum tasks as:

U =
n∑

i=1

1
Ti

(2)

We adapted Liu and Layland’s theorem to quantum
scheduling as follows:

Theorem 1 (QEDF feasibility (Liu and Layland))
Given a synchronous quantum task set Γ scheduled un-

der QEDF. The set is feasible if and only if:

U ≤ 1 (3)

Proof: The original theorem holds for preemptive
EDF tasks and not for non-preemptive tasks. The proof
is based on the fact that there is no difference between
a preemptive set of quantum tasks and a non-preemptive
set of tasks if release times and deadlines are quantum
units, expressed as integer values. By construction, ex-
actly the same scheduling patterns occur under preemption
as well as under non-preemption and therefore both sched-
ules must be equivalent, which concludes the proof of the
theorem.

Our target is to speed up the introduction of tasks. This
will cost some of the free capacity of the processor, which
can be determined by computing the difference between the
processor capacity and the processor demand. The pro-
cessor demand function H(t), defined by Baruah [10] and
Spuri [11] is suited for this purpose. H(t) describes the
amount of load that should be solved by the processor in a
time interval t in order to meet all deadlines under EDF:

H(t) =
n∑

i=1

⌊
t − Di + Ti

Ti

⌋
Ci (4)

For quantum tasks this can be rewritten to:

H(t) =
n∑

i=1

⌊
t

Ti

⌋
(5)
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Figure 1. Capacity t and demand H(t)

Figure 1 shows the processor capacity line under 45°
(load = t) and the processor demand function H(t) for two
QEDF tasks τ1 and τ2 with period 3 and 4 respectively. The
task bars show the worst-case schedule of τ1 and τ2.

Baruah [10] and Spuri [11], and later also Jeffay [12]
rewrote the feasibility condition U ≤ 1 for the original Liu
and Layland theorem to:

Theorem 2 (QEDF feasibility (B&S))
Given a synchronous quantum task set Γ scheduled un-

der QEDF. The set is feasible if and only if:

∀t ≥ 0 : H(t) ≤ t (6)

It is not needed to go until the infinitum in order to ver-
ify this equation. There exist estimations for time lower-
bounds2 to conclude the correctness of equation 6. If it is
possible to show the correctness until such a lower-bound,
then the correctness for all t ≥ 0 can be concluded.

The difference between the processor capacity t and
the processor demand H(t) is called slack. Slack can be
interpreted as unused processor capacity. We define the
slack S (t) by:

S (t) = t − H(t) (7)

The same arguments as those for the proof of theorem 1
can be used.

Note that H(t) reflects the processor demand for any in-
terval in time with length t and for any phase (shifted posi-
tions) between the EDF tasks. It is certainly not exclusively
related to one experiment in which the tasks are all started

2The Baruah bound or longest idle period (also called busy period [12])
can both be used as lower-bound.

simultaneously with a phase 0, as might be suggested by
the task bars of figure 1.

Slack space can be used for additional activity and we
will investigate the conditions under which this space can
be used. A larger slack space allows for more successive
new tasks to be introduced earlier. In particular we are in-
terested in the greatest lower-bound S min of all slack values.
We can use this S min for early introductions of tasks. S min

can be determined by inspecting those values for t at which
deadlines expire and at which H(t) is changed. This can be
verified by inspection of equation 5. Consider for instance
figure 1 where S min is determined for τ1 and τ2. The graph
shows the minimum slack line, running parallel to the pro-
cessor capacity line. S min = 2 is found at t = 3 and at
t = 4.

In order to find the minimal value of the slack we have to
inspect S (t) for all deadlines until some time upper-bound.
We expect that it is possible to determine a suitable time
upper-bound, but we will not go into this procedure be-
cause of the computational costs. Instead we estimate the
minimum value of S (t) on the basis of the following theo-
rem:

Theorem 3 (QEDF slack)
Given a synchronous quantum task set Γ, with hyper-

periodT , scheduled under QEDF, with a utilisation U ≤ 1,
processor demand H(t) and slack S (t). Then:(

∀t ∈ [Tmin,T ) : S (t) > (1 − U)t
)
∧

S (T ) = (1 − U)T
(8)

Proof: The proof has two parts. The first part deter-
mines S (t) for t ∈ [Tmin,T ) and the second part considers
S (t) for t = T .

First part:

∀t ∈ [1,T ) :

S (t) = t − H(t) = t −
n∑

i=1

⌊
t

Ti

⌋
>

t −
n∑

i=1

t
Ti
= t(1 − U)

which follows from (1) the definition of H(t), (2) the prop-
erty of the floor operator on the floating point values of the
fraction t/Ti since t < T , and (3) the definition of U. This
completes the first part.

