
Data Consistency Management in an Open Smart
Home Management Platform

Jie Song, Silvia Calatrava Sierra, Jaime Caffarel Rodriguez, Jorge Martin Perandones,
Guillermo del Campo Jiménez, Jorge Olloqui Buján, Rocío Martínez García and Asunción Santamaría Galdón

Abstract—In this paper, the authors introduce a novel mech­
anism for data management in a middleware for smart home
control, where a relational database and semantic ontology
storage are used at the same time in a Data Warehouse. An
annotation system has been designed for instructing the storage
format and location, registering new ontology concepts and most
importantly, guaranteeing the Data Consistency between the two
storage methods. For easing the data persistence process, the Data
Access Object (DAO) pattern is applied and optimized to enhance
the Data Consistency assurance. Finally, this novel mechanism
provides an easy manner for the development of applications and
their integration with BATMP. Finally, an application named
"Parameter Monitoring Service" is given as an example for
assessing the feasibility of the system.

Keywords-data consistency; ontology; data access object; anno­
tation; smart home;

I. INTRODUCTION

Smart Home is a field which has been the focus of
research for many years. A good deal of work has been
done on the topic of automated control, sensor technologies,
communication protocols, etc. However, the complexity of
device selection and installation makes it difficult for users
with little technological knowledge to easily apply a smart
home system in their homes. Therefore, CeDInt-UPM has
designed an open smart home management platform (BATMP)
in order to facilitate the installation and configuration of a
home control system for those users. BATMP is a middle-ware
which integrates different building automation technologies
and provides services such as the control of devices or ambient
parameter monitoring. [1]

Through the implementation of this project, vast amounts
of information can be collected, such as electrical energy
consumption, daily room temperature trends, and even user
preferences and actions such as switching lights on/off or
leaving/getting home. How to store and share these data
effectively and efficiently has become one of the key concerns
of BATMP. The following issues regarding data management
in BATMP should be solved: first, enabling the data collected
from different resources to understand and interact with each
other. To achieve this, we have applied ontology technology,
considering its capability to create a unified domain vocabu­
lary, which enables the integration of different data sources

such as weather prediction [7]. However, considering that
the relational databases have a significantly faster processing
speed and good stability, we would also like to use them to
store those data that are only used locally in one BATMP. We
therefore decided to build a Data Warehouse which consists
of both a relational database and the semantic ontology triple
store. The details will be explained in Section 2.

On the basis of this decision, we focused on the second
issue regarding how to ensure the data consistency between
different data storage systems and to interact with both of
them simultaneously. To solve this, building an annotation
system to give instructions regarding the storage process
finally turned out to be the best solution, the details of which
will be illustrated in Section 3. In parallel, for processing
the information provided in the annotations, we have built
a system following the Data Access Object (DAO) pattern.
Section 4 explains the application and optimization of DAOs
and how they also help to guarantee the data consistency.

The combination of annotation and DAOs also helps us to
deal with the third issue: to provide the software developers
with an easy way to integrate their data into BATMP. In
Section 5, an application is given as example to show how
this integration is achieved.

Finally, Section 6 shows a summary of the work and offers
conclusions. The DAO API and the annotation API developed
will be published in the future so that third parties can develop
their own applications and integrate them into BATMP, which
will significantly increase the scalability of the system.

II. BATMP INFRASTRUCTURE AND COMPONENTS

A. BATMP infrastructure

BATMP is a software system which can be installed in
a Raspberry Pi, MiniPC, PC, etc. Fig. 1 shows part of the
BATMP infrastructure and its components.

Each BATMP comprises five components: Gateway Man­
ager, Technology Manager, Application Manager, Model Man­
ager and Data Warehouse. All the components communicate
with each other through a list of parameters. [1]

• The Gateway Manager is in charge of the interaction
between users and BATMP. It contains various services

Fig. 1. BATMP infrastructure

to enable the communication between the User Interface
and the Model Manager. For instance, a user service is
used for parsing the login information received through
REST and calling User DAO for authentication.
The Technology Manager is in charge of the interaction

•

between devices and BATMP. It contains a list of drivers
to communicate BATMP with devices of different proto­
cols.
The Application Manager is in charge of the management

•

of applications in BATMP.
The Model Manager collects and stores data in BATMP.

