
This is an author’s copy of the paper, which has been accepted and published in 2010 Fourth UKSim European Symposium on Computer

Modeling and Simulation, 75-83

A Procedure for Extracting Software Development Process Patterns

Mahdi Fahmideh, Fereidoon Shams
Automated Software Engineering Research Group, Electrical and Computer Engineering Faculty, Shaid Beheshti University

GC, Tehran, Iran

{m_fahmideh, f_shams}@sbu.ac.ir

Abstract—Process patterns represent well-structured and

successful recurring activities of Software Development

Methodologies (SDMs). They are able to form a library of

reusable building blocks that can be utilized in Situational

Method Engineering (SME) for constructing a custom SDM

or enhancing an existing one to fit specific project situation.

Recently, some researchers have subjectively extracted

process patterns from existing SDMs based on cumulative

experience in various domains; however, how to objectively

extract process patterns from SDMs by adopting a

systematic procedure has remained as question. In this

regard, this paper is concerned with a procedure aiming to

take process patterns out of existing SDMs. An example

illustrates applicability of the proposed procedure for

extracting process patterns in a specific context.

Keywords- Process Patterns, Situtional Method

Engineering, Assembly-Based Method Engineering, Software

Development Methodologies, Pattern Mining.

I. INTRODUCTION
A pattern is " a general solution to a common problem

or issue, one from which a specific solution will be
derived” [1, 2]. In software engineering, many types of
patterns have already well-known, for instance GoF
Design Patterns [3] and Gov Architectural Patterns (GoV)
[4]. Process Pattern is a kind of pattern by which classes
of common successful practices and recurring activities in
specific SDMs are represented [2]. Typically, a SDM is
consisted of two main parts [5]: a Process that is contained
a set of activities, techniques, guidelines, principles,
artifacts, roles, and tools for effective software
development; and a Modeling Language to represent
produced artifacts. Process patterns are the results of
applying abstraction to recurring activities to form an
effective mechanism for highlighting ones that have
proven to be successful in SDMs. The process patterns are
intended to be reused in SDMs. They enable method
engineer to describe and document domain specific
knowledge in SDMs in an abstract, well-defined, and
maintainable structure. The main application of process
patterns is in Situational Method Engineering (SME)
specially Assembly-Based Method Engineering [6]
approach in which process patterns form a rich library of
reusable building blocks as called method chunks for
constructing a custom SDM or enhancing an existing one
to fit specific project situation at hand. A method chunk is
viewed as an autonomous and coherent part of a SDM [7].
For instance the activities such as Requirements

Elicitation, Use-case Modeling or Develop Architecture
are considered as method chunk.

The process patterns open the areas of formal and
quantitative measurement of software process that leads to
applying analytical processes in SDMs [8]. Process
patterns provide well-structured software process for
organization's projects in general. Moreover, it represents
the common conceptual base of a company's SDM to
improve and evolve their development process [8].

There are various types of SDMs for developing
software systems in different domains. For instance, in the
domain of object-oriented system development OPEN,
Booch, Objectory, OOSE, BON, Catalysis, USDP and
RUP are the famous ones. Furthermore, SCRUM, DSDM,
Crystal Clear, dX, FDD, and XP have emerged to support
software development [9]. Each SDM prescribes its
successive activities for developing target system. While
all of the SDMs belong to a specific domain have same
philosophy and concepts in software development, hence
recurring activities might be repeated by different names.
For instance, all the agile SDMs emphasize on three
imperative activities generically called Product Review,
Process/Plan Review and Post-mortem Review [10].
Similarly, most of the component-based SDMs have the
same activities such as Component Identification and
Component Adaptation [11].

The importance of process patterns will become more
significant when method engineer faces excessive number
of different SDMs. Since none of the SDMs can cover all
the relevant issues in software development, it is difficult
for method engineer to select appropriate practices to fit
the project requirements. In addition, most of the SDMs in
specific domain prescribe different activities with various
names also they represent same activities yet from a
different viewpoint. Therefore, selection of an appropriate
SDM will be a serious issue in this situation. Process
Patterns come up with abstract representation and distilled
knowledge of the SDMs in order to resolve these types of
problem (Fig 1 part b). As mentioned earlier, the process
patterns will form a library of method chunks that can be
used for assembly-based method engineering as the main
application of process patterns (Fig 1 part c). They provide
the reusable method chunks that help method engineer for
constructing a custom SDM according to project
requirements at hand.