The second part is similar to the first part. Because T is
the hyper-periodT /Ti ∈ N:

S (T ) = T − H(T ) = T −
n∑

i=1

⌊
T
Ti

⌋
=

T −
n∑

i=1

T
Ti
= T (1 − U)
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Figure 2. t and H(t) of Γ1

which completes the second part.
The interpretation of this theorem is as follows:

1) If U < 1 then a slack S (t) > (1 − U)t is available for
intervals of length t.

2) If U = 1 then all the intervals have at least a slack S (t) >
0, which implies S (t) = 1 (because integer values are
involved), except for the case that all tasks have a dead-
line at hyper-period intervals t = T . For such an inter-
val there is exactly one execution for which S(t) must
be 0.

Example 1
Given the specification of a set of QEDF tasks Γ1 ac-

cording to figure 2.

The utilisation U = 1, so Γ1 is feasible. According to
theorem 3 S min > 0, hence every execution has a slack of at
least 1 quantum, except the last execution in a hyper-period
interval T = 12 at which point all tasks have an expiring
deadline. τ4 is the task that executes just before the hyper-
period3. �

3Any other choice in case of deadline ties could have been chosen. Note,

On the basis of theorem 3 we can estimate a slack lower-
bound S est with a simple expression instead of computing
the greatest lower-bound S min as stated in the following
corollary.

Corollary 1 (Slack estimation)
Given a feasible QEDF set Γ with utilisation U < 1.

Let Tmin be the smallest period of all tasks in Γ and S est =

�(1 − U)Tmin�.
S est is a lower-bound for all quantum slack values in Γ.

Proof: From equation 7 and theorem 3 it follows that:

∀t ∈ [Tmin,T ] :
(1 − U)Tmin ≤ (1 − U)t < S (t) =⇒
S est = �(1 − U)Tmin� ≤ �S (t)�

since for all expiring deadlines in [Tmin,T ], S (t) must be an
integer value, hence we may take the ceiling of (1−U)Tmin

for the lower-bound of all values of S(t), which completes
the proof.

Example 2 (τ1 and τ2 of Γ1)
Given the specification of a set of tasks as shown in fig-

ure 1.

According to corollary 1 the estimated minimum slack
value is �(1−U)Tmin� = �(1−7/12)3� = �15/12� = 2, which
is equal to the real minimum value. Note that for other
cases this estimation might be smaller than the minimum
value. �

4. Early Quantum Tasks

We will construct EQTs in steps. In the first step we
transform a newly arrived and admitted QEDF task τq to a
PIT F(τq) by shifting all executions of τq to the first time
slot after its release. In the second step we transform F(τq)
to an EQT E(F(τq)) by splitting up F(τq) in a single invo-
cation head head(F(τq)), and a tail tail(F(τq)), which con-
tains the rest of the invocations of F(τq). head(F(τq)) is
unchanged, but tail(F(τq)) is transformed to a pure QEDF
task, as if the separated tail had been released immediately
after the head. Unchanged head and changed tail constitute
the newly formed E(F(τq)).

As an example, consider figure 3(a) where τ3 is a nor-
mal QEDF task, in figure 3(b) it has changed to F(τ3), and
in figure 3(c) it has further changed to the EQT E(F(τ3)).
Note that the tail of E(F(τ3)) is scheduled according to
EDF rules.

In case of deadline ties a deterministic choice deter-
mines the order in which the tasks are executed. A simple
criterion such as lowest task index first will fit.

however, that the choice in case of ties should be deterministic.
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(a) τ3 is a normal quantum task
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(b) τ3 is a Push-In Task (PIT)
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(c) τ3 is an Early Quantum Task (EQT)

Figure 3. Synchronous quantum tasks of Γ1 scheduled by
EDF

Theorem 4 (From QEDF task to PIT)
Given a feasible QEDF set Γ with utilisation U ≤ 1.

Any QEDF τq ∈ Γ can be promoted to PIT F(τq) without
deadline overflow of any other task in Γ.

Proof: First we prove that the executions of τq may
be shifted to the left until the first slot after its release under
the condition U < 1 and secondly we prove the exceptional
case for U = 1. Both parts are proved by construction,
which is illustrated in the figures 3(a) and 3(b).