•

The above three components send the data they generate
to the Model Manager for storing and request the data
they need from the Model Manager. The Model Manager
is responsible for the communication among all the
BATMP components.

B. Data Warehouse.
All the BATMP data are stored in the Data Warehouse,

including information about users, devices, artifacts, spaces,
profiles, etc. Nowadays, in many projects [2][3][4], only a sin­
gle type of data storage is applied, either a relational database
or a semantic ontology triple store. Sometimes technologies
are developed to map the data or convert the format between
these two kinds of data management systems [5]. But there is
rarely a methodology to realize the mapping and unification
between these two kinds of storage at the software level. A
discussion about the advantages and disadvantages of these
two storage methods are given as follows:

Speed of Processing: in [6], it is clearly illustrated that a
•

relational database such as MySQL has a highly superior
performance in processing speed than those ontology
triple stores (such as JenaTDB and Virtuoso), both in
load time of triples and the query processing execution.
System Stability: due to their mature development, re-

•

lational databases have a better stability compared to

ontology storage. By using JenaTDB, we have met some
problems such as triple store crash, which leads to the
loose of data. And using Virtuoso, the server occupied
too much space when a Mini PC is used to host BATMP.
On the other hand, MySQL has very good stability during
the test period and an easy data backup system.
Security Mechanism: in general, a relational database has

•

a relatively complete security mechanism. For instance, a
relational database such as MySQL has an Access Privi­
lege System to authenticate a user who connects from a
given host and associate that user with some privileges on
the database. Another commonly used relational database
SQLite hooks built-in for database encryption. However,
for the ontology, due to the principles of openness and
data sharing, less security mechanisms are included.
Data sources integration: One of the key contributions

•

of an Ontology is to create a common vocabulary in a
specific domain for easy knowledge sharing and reusing.
It is able to integrate the information from different data
sources easily, while relational databases are not designed
for this function.
Data publishing: For easily publishing and sharing data,

•

there is already a list of tools such as the endpoints
in SPARQL. Relational databases are relatively closed
though and do not publish the data they contain.

B A T M P has been designed for integrating different kinds
of data, including those related to users, spaces, devices,
measurements, etc. The requirements for data storage depend
on the data. For instance, user authentication data such as
username and password, which requires a higher security
level, should be stored in the relational database as a local
resource. However, the person-description information such
as age and gender may be stored in the ontology for data
publishing and further data mining such as user behaviour
analysis. As a result, we decided to apply both storage methods
in B A T M P Data Warehouse for storing different data according
to their usage and properties. Currently, MySQL is chosen as
the default relational database and Jena T D B as the default
ontology storage.

I I I . ANNOTATION SYSTEM

As illustrated above, Data Warehouse consists of both a rela­
tional database and an ontology store. Therefore, a mechanism
is necessary for instructing the Model Manager about where
and how to persist a Java object and ensure the consistency of
data between both of the storage systems. To achieve this goal,
an annotation system has been developed. With the help of
annotations, an instance of Java class can be persisted to both
the relational database and ontology in the same transaction.

B A T M P requires that those Java Classes to be persisted
should follow the pattern of Plain Old Java Object (POJO),
namely, only have variables and the getters and setters for
each variable. As these objects should be a reflection for the
data persisted in the Data Warehouse, this convention is not
going to result in the sacrificing of expressiveness.

Fig. 2. Annotation API

By adding annotations in a Java class, the developer is
able to integrate the class into BATMP and benefit the data
persistence process of Model Manager without changing its
class structure. The instances of the Java class will be persisted
to the relational database or the ontology triple store according
to the annotations set. If the developer decides to change
the storage location or format of a class or a field, for
instance, from the relational database to the ontology, he/she
can just change the annotations without worrying about how
the storage process is achieved.

The annotation API (Fig. 2) consists of three parts, general
annotations, annotations for the relational database and anno­
tations for the ontology. This annotation system is able to solve
many issues which concern us, including data storage instruc­
tion, ontology concepts registration and most importantly, data
consistency guarantee in Data Warehouse.

A. Data Storage instruction and configuration

1) Having a class to persist, the first problem to solve is
which storage(s) to choose. Two class-level annotations
have been defined: @OWLClass and @RDBClass. If
a Java class needs to be persisted partly or fully in the
ontology triple store, the annotation @OWLClass should
be provided with the corresponding concept name, for
instance, @OWLClass(“spatiaCore:User”). The annota­
tions @OWLDatatypeProperty and @OWLObjectProp-
erty inside of a class will be ignored if the class does not
have @OWLClass. Similarly, if @RDBClass(“user”) is
provided, the class will be persisted to the table named
“user” in database.