Recently, many researchers have proposed domain
specific process patterns. Ambler as stated in [2] proposed
a set of activities as process patterns for developing object-

oriented software applications. The process patterns called
Object-Oriented Software Process (OOSP) that forms a
general object–oriented SDM. Additionally, Tasharofi [10]
has proposed set of process patterns extracted from a
number of agile SDMs. They have identified process
patterns from commonly encountered agile activities by
studying seven agile SDMs. Further researches in the
domain-specific patterns are existed such as Component-
Based Development [11], MDA-Based Development [12],
Decision Support Systems [13], Aspect-Oriented [14], and
Real Time Development [15].

Figure 1. Positioning of process patterns in Assembly-Based Method

Engineering

Although a number of process patterns have been
introduced in different context, a precise and
comprehensive procedure by which SDMs will be mined
for recurring activities with balanced granularity and
similar concept has not been previously examined. There
is no procedure available for extracting process patterns
from SDMs independent of its domain. Although rigorous
works have been compiled for extracting design pattern
instances from exiting source code to support better
software maintainability and reverse engineering, they

suffer from lack of adequate documents [16]. The common
problem with the approaches is that they explore the
source code with a number of known fixed design patterns
such as Adapter, Strategy and etc. They analyze the
structural representation of source code to find any
meaningful structures and relations among classes as well
as matching with fixed design patterns. In contrast to this,
process patterns are not well-defined already in a way that
it could be easily possible to find match cases as design
patterns. Process patterns discovery is based on the
similarity analysis that reoccurred in existing textual
SDMs. Without an explicit way some process patterns
may be missed or neglected. Additionally, the extracted
process patterns might be highly subjective; therefore, its
reusability will be highly affected. For instance, implicit
extraction procedures derive various set of patterns that is
highly dependent on the involved implicit experiences.
Authors believe that one of the main weaknesses of related
research is the lack of explicit procedure that has been
used for extracting process patterns. Consequently, the
main question of the paper is as follow:

 “How can method engineer extract process patterns

from a number of SDMs and organize them in well-

formed granularity to obtain distilled and comparable

knowledge about SDMs?”
The contribution of this problem could be a descriptive

procedure to get the SDMs and construct the required
patterns. The main application of this contribution is that
one can use it to obtain distilled and abstract knowledge
about them. For instance, one can uses the procedure for
extracting process patterns from domain of Web-Based
SDMs. A detailed description of the proposed procedure
will be presented in this paper.

The rest of this paper is structured as flows: In the next
section, authors present basic definition that will be used
in further. Section III mentions a detailed step-by-step
description of the proposed procedure. Section IV
demonstrates result of applying it for extracting process
patterns from a family of methodologies. Finally, section
V contains conclusion and further work.

II. BASIC DEFINITIONS

In this section, the definitions of relevant terminology
and its implications are introduced.

 Map: Many of the processes involved in SME literature
are described by process models notated using the concept
of map [17]. A map is described as a directed labeled
graph consisting of steps representing intentions and edges
representing strategies. An intention captures the notion of
a task to be accomplished whereas the strategy suggests
the way in which this intent can be achieved. A map
always begins with the start intention and ends with the
stop intention. Fig 2 shows the map of the proposed
procedure for extracting process patterns.

 Granularity of the extracted process patterns: The
paper categorizes extracted process patterns in three levels
of granularity and abstraction [2]: Phase, Stage and Task.
A task process pattern defines detailed required

Figure2. The procedure of process patterns extraction from SDMs

steps to execute a task for instance Technical Review of
Code, and Making Questionnaire-Interview. Stage process
pattern is contained several related tasks process patterns
that need to be done to pass from a development stage to
another one. Typically, they perform in iterative-
incremental manner. For instance, Develop Architecture as
a stage pattern constitutes Design Logical Architecture,
Design Physical Architecture and Evaluate Alternative
Architecture task patterns. Typically, more than one stage
patterns will be placed in a phase pattern. They form a
typical phase of software development lifecycle
(Construction phase as a sample). Based on this
granularity, the three intentions namely Determine Phase
Patterns, Determine Stage Patterns and Concretize Task
Patterns are applied for categorizing the patterns.
Additionally, there is no constraint on the granularity
levels for categorizing patterns.