First part: Denote release time, start time and dead-

line for the jth quantum invocation of τq by r j
q, s j

q, and d j
q

respectively.
Call the quanta within invocation j from r j

q until s j
q left-

hand slots and those after s j
q until d j

q the right-hand slots.
We will now rotate all left-hand slots to the right such

that all executions except the last one are shifted one place
to the right. The last one, containing s j

q, is moved to the
free-falling first slot. None of the executions in the rotated
list has passed its deadline or release time: for the execu-
tions shifted to the right there is a slack time of at least 1
due to theorem 3, and the execution of the PIT τq has been
inserted in the first slot, immediately after its release time.

Furthermore, the right-hand sequence of executions is
not affected by this operation. Consequently none of the
executions in the quanta from r j

q to d j
q did violate release

times or deadline requirements, while the load of τq is exe-
cuted as early as possible. We can repeat construction and
arguments for all executions of τq until we have constructed
F(τq) which completes the proof of the first part.

Second part: Here we consider the case where U =
1. Denote the start of the last execution before the hyper-
period slast

i , which is the only execution with a slack 0 in a
hyper-period. There are two cases now: τi is promoted to
periodic PIT, or a different task is promoted.

If τi itself would be promoted, then the last execution
before the hyper-period of τi, is part of the left-hand side.
This side is rotated and after the rotation this execution is
mapped on rlast

i , while the other quanta of the left-hand
side can be shifted to the right, without violating any of
the deadlines of the other tasks, since they all have a slack
of at least 1.

If τi itself is not subject of promotion to PIT, then the
last execution τlast

i before the hyper-period, will always be
part of the right-hand side of invocations. Consequently
this quantum is left unaffected by any rotation operation.
This completes the construction of F(τi) and completes the
proof of the second part and with it the proof of the theo-
rem.

Example 3 (Task set Γ1)
We have chosen to promote task τ3 of the earlier pre-

sented task set Γ1 in figure 2 to a PIT. According to fig-
ure 3(b) the following shifts of executions takes place:

0→ 1, 1→ 2, 2← 0;
4→ 5, 5→ 6, 6← 4;
8→ 9, 9→ 10, 10← 8;

. . . �
A PIT can be used as an aperiodic quantum server, quite

in the spirit of the dynamic servers as presented by But-
tazzo [1], with arrival intervals of aperiodic events that are
not smaller than its period. It is in fact an improved total
bandwidth server [2], [3] that can serve aperiodic events.
It is even better than the improved total bandwidth server
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since no computation is needed for the earliest release pos-
sible.

Theorem 5 (From PIT to EQT)
Given a set of quantum tasks Γ with utilisation U ≤ 1.

One of its tasks can be promoted to EQT without deadline
overflow of any other task in Γ.

Proof: Let τq be the task that will be promoted to
EQT. We will proceed according to the following steps.

(1) According to theorem 4 τq can be transformed to
PIT F(τq) without endangering any deadline in Γ.

(2) Next choose a head and tail such that the number of
invocations in the head is 1. Successively adapt the tail to
a normal QEDF task while maintaining feasibility with the
following steps:

(2.a) Tail invocations tail(F(τq)) are part of the PIT and
consequently they can execute in the first slot immediately
after their release. Therefore their deadlines can be set to 1.

(2.b) Release times of tail invocations can be set Tq − 1
earlier, that is just after the deadline of the previous invoca-
tion, without forcing any of the execution of the other tasks
to a different time slot.

(2.c) Step (2.a) and (2.b) do not influence the feasibil-
ity. In this last step we make use of aperiodic EDF opti-
mality arguments of Dertouzos [13]: “if there exists a fea-
sible schedule for a task set then EDF is able to find it”.
As a consequence we can adapt the tail to a QEDF task
while preserving feasibility. This completes the construc-
tion of E(F(τq)) and completes the proof.

The construction from PIT to EQT is illustrated in fig-
ure 3(b) and 3(c), where τq is embodied by τ3.

In the following section we introduce the maximum
bandwidth PIT. This task is not really in the system but
it is introduced in order to estimate the time needed to re-
gain the slack or bandwidth that has been used by an early
invocation.

5. EQT admission control

In this section we will illustrate admission control of
EQTs. During the introduction of an EQT slack space is
consumed for the early execution of the head. We will con-
sider the executions of the last two heads in more detail
and take a view as if these heads were executed by a vir-
tual PIT that uses all remaining bandwidth (or utilisation)
exclusively for this purpose. From the minimum period of
the virtual PIT we can derive the minimum inter-arrival in-
terval of the heads of the EQTs.