2) As long as the storage method is chosen, the connection
driver should be selected. BATMP provides four drivers:
Driver MySQL and SQLite for relational database and
Driver Jena TDB and Jena-Virtuoso for the ontology
store.

B. Concept Registration in BATMP

In order to register a class in the Ontology Structure of
BATMP, it is necessary to provide the information by using
@Namespaces, @NamedGraph and @OWLClass:

Fig. 3. Ontology Storage and Relational Database Schema

1) @Namespaces provides a list of mapping between the
prefixes and the corresponding URLs. For instance,
“spatiaCore:www.cedint.upm.es/residentialOntology.owlJ”.
I f the defined prefix is already registered with another
URL, an exception wil l be thrown. This prevents the
potential conflict as the prefix is used frequently and a
convention should be created for them.

2) @NamedGraph indicates the graph to which the concept
is stored. It is recommended that the relatively close
concepts be stored in the same graph while the others
are stored in other graphs. By doing this, the furthering
data query and inference efficiency could be improved.

3) @OWLClass provides the concept URL corresponding
to the class. I f this concept does not exist in the BATMP
ontology structure, it wi l l be added.

C. Data consistency between ontology and relational database

In the case where a class is stored in both the database
and the ontology, a unique identifier is necessary. The an­
notation @Id has been defined to be used in such cases. It
is compulsory to use @Id just for one Primitive/Primitive
Wrapper field of the class. The annotated field will be used
as the primary key in the database and as the reference to
generate the individual URL in the ontology. Two objects with
the same @Id field will be identified as the same object. Fig. 3
illustrates how the same Java object is persisted into both
storages. During the persistence process, data consistency is
guaranteed as the data come from the same object. Meanwhile,
during the retrieval process, Model Manager retrieves the data
of each field according to the same ID passed and unifies them
in the same object. If the data of the same field is different in
the two storages (Arrow 2), an exception will be thrown.

http://www.cedint.upm.es/residentialOntology.owlJ�

D. Storage of concepts’ attributes and relations among them

In a Java class, a field could be of Primitive/Primitive
Wrapper type (1) or an object/collection of objects (2). The
field in case (1) will be stored in the ontology as an attribute of
the concept if the annotation @OWLDatatypeProperty(“xxx”)
is provided, while if @RDBAttribute(“xxx”) is provided, the
field will be stored as a column in the corresponding table.
In case (2), if a @OWLObjectProperty() is provided, this
relationship will be stored as an object property between the
annotated field and the current class. In relational databases
the cases could be even more complicated. Considering the
different cases of fields inside a Java class, the option cascade()
is provided for @RDBAttribute, indicating the manner to store
the data:

TOSTRING, indicates that the field is converted as a
•

String to be stored in the corresponding column;
M E R G E , indicates that all the fields inside this annotated

•

field will be retrieved and stored in the same table of the
class;
RECURSIVE, indicates that the annotated field will be

•

stored in a separate table with a foreign key consistent
with the primary key of the current class.

E. Data Retrieve confidentiality and efficiency
With regard to the efficiency and security of data retrieval,

the option displayLevel() is provided in the annotations @RD-
BAttribute, @OWLDatatypeProperty and @OWLObjectProp-
erty. It indicates the level to which the field value is exposed:

C O N F I D E N T I A L , used for the information that should
•

never be exposed, such as a password;
P U B L I C , used for the fields that should be shown or

•

retrieved in all kinds of methods;
SPECIFIC, the default option, which is used for those

•

fields whose exposure is not so important when several
objects are retrieved at the same time. For instance, one
field with this option will be retrieved in the method
findById, while in the method findAll, this field will be
set to null, without making any query to Data Warehouse.

In the Model Manager, those methods for retrieving
data can define the displayLevel. The information will
be exposed only if its displayLevel is higher than the
level specified in the retrieve method, the sequence is
PUBL IC>SPECIF IC>CONFIDENTIAL .