 The pattern formalism: While the process patterns
capture reusable method fragments of SDMs, the extracted
patterns should be represented in a uniform and well-
formed structure to facilitate their organization and
maintenance. A number of formalism has been proposed
to allow a better represent of process patterns such as
Ambler [2], Gnatz [8], P-Sigma [18]. An overall view to
these formalisms shows they have commonalities for
representing a pattern. Each process pattern compromise a
number of parts as shown in table I. A context is
precondition that should exist while a pattern can be
applied. Each pattern comes to solve concrete problems
typically occurred in the given context. Process patterns
can be categorized in different granularities. As mentioned
above typical granularities are Phase, Stage and Task.
Pattern performs by defining roles manually or by
adopting case tools automatically. The input artifacts act as
source to the pattern and output artifacts are result of
applying the pattern.

 Operators: In order to mine process patterns from
specific domain of SDMs, there is a need to define
operators. Authors have adopted some of the generic SME
operators proposed by Ralyte and Rolland [19, 20]. They

TABLE I. FORMALISM FOR PATTERN REPRESENTATION [2,8,18]

Element Description

Context

Defines an overall situation that a problem is

occurred. Artifacts are changed before and after

execution of the patterns.

Problem
Defines a concrete situation that may arise

during system development.

Process Pattern

Phase

Pattern

Defines detailed steps required to

execute as task.

Stage

Pattern

Contains several task process

patterns that need to be done to pass

from a stage of development.
Typically, it is performed in

iterative-incremental manner.

Task

Pattern

Two or more stage patterns make a

Phase patterns.

Roles Defines the person or tool that performs pattern.

Artifact
Produced as the result of performing a stage or

task by people or tools.

Related Patterns
Relation to other process patterns such as those
that use this pattern or those that can be

alternative for this pattern.

Consequence
List of consequences compromise by the pattern
application.

are used for exploring SDMs to find similarities between
activities, grouping relevant activities together and
comparing them. The operators are based on the semantic
similarity of activities. It should be note in the paper the
operators are generic in the sense and away from real
implementation. Therefore, they are accomplished
manually. The generic operators are applied in the further
algorithms as below:

1. SYSNOMYM: By this operator, similarity of two
activity's names is evaluated. As illustrated example, a
SDM may define an activity as Requirements Elicitation
in which relevant data about project requirements are
gathered. The Requirements Identification has different
name with previous one, but its internal steps follows to
gather customer requirements. Therefore, these activities
have symmetrical mean. In this regard, they are
evaluated as identical.
2. SEMANTIC AFFINITY: The purpose of the
operator is to measure the intent closeness of two

activities. The operator groups a set of the relevant
activities that have the same intent. For instance, Making
Questioner-Interview, Prototyping and Use-Case
Modeling are performed by requirement engineer to
achieve a set of well-defined software requirements.
While, the intent of these activities is the same, they can
be considered as a group of activities relevant to
requirements engineering. In contrast to that, the Design
Architecture and Evaluate Alternatives Architecture in
which software architecture is developed and then
evaluated are divided into separate groups. In this
regard, this operator can be utilized for grouping
relevant activities.
3. MORE COMPLETE: The operator is used to
evaluate which of the two activities are more precise and
complete than another. This operator is based on
calculating a number of successive activities performed
to reach specific goal. For instance, two SDMs may be
defined a technique for designing software architecture.
The former prescribes an activity by several steps to
achieve the software architecture while the later only
prescribes some general guidelines without any details
about the required steps to design architecture merely.
In this situation, the operator evaluates the former as
more complete.

III. THE PROCEDURE FOR EXTRACTING PROCESS

PATTERNS

In this section, authors present the steps of the

proposed procedure for extracting process patterns from

SDMs. Fig. 2 represents the procedure as a map. Using

the map formalism, each of its intention corresponds to

one of the steps.