Let tp be the time at which the previous EQT head of
τp has been executed and let tr be the moment at which a
new EQT of τr with period Tr is requested. The utilisation
after introduction of τp is U. The minimum period Tvir

of a virtual PIT, at which cost the last head at tp as well

as the new head tr can be executed, is determined by the
utilisation Tvir(U) = �1/(1 − U)�. Tvir(U) is therefore a
safe estimation for the shortest inter-arrival time between
two heads of successive arrivals. For instance if U = 3/4
after introduction of τp then Tvir(U) = 4. Therefore the
inter-arrival distance between tp and tr is 4.

Another meaningful or even better interpretation of
Tvir(U) is to consider it as the replenishment time for the
consumed slack space of the previous head. The following
corollary emphasises this interpretation explicitly.

Corollary 2 (Replenishment)
Given a feasible EQT set Γ with utilisation U < 1. The

replenishment interval or inter-arrival interval is equal to
Tvir(U) = �1/(1 − U)�.

From this the following admission control conditions
can be concluded:

Corollary 3 (Admission conditions)
Given an EQT set Γ with utilisation U ≤ 1. Let τr be a

new EQT. τr is admitted if:

Tr ≥
⌈

1
1 − U

⌉
(9)

and if the invocation of the previous EQT was at least:

Tvir(U) =

⌈
1

1 − U

⌉
(10)

earlier.

If there is sufficient slack space, then equation 10 is
too strict and more tolerant conditions can be established.
These conditions are still under development.

6. EQT server and buffer management

Consider a multimedia server which serves a set Γ of
n streams {τ1 . . . τn}. Depending on the bit rate of the con-
sumer and on the properties of the server we need a double
or a triple buffer for each stream in order to guarantee the
absence of buffer over- or underflow. Both buffer mod-
els are valid in the context of this paper. Since the double
buffer model uses less resources we use this model.

Transferring data from the server to a buffer is done
in synchronous non-preemptive quantum time slices and
scheduled by QEDF. For normal QEDF streams, the begin
of filling the buffer is determined by the order of deadlines,
which, in the worst case, can be just before the deadline
of the first invocation. This can be prohibitive with mul-
timedia servers for streams with large periods, hence long
deadlines.

Using EQTs is a solution to this problem. The server
properties conform to the definition of a synchronous task,
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or stream, as given in section 3, so the n different client
streams in Γ can be scheduled with an EQT server. Client i
reads a buffer with a period T c

i , a non-integer value, which
is determined by the application, while the server writes the
buffer with a period Ti:

Ti = �T c
i � ≥ 1 (11)

The shorter period of the server implies that we need
to take measures to prevent buffer overflow. We assume
a double buffer system with a total buffer capacity of 2B
with n streams τ1 . . . τn. After having filled the first buffer
with the head of the EQT stream τi, the consumption of the
buffer can be started immediately, simultaneously with the
start of the tail at the server side.

We define the buffer usage βi as the amount of buffer
space that is in use by stream τi, varying such that βi ∈
[0, 2B]. Denote the jth invocation of τi as τ j

i , and the buffer
usage at release time of invocation τ j

i as β j
i . At the start

of the first tail invocation τ1
i , the buffer usage β1

i is ex-
actly B, filled by invocation τ0

i , the head. Invocation τ j
i is

only started under the condition that there is enough buffer
space available:

β
j
i ≤ B→ start(τ j

i ) (12)

If, at release time of invocation τ j
i , there is not enough

buffer space (β j
i > B), then the release time r j

i as well as
the deadline d j

i are delayed by 1 time unit.

Theorem 6 (No over- or underflow)
Given a double buffered PIT client/server with buffer

capacity 2B and with a client bit-rate consumption of pe-
riod T c

i ≥ 1, and a server production of period Ti = �T c
i �.

The release and deadline of an invocation are delayed by
one time unit if at release time the free buffer capacity is
below B.

In such a system buffer over- or underflow cannot occur
for any stream τi.

The proof of theorem 6 is given in the appendix. This
proof also gives rise to the following corollary.

Corollary 4 (Single delay only)
In the system as described in theorem 6 no two succes-

sive conditional delays will occur.

7. Conclusion

In order to speed up the start of a new Quantum EDF
task, we shrink its first period into one quantum slot. Such
a task is called an Early Quantum Task (EQT) and its role
is to be introduced as early as possible without exceeding
any of the deadlines of the already running tasks. We have
shown that a new EQT can be admitted if the utilisation

U < 1, as if it were a normal EDF task, and that it may be
started immediately if the system has sufficient quantum
slack left. When a new EQT is introduced, one slack quan-
tum is consumed for the early execution. The system re-
gains this quantum automatically in �1/(1−U)� time units.
The initial quantum slack estimation depends on the util-
isation and on the shortest period Tmin of the tasks in use
and is equal to �(1 − U)Tmin�.