I V . DATA PERSISTENCE AND RETRIEVAL
The Model Manager is used to ensure that the data sent

by the different B A T M P components are stored correctly in
the Data Warehouse and that the stored data are queried in an
effective and secure way by each component. For easing the
process of data persistence, the software pattern Data Access
Object (DAO) is employed. Model Manager includes a D A O
Manager, for registering and retrieving DAOs; D A O Pool,
which contains various DAOs for handling the persistence of
different Java classes; and several Data Warehouse connection
drivers for the use by DAOs.

© ¡nsertfT)

O fmdByk)(String,String.)

© ufxtatefO

O QeleieiStnng)

& firoJAlHString)

© authenbcateByPasswordíString.String.StringVMessage

• o as30C#teW¡thClientiStfing.Stririg):Me$3age

O as3ig(iUserRote(S!r¡ng,S1rma;-:Míssage

© delete UserRo leí String., String): Message

O logOuti String):Message

O upiatet.tcdei¡;.:titessflge

e<Java Class»

0 G enericDA Olmpl<T>
¡s-.upw.eMJít.j-ste'jjsy.fwae! Imp)

© GenericDAQImpl(Class<r>;

$ in sertiT); Message

© upíatefT):Message

© firt(tAii(String):LisKr>

© findByldíStnng,String)

© detete(String); Mes sage

& getTflblefJame(}:String

© getbidividuAiPrerixOiStfiflg

& geIlndividua1URLa):S!ring

i=Java CBss»

©Use rDAOlmp l

pm erfirt ¡attJi-ay n--o*s! Irr.pl

O UsarDAOimpH)

©deleteüserRole(String.String):Messag.e

© assign User Role(5tring. String):1,1essage

© associateWrthClient(String. String) Message

© authenticate 8yPass word (String. String, Siring):!.! essage

© createOnlologyliloiieKString,fiflolean.StrirLg):vo«9

© logQuKString):!.! essage

© updateModel(}: Mes sage

Fig. 4. Generic DAO and DAO Structure

A. Data Access Objects (DAOs)

Data Access Object is a software design pattern introduced
by Sun Microsystems for providing data operations without
exposing details of the database [11]. Data Access Object is an
interface used to provide access to the persistent storage layer.
This makes it possible that the changes of logic at the storage
side will not affect the operation of other modules. These
changes could be database type (relational databases, ontology,
flat files, etc.), database driver (MySQL, SQLite, Jena TDB,
Jena-Virtuoso, etc.), database location, etc. In general, by
using DAOs, the process of storage is eased significantly and
separated from the main business logic of the system.

B. Use of Generic DAO

In BATMP, each DAO is responsible for handling one
specific class and its subclasses. For instance, User DAO is
responsible for User class, and ParameterDAO is responsible
for the class Parameter and its subclasses: ParameterReadOnly,
ParameterModifiable and ParameterSelectable. Following the
rule of not repeating code, a Generic DAO is constructed
for carrying out the basic data CRUD (Create, Read, Update,
Delete) functions and storing the key information of persistent
storage. Generic DAO works with the generic type T [9] and
provides five basic functions: insert, update, delete, findById
and findAll by using Java Reflection programming [10]. Each
DAO inherits the five basic functions from Generic DAO and
contains its own methods according to the different needs for
handling the data of the corresponding class. For instance, in
User DAO, a method authenticateByPassword() is created for
validating the user’s authentication information. Fig. 4 shows
the construction of Generic DAO and an example of DAO,
User DAO. Besides the default five methods, GenericDAO also
provides a list of methods for the general use purposes, such
as findByField(), findByQuery(). Each DAO is able to connect
to one relational database and one ontology triple store at the
same time. All the DAOs are kept in a DAO pool and each
component retrieves those DAOs that interest it from there.

http://Irr.pl

C. DAO creation, registration and retrieval
For creating and retrieving DAOs properly and efficiently,

a DAO Manager is employed. This DAO Manager maintains
a list of mappings between the Java classes to be persisted
and their corresponding DAOs. For instance, for persisting the
instances of User class, User DAO is needed. Every time a
DAO is created, it needs to be registered in the DAO Manager
by adding a mapping between the target class and the DAO.
If a class has subclasses, the mapping between each subclass
and the DAO should also be added. Sometimes, an instance
may contain variables which are instances of other classes. In
this case, during the reading and writing process, the DAO
Manager will first search its mapping list. If a corresponding
DAO is found for this object, this DAO is applied. If no proper
DAO is found, a generic method is provided for persisting
the field. For instance, a user contains a list of roles. As
the Role DAO is registered, it is used for handling the role
instances inside the user instance. This mechanism has two
advantages. First, each DAO contains some basic information
such as the ID field, the table name, the individual URL prefix,
etc. which needs to be obtained by looping all fields of the
class. Therefore, this mechanism reduces the iteration process
to work more efficiently. Second, some classes need special
operations for data persistence and retrieval. For instance,
those classes which have subclasses need to keep a mapping
of subClass-URL or subClass-Indicator in the corresponding
DAOs. As a result, it is necessary to use this mechanism for
ensuring that the instances of each class are persisted by the
correct DAO.