 Step 1. Unify Methodologies

Existing SDMs are rather rigid in origin, and they

was not created to be modular [21]. Generally, they are

represented textually in natural language so that it is too

difficult to be processed by computers [7]. In addition,

their modularity is limited to such an extent that they

provide several models and its associated prescriptive

guideline to construct different views of the software

applications. Therefore, the first step is to represent SDMs

in uniform structure. The “process-centered template” [9]

strategy will allow the method engineer to represent

uniform structure of the methodologies so that analytical

comparison will become easy. The template is used for

highlighting the activities prescribed in each SDM while

keeping the details of the product view as secondary to

the activities. The description produced using this

template enables elaborate analysis of individual SDM in

order to discover recurring activities that leads to identify

process patterns. The structure of a SDM based on this

template has been described in table II. The result of this

strategy is a SDM equal to its origin with unified and

comparable activities.

 Step 2. Determine Phase Patterns

To achieve phase process patterns, the “Phase

patterns selection strategy” is used. Phase process patterns

in reality represent the generic phases of Software

Development Life Cycle (SDLC). In according to [22],

typically a SDLC is consisting of Initiate, Analysis and

Design, Construction, Test, Deployment and Maintain. It

should be noted the umbrella activities have been

excluded from this definition. Although details of SDMs’s

activities make them distinctive however at phase levels

they have no considerable or innovative difference.

Therefore, the strategy determines general phase process

patterns as well as SDLC’s phases. It should be noted in

some cases, when a domain of SDMs is selected for

extracting process patterns, the phases of it should be

considered as phase process patterns instead of SDLC. In

other cases, SDLC phases are considered as phase process

patterns. While intention of the phase patterns is

straightforward, a part of the selected template for

representing them would be completed. For instance,

table III shows a formal representation of the test phase

pattern based on the proposed template. The phase

process patterns work as frames for categorizing internal

activities of the SDMs and will be utilized in the

following stages.

TABLE III. A REPRESENTATION OF THE TEST PHASE PATTERN

Element Description

Context
A number of artifacts have been produced and ready
to evaluate how much requirements and quality

criteria has satisfied.

Problem How produced artifacts can be tested?

Process

Pattern

All stages and task patterns that included in the

pattern.

Roles Test engineer, test script writer, test executer.

Artifact Test scripts, test results.

Related
Patterns

This pattern corresponds to all phase patterns.

Consequence To be explored.

 Step 3. Decompse the SDMs

The intent of the “Decompose the SDMs” is to obtain

a context for analyzing the SDMs’s activities. To do this,

the “Decompose strategy” helps method engineer to

decompose SDMs’s activities. Every activity in the

underlying SDM is a candidate to be defined as a process

TABLE II. Process-Centered Template for Describing SDMs

Overview

A brief introductory of SDM that distinguishes

bold features, strengths, weaknesses and a visual

development process that describe the SDM.

SDM

Description

SDM’s

Phases

High-level sub-processes in the

SDM’s process consist of its

activities, the order in which they are
performed and a concise description

of the produced work products.

Details of

the
internal

activities

Each activitiy is contained one or

more steps that describe details of
them. Relevant activities are placed

into separate phases of the SDM.

patterns and more precisely task patterns. Having

determined the phase process patterns, “Decompose

strategy” decomposes SDMs and puts the internal

activities to the corresponding phase process patterns. As

shown in Fig 3, the different activities in the SDMs with

same color have same intent and therefore fall into same

phase pattern. Yellow activities in the SDMs show

relevance to specific phase. For instance, it can be

requirements elicitation that recurred with different names

in different SDMs.

Figure 3. Decompose SDMs activities into phase process patterns

The activities may be positioned completely in a

phase or mediate between two of them. According to the

algorithm 1 (Fig.4), each SDM passed along the phase

process patterns. The SYSNOMYM operator, as

similarity analyzer, checks whether activity’s phase is

synonym with one or more phase process pattern. In this

case, activity’s phase name has different name with phase

process pattern. SEMANTIC AFFINITY operator checks

closeness of activity’s phase and phase process pattern.

Consequently, SDMs’s activities are positioned in

relevant phase patterns.

Figure 4. Algorithm for decomposing SDMs into phase process patterns

After decomposing the SDMs, in order to eliminate

redundancy and improve cohesiveness of the activities,

the map suggests three different strategies. Selection of

appropriate strategy depends on situation.