Next we have illustrated the use of the EQTs for a
buffered multimedia server. We have shown that EQTs pro-
vide a considerable speedup of the start of the stream at the
client side. Additionally we proved the correctness of a
simple mechanism to avoid buffer over- and underflow.
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Appendix: proof of theorem 6

Proof: During 1 time unit (1/T c
i )B is read from the

buffer. This means that during invocation τ j
i , which lasts Ti

time units, Ti(1/T c
i )B is read from the buffer. Each invoca-

tion also fills the buffer once with B. Therefore, during each
invocation the buffer usage β grows with B−Ti(1/T c

i )B, for
which holds:

0 ≤ B − Ti
1

T c
i

B <
1

T c
i

B (13)

We derive equation 13 next, in three steps:
1) From equation 11 follows:

1
Ti + 1

<
1

T c
i

≤
1
Ti

(14)

2) First we derive 0 ≤ B − Ti
1

T c
i
B from equation 14:

1
T c

i

≤
1
Ti
=⇒ Ti

1
T c

i

≤ 1 =⇒

0 ≤ 1 − Ti
1

T c
i

=⇒ 0 ≤ B − Ti
1

T c
i

B

3) Next we derive B − Ti(1/T c
i )B < (1/T c

i )B from equa-
tion 14:

1
Ti + 1

<
1

T c
i

=⇒ T c
i < Ti + 1 =⇒

T c
i − Ti < 1 =⇒ 1 − Ti

1
T c

i

<
1

T c
i

=⇒

B − Ti
1

T c
i

B <
1

T c
i

B

Thus follows equation 13.
Buffer overflow: Invocation τ j

i is only started under
the condition that there is enough buffer space available
(equation 12). By using conditional delays this is guaran-
teed (see section 6). At the deadline of invocation τ j

i the
new buffer usage β j+1

i will be β j
i + B − Ti(1/T c

i )B. Buffer
overflow cannot occur, because:

β
j+1
i = β

j
i + B − Ti

1
T c

i

B
by (12)
=⇒

β
j+1
i ≤ B + B − Ti

1
T c

i

B
by (13)
=⇒

β
j+1
i < B +

1
T c

i

B
by (11)
=⇒

β
j+1
i < 2B

Buffer underflow: Since invocation τ j
i is started only

when there is enough buffer space (β j
i ≤ B), we have to

make sure no buffer underflow can occur. If no buffer un-
derflow will occur when the invocation is executed at the

latest possible moment in time, which is directly before
the deadline, buffer underflow will also not occur when the
invocation is executed earlier than that time. Say invoca-
tion τ j

i is started at time d j
i − 1, so it will just make its

deadline (note: Ci = 1). At this moment in time, the con-
sumer will have read (Ti−1)(1/T c

i )B. During the following
time unit the buffer will start filling up, so buffer underflow
will not occur if there is enough data in the buffer before
the consumption at the beginning of r j

i :

β
j
i ≥ (Ti − 1)

1
T c

i

B (15)

We will prove equation 15 by recursion:
1) At the start of consumption β1

i = B, which satisfies the
condition, as derived from equation 14:

1
T c

i

≤
1
Ti
=⇒ Ti

1
T c

i

≤ 1
by (11)
=⇒

(Ti − 1)
1

T c
i

< 1 =⇒

(Ti − 1)
1

T c
i

B < B = β1
i

2) When at release time r j
i of invocation τ j

i equation 15
holds, it will also hold at deadline time d j

i . During this
time the buffer usage β grows with B−Ti(1/T c

i )B to the
new buffer usage β j+1

i .
a) When β j

i ≤ B at release time, the release is not de-
layed. Then:

β
j+1
i = β

j
i + B − Ti

1
T c

i

B
by (13)
=⇒

β
j+1
i ≥ β j

i

by (15)
=⇒

β
j+1
i ≥ (Ti − 1)

1
T c

i

B

b) When β j
i > B at release time, the release is delayed,

and β j
i shrinks with (1/T c

i )B. So, β j
i > B− 1

T c
i
B when

invocation τ j
i is actually released. This implies that

equation 15 still holds at release time, as derived
from equation 14:

1
T c

i

≤
1
Ti
=⇒ Ti ≤ T c

i =⇒

Ti − 1 ≤ T c
i − 1 =⇒

(Ti − 1)
1

T c
i

≤ 1 −
1

T c
i

=⇒

(Ti − 1)
1

T c
i

B ≤ B −
1

T c
i

B < β j
i

3) From item 1 and 2 equation 15 can be concluded.
This completes the proof.
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