D. DAOs for applications

Besides the default DAOs created in BATMP, the platform
allows its applications to create their own DAOs and register
them in the DAO Manager, taking advantage of the easiness
for integrating their data with BATMP. Before the DAO
is registered successfully, DAO Manager will validate the
corresponding class, checking if all the annotations are set ap­
propriately; if the name spaces provided are already registered;
if the table already exists, etc. For security considerations,
all the data from the application will be stored in a separate
database in Data Warehouse.

E. Control of Data Consistency by DAOs

As the annotation contains all the information about exactly
where and how to persist the data, the initial database and
the ontology can be empty unless it is required for some
backup file to be loaded first. In the following section, the
collaboration between DAO and annotations will be explained.
The Data Consistency is guaranteed by the DAOs from three
aspects.

1) Data Consistency during initial step. Subclass Regis­
tration and Database/Ontology construction: this automatic
construction mechanism prevents the potential inconsistency
among a manually created database, ontology structure and
the persisted Java class. It also avoids the extra workload that
might occur if any of these three parts were modified. When

creating a D A O , the target class T should be assigned to the
D A O . If the class has subclasses, they should be registered in
the D A O so as to know to which U R L a subclass corresponds.
Once the registration has taken place, the D A O will check
the annotations of the class. If @OWLClass is found, a new
concept corresponding to this class will be created in the
ontology, while if @RDBClass is found, a table will be created
in the relational database. Hereafter, the D A O scans each field
until it finds the one with @Id. This field will be used to
generate the individual U R L in the ontology and/or be used
as primary key in the database. Finally, the D A O scans all
the fields and creates the properties in the ontology and/or the
columns in the database accordingly.

2) Data Consistency during Data Storage: the data storage
is accomplished by the methods insert() and update(). When
a new instance needs to be persisted, the D A O reads the
identifier field and creates a new individual in ontology and/or
a new row in database accordingly. Afterwards, the D A O reads
all the fields, adding new properties and/or updating the row
accordingly following the annotations. If it succeeds, a success
message containing the object I D will be returned. As the
information for storing in both places comes from the same
instance, the data consistency is guaranteed. If it fails, an error
message containing the cause will be returned followed by a
rollback in the transaction with both relational database and
ontology store. In this case, data consistency is assured.

3) Data Consistency during Data Retrieval: the data re­
trieval is accomplished by the methods findById() and find-
All(). Taking findById() for instance, the D A O reads all the
fields of the target class and constructs an Ontology query
(SPARQL) and/or a database query (SQL) according to the
annotations. After making the queries, the D A O creates an
instance of target class and assigns the retrieved values to each
corresponding field. If it succeeds, the instance is returned. If
it fails for some reason such as that the given object I D is
not valid, a null will be returned. If the data retrieved from
the two storages is not consistent, such as that the database is
changed by accident, an exception will be thrown during the
data retrieval process, which ensures the Data Consistency.

V. DEVELOPMENT OF APPLICATIONS FOR B A T M P

On the basis of BATMP, several applications have been
developed, such as a Parameter Monitoring Service, an ap­
plication to monitor all the parameters in B A T M P ; BatStreet-
Light, an application for intelligent street lighting control;
and GreenLabs, an application for greenhouse monitoring.
It has been proved that this data management system eases
and shortens the process of application development and
integration significantly. In this section, we will take the
Parameter Monitoring Service as an example to illustrate how
to develop an application for BATMP, taking advantage of this
developed Data Management mechanism. Fig. 5 shows one of
the application screens. In this application, two new classes
ParameterConfig and Graph are introduced. ParameterConfig
represents the configuration of one parameter regarding the
way in which the user wants to see its measurements, as

Fig. 5. Application for Parameter Monitoring of BATMP

denoted in part 2. Graph represents a single graph in which the
selected parameters are shown together, as denoted in part 1.
A graph includes a list of ParameterConfigs. The application
allows users to create their own graphs, store and retrieve
them. To achieve this, it is necessary to create two DAOs,
ParameterConfigDAO and GraphDAO for dealing with these
two classes. Meanwhile, the two classes should be annotated
properly for instructing the DAOs about the persistence.