 Unify Strategy: Two or more activities of SDMs might

have different names but be identical semantically. By

conducting SYSNOMYM operator, the unification of

activities will be performed and only one activity will be

remained. Indeed, this activity is a task pattern (figure

5.a).

Figure 5. Algorithm of Unify Strategy

Fig 6 shows the unification algorithm.

Figure 6. Algorithm of Unify Strategy

 Supply Strategy: It is obvious that SDMs may

prescribe different ways for performing an activity. To

obtain appropriate activities in order to form a rich

method fragment library, “Supply strategy” aims to

capture useful parts of activities. It helps the method

engineer to deal with making a complete activity. In some

cases, a number of activities are synonym but one of them

is more complete than the others. By adopting this

strategy, these activities will be combined together to

construct more complete activity with more added value.

For instance, one SDM may only define one or two steps

of Design Software Architecture, and the other SDM focus

only on the other necessary steps of it. For instance, one

focuses on primary steps of Design Software Architecture

precisely, while the other SDM focus on later steps of it

without mentioning the other required steps. In this

situation, while these two activities can enrich each other,

they should be appended. Figure 5.b shows a situation in

which each of three synonym activities provides only

particular steps for performing specific activities. But

none of them is complete independently. Given this

situation, the strategy appends them to obtain complete

task pattern. Figure 7 shows the algorithm for Supply

strategy.

Figure 7. Algorithm of Supply Strategy

 Split Strategy: The “Split strategy” is relevant when

some activities might be too course-grained that makes

them complicated to adopt as a pattern. Therefore, these

activities will be decomposed to make more appropriate

activities. For instance, Design Software Architecture

could be decomposed to Design Logical Architecture,

Design Technical Architecture and Evaluate Alternative

Architecture.

 Step 4. Determeine Stage Patterns

Having sieved the activities in step 3, those activities

that have affinity (semantically related) to each other are

grouped and make a stage pattern (Package strategy). In

reality, this step clusters the relevant activities to form a

group of cohesive activities as stage patterns. This is

conducted by relationship analysis. This analysis will be

repeated until all the activities are grouped and situated

into their appropriate stage patterns as shown in Fig.8.

The colored activities is based on the closeness of their

intents are grouped in a cluster. As an example, the

Feasibility Analysis, Requirements Elicitation,

Requirements Specification and Requirements Validation

activities semantically have similar intent, generally refer

as Requirement Engineering (RE), and consequently

grouped in a separate group activities and form a stage

pattern.

Figure 8. Grouping related activites into separate stage patterns

According to Fig.9, the SEMANTIC AFFINITY

operator evaluates the intent closeness of two activities

for grouping them. After making a stage pattern, a

suitable name is assigned to it. SEMANTIC AFFINITY

helps method engineer to provide definition for parts of

the stage patterns. An example of RE stage pattern is

shown in table IV.

Figure9. Algorithm of packagin task patterns

Having conducted the relationship analysis, in some

rare circumstances one activity might not be categorized

in one stage pattern. Given this situation, method engineer

construct an appropriate stage pattern and put this activity

in it and fill the gaps (missing task patterns that have

affinity to this activity) in the following steps.

TABLE IV. A REPRESENTATION OF RE STAGE PATTERN

Element Description

Context A bid for new project has been offered.

Problem
How requirements of software can be identified and

validate?

Process

Pattern

All task patterns that included in the pattern.

Roles Requirements engineer, project management.

Artifact Software requirements specification, prototypes.

Related

Patterns

To be explored.

Consequence To be explored.

 Step 5. Concretize Task Patterns

After elicitation of recurrent activities and grouping

them into relevant stage patterns, now each task pattern

should be completed based on the selected formalism. An

example of task pattern has shown in table V.

It should be noted while a specific domain of SDMs

has not matured enough therefore, their activities have not

defined clearly and task patterns remain incomplete

respectively. In this situation, it is worthwhile to enrich

task patterns with ideas from prior and conventional

SDMs and utilized successful practices in industry.

Therefore, the appropriate technique for performing tasks

should be added in an ad-hoc manner. Capitalization of

experience in the other paradigm can be a starting point

for this type of pattern mining. Furthermore when the

SDMs provide different alternatives for doing a specific

task pattern they should categorized and integrated in

appropriate task adequately. For each task pattern, the two

strategies “Assigning roles strategy” and “Assigning work

product strategy” will complete the role and product part

of the task pattern respectively.

TABLE V. A REPRESENTATION OF RI TASK PATTERN

Element Description

Context

A preliminary protocol agreed between stakeholders

and development team for development of new

system has been made.

Problem
How requirements of software can be gathered and
identified?

Process

Pattern

One of combination of well-know techniques such as

Interviewing, JAD, Brainstorming, Concept Mapping,
Sketching and Storyboarding, Use Case Modeling,

Questionnaire and Checklist, Terminology

Comparison can be applied.

Roles Requirements engineer.

Artifact Questionnaire forms, prototypes, use case models.

Related

Patterns

Requirements specification, requirement validation.

Consequence To be explored.

 Step 6. Store the Patterns in a Library

While the process patterns represent best development
practices for specific domain, they should be rolled out to
the organization, enabling continuous process
improvements. For this purpose, the “Capable strategy”
suggests the method engineer import extracted process

patterns into process management Computer Aided
Method Engineering (CAME) tools such as EPFC [23] or
RMC [24] as plug-ins to enrich existing process library.
These tools provide process-engineering capabilities by
supporting method engineer in documenting and deploying
development process, selecting, tailoring and quick
assembling process patterns for constructing specific SDM
based on project needs. The SDM created with these tools
can be published and deployed as web sites. The
“completion Strategy” is used when the all process
patterns imported to tools.

This map is actually a pattern mining procedure and

after several repetitions and revisions of the patterns, a set

of well-defined process patterns would be achieved. In the

next section, we will show how to apply the procedure for

extracting process patterns from Service-Oriented SDMs.

IV. AN APPLICATION EXAMPLE: EXTRACTING PROCESS

PATTERNS FROM SERVICE-ORIENTED SDMS

In this section, authors have adopted the proposed
procedure for extracting process patterns from the domain
of Service-Oriented (SO) SDMs. From the methodological
point of view, in SO paradigm a system is consisted as
composite of services needed to address service-oriented
development endeavor. As motivation for pattern
extraction in a specific domain of SDMs, authors were
selected twelve prominent SO-SDMs then reviewed and
highlighted recurring activities. The twelve SO-SDMs that
studied for extracting process patterns are: IBM SOAD,
IBM SOMA 2008, CBDI-SAE Process, SOUP, MASOM,
SOA RQ, Papazoglou, RUP for SOA, SOAF, Steve Jones’
Service Architectures, Service Lifecycle Management
(SLM), SOA Governance and Management Method
(SGMM) [25]. The following are the primary motivations
for extracting process patterns from SO-SDMs:

 Although most of the SO-SDMs prescribe different
activities with different names, they are inherently
similar.

 Multiplicity and similarity of SO SDMs confounds
the method engineer and software development teams to
select appropriate one in order to satisfy project
situation.

While each of SDM has different weaknesses and
mainly focus on different issues, a generic SO-SDM as
process patterns that has elicited by identifying the
recurring activities can address this challenge. By
following the map illustrated in the Fig 2, process patterns
extracted from all of the SO-SDMs in top-down fashion
have been extracted. A brief result of applying the
strategies of the procedure have presented in the following
subsections.

A. Step 1. Determine Phase Patterns

For extracting phase patterns, by reviewing the
process-centered template of the SO-SDMs, it is
concluded that SOMA 2008, CBDI and Papazoglou have
more complete life cycle than the other SO-SDMs.
Therefore, phases of these SDMs has been considered as
phase patterns (Fig 10, section a). The phases act as
overall frame for categorizing internal activities of all SO-
SDMs.

B. Step 2. Decompose the SDMs

SO-SDMs’ activities are passed along the phase
patterns and classified into several phases. At the step, the
Unify, Supply, Split strategies are applied on the activities
based on their similarities, differences and analyzing the
recurring activities (Fig 10, section b). For instance, Table
II shows a typical activity about Evaluating the
Organization that is repeated with different names in all of
the SO-SDMs.

C. Step 3. Determine Stage Patterns

The stages patterns has achieved by putting relevant
activities into separate groups as stage pattern (Fig 9,
section c). The SEMANTIC AFFINITY operator allows
making stages. The example illustrates only partially
formed stage patterns. The intent of Review
Organization’s IT Strategies and Objectives, Analyze SOA
Drivers, Evaluate Readiness for Migration to SOA,
Decompose Organization, Identify Organization’s Policies
and Rules activities are close to each other and
consequently grouped in a separate stage pattern called
Analyze Organization stage pattern.

Figure 10. Steps of extracting process patterns from SO-SDMs

D. Step 4. Concretize Task Patterns

To have more applicable task patterns, they should be

elaborated by more specific techniques. The details of task

patterns can be gathered from existing SDMs or successful

experiences in the service-oriented paradigm. For instance,

in order to define services there are many research have

proposed as Top-Down, Bottom-Up and Meet-In-the

Middle. While some of the task patterns belong to more

than one phases, Design Architecture and Design Services

expand to Initiate and Develop phase patterns respectively.

It should be noted adding patterns to process management

tools are out of the scope of this research.

TABLE VI. SIMILARITIES OF SO-SDMS

SO-SDM Similar Activity
SOAD Evaluate legacy systems

SOMA 2008 Asset analysis

CBDI – SAE

Process

Survey existing assets for potential services

SOUP Technical infrastructure definition and analysis

MSOAM Identify existing automation systems

RUP for SOA Existing Asset Analysis

RQ n.a

SOAF Existing Application Portfolio Artifacts

Steve Jones n.a

Papazoglou Existing application portfolio analysis

SLM Evaluate legacy systems

SGMM Organization models(business entities and business processes)

V. CONCLUSION AND FUTURE WORK
In this paper, a novel procedure that objectively and

systematically extracts process patterns from existing
SDMs independent of a specific development paradigm
has been proposed. To be more specific, the proposed
procedure, its algorithms and operators are based on a
typical data mining literature applied for analyzing
similarities, and closeness of activities' intent. By adopting
this procedure, quality process patterns that have
comparable granularity and are independent of specific
conditions of a problem domain will be achieved. The
applicability of the proposed procedure has been verified
in an example in which a set of specific process patterns
from exiting SO-SDMs had been extracted and
represented.

Although the paper provides a formal ground for
processing and mining internal activities in the SDMs,
however, the level of formalization and explicit definition
of the concepts in SDMs are not mature enough. The
existing SDMs, represented in the textbooks are narrative
texts in natural language that have figures and examples
for ease of understanding. However, it is difficult to
process and mine them automatically [7]. In this regard,
authors applied the proposed procedure and extract the
patterns by human knowledge. Additionally, formalizing
and implementing the proposed procedure and adding it as
a plug-in in the process engineering tools to automatically
populate its process repository are considered as future
work.

REFERENCES

[1] J.O.Coplien, “A Generative Development Process Pattern
Language”, In: Pattern Languages of Program Design, ACM Press/
Addison-Wesley, New York, 1995, pp. 187–196.

[2] S.W.Ambler, Process Patterns: Building Large-Scale Systems
Using Object Technology. Cambridge University Press, 1998.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns –
Elements of Reusable Object-Oriented Software. Professional
Computing Series. Addison Wesley, Longman Publishing Co.,
Inc., Boston, Massachusetts, 1995.

[4] F.Buschmann, R.Meunier, H.Rohnert, P.Sommerlad, M.Stal,
Pattern-Oriented Software Architecture: A System of Patterns,
Vol. 1, Wiley, 1996.

[5] Object Management Group (OMG). ”Unified Modeling Language
Specification (v1.5)”, Technical Report, OMG, 2003.

[6] J.Ralyté, C.Rolland, “An Approach for Method Engineering”, In
Proceedings of the 20th International Conference on Conceptual
Modelling (ER2001), Springer-Verlag, LNCS 2224, Berlin, 2001,
pp.471-484.

[7] J. Ralyté, “Towards Situational Methods for Information Systems
Development: Engineering Reusable Method Chunks”, In
Proceedings of the International Conference on Information
Systems Development (ISD’04), Vilnius Technika, 2004, pp.271-
282.

[8] M.Gnatz, F.Marschall, G.Popp, A.Rausch, W.Schwerin, “Modular
Process Patterns Supporting an Evolutionary Software
Development Process”. Lecture Notes in Computer Science, 2188,
2001.

[9] R. Ramsin, R. F. Paige, “Process-centered review of object
oriented software development methodologies,” ACM Computing
Surveys, vol. 40, no. 1, Feb. 2008, pp. 1-89.

[10] S.Tasharofi, R.Ramsin, “Process Patterns for Agile
Methodologies,” Situational Method Engineering: Fundamentals
and Experiences. J. Ralyté, S. Brinkkemper, B. Henderson-Sellers,
Eds., Springer, 2007, pp. 222-237.

[11] E. Kouroshfar, H. Yaghoubi Shahir, R. Ramsin, “Process patterns
for Component-Based Software Development,” Proc. CBSE'09,
Jun. 2009, pp. 54-68.

[12] M.Asadi, N.Esfahani, R.Ramsin, "Process Patterns for MDA-
Based Software Development", Accepted In the 18th International
Conference on Software Engineering Research, Management and
Applications (SERA’10), 2010.

[13] M. Fahmideh Gholami, J.Habibi, “Process Patterns for Decision
Support Systems Development” Proc. CSICC2010, Mar. 2010, pp.
375-386.

[14] M.Khaari, R.Ramsin, "Process Patterns for Aspect-Oriented
Software Development", In Proceedings of the 17th IEEE
International Conference on Engineering of Computer-Based
Systems (ECBS’10), 2010, pp. 241-252.

[15] N. Esfahani, S. H. Mirian-Hosseinabadi, K. Rafati, “Real-time
Analysis Process Patterns,” Proc. CSICC'08, Mar. 2008, pp. 777-
781.

[16] J.Dong, Y.Zhao, T.Peng, “A Review of Design Pattern Mining
Techniques”, the International Journal of Software Engineering
and Knowledge Engineering (IJSEKE), World Scientific
Publishing, Volume: 19, Issue: 6, Sep 2009, pp. 823-855.

[17] J.Ralyté, C.Rolland, “An Assembly Process Model for Method
Engineering”, In Advanced Information Systems Engineering,
K.R. Dittrich, A. Geppert, M.C. Norrie, Eds. Springer, LNCS2068,
Berlin, 2001, pp.267-283.

[18] A.Conte, M.Fredj, I.Hassine, J.Giraudin, D.Rieu, “A Tool and a
Formalism to Design and Apply Patterns”, OOIS. LNCS, vol.
2425. Springer, Berlin, Heidelberg, 2002, pp. 135–146.

[19] J.Ralyté, “Towards Situational Methods for Information Systems
Development: Engineering Reusable Method Chunks”, In
Proceedings of the International Conference on Information
Systems Development (ISD’04), Vilnius Technika, 2004, pp.271-
282.

[20] J.Ralyté, , C.Rolland, R.Deneckère, “Towards a Meta-Tool for
Change-Centric Method Engineering: A Typology of Generic
Operators”. In Proceedings of CAiSE 2004, A.Persson, J. Stirna,
Eds. Springer-Verlag, LNCS 3084, Berlin, 2004, pp.202-218.

[21] J.Ralyté, C.Rolland, “An Approach for Method Reengineering”,
20th International Conference on Conceptual Modeling,
Yokohama, Japan. LNCS 2224, Springer, 2001, pp.471-484.

[22] R.S. Pressman, “Software Engineering: A Practitioner’s
Approach”, 6th ed., McGraw-Hill, 2005, pp. 63-65.

[23] P.Haumer, Eclipse Process Framework Composer, Eclipse
Foundation, 2007.

[24] P. Kroll, “Introducing IBM Rational Method Composer”, 2005,
Available at:
http://www.ibm.com/developerworks/rational/library/nov05/kroll.

[25] M.Fahmideh Gholami, J.Habibi, F.Shams, S.Khoshnevis,
"Criteria-Based Evaluation Framework for Service-Oriented
Methodologies" UKSim, 12th International Conference on
Computer Modelling and Simulation, 2010, pp.122-130.