Fig. 6(a) shows an example of the annotations for the two
new classes. Considering the use of ParameterConfig and
Graph, we decided to store both of them in the relational
database for the local use of users. As a result, @RDB-
Class is provided for both classes. Meanwhile, we might
want to publish part of the ParameterConfig data such as
parameterId for the further user behaviour analysis. Following
the instruction of the annotations, two tables named “graph”
and “parameterconfig” wi l l be created in the relational da­
tabase and a new concept “spatia:ParameterConfig”, namely,
“www.cedint.upm.es/residentialOntology.owlJParameterConfig” w i l l
be added to the B A T M P ontology structure. The columns in the
database wil l be created according to the annotations @RD-
BAttribute provided, while the properties in the ontology wi l l
be created according to the annotations @OWLDataProperty
and @OWLObjectProperty provided. Once the new classes
have been annotated, their corresponding DAOs should be
created. Fig. 6(b) shows an example of D A O creation. As can
be observed, just using a couple of lines, a new D A O with
the basic functionality (insert, update, findById, findAll and
delete) is created. After the DAOs are created, it is necessary
to register these DAOs in the D A O Manager, namely, add
mapping

V I . CONCLUSION A N D FUTURE WORK

In conclusion, due to the complexity of an open smart home
management system such as different data sources, multi-user,
frequent data C R U D process, it turns out that a combination of
a relational database and an ontology is a good solution. In this
paper, the authors have designed a novel solution for data per­
sistence with more than one type of storage at the same time,
including an annotation system for providing the persistence
instruction and list of DAOs for processing the data according

Fig. 6. Example of annotations and DAO creation

to the annotations. By implementing this mechanism, the Data
Consistency is guaranteed appropriately. Meanwhile, the third-
party developers can develop their applications easily taking
advantage of the existing data access methods and publish their
data for the benefit of other developers.

However, to improve the current system, some work remains
to be done. For instance, the annotation system can be im­
proved with the feedback from the developers in order to make
the system more flexible. Moreover, more drivers for both the
relational database and the ontology should be provided later.

REFERENCES

[I] Jaime Caffarel, Guillermo del Campo-Jimenez, Jorge M . Perandones,
Csar Gomez-Otero, Rocio Martnez and Asuncin Santamara: Open Multi-
Technology Building Energy Management System. In: Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT) ,
2012 4th International Congress, pp.397–404. St. Petersburg (2012).

[2] Bonino Dario, Fulvio Corno: Dogont-ontology modeling for intelligent
domotic environments. The Semantic Web-ISWC 2008. Springer Berlin
Heidelberg. 790-803 (2008).

[3] Mossberg Walt: SmartThings Automates Your House Via Sensors, App.
(2014).

[4] universAAL Project, UNIVERsal open platform and reference Spec­
ification for Ambient Assisted Living, 7h Framework Programme of
the European Union, Grant Agreement No. 247950, 2010-2014, http:
//www.universaal.org. [Accessed on 18th June 2014].

[5] Anuradha Gali1, Cindy X . Chen1, Kajal T. Claypool1 and Rosario Uceda-
Sosa: From ontology to Relational Databases. In: Workshop Concept.-
Model Driven Web, pp. 278–289. Shanghai, China (2004).

[6] Christian Bizer, Andreas Schultz: The Berlin SPARQL Benchmark. In:
International Journal on Semantic Web and Information Systems, Vol. 5,
Issue 2, Pages 1-24 (2009).

[7] Ghislain Atemezing, Oscar Corcho, Daniel Garijo, José Mora, Mara
Poveda Villalo´n, Pablo Rozas, Daniel Vila-Suero, Boris Villazo´n-Terrazas.
Transforming Meteorological Data into Linked Data. In: Semantic Web
Interoperability, Usability, Applicability an IOS Press Journal. 1570-0844
(2012).

[8] Guillermo del Campo, Eduardo Montoya, Jorge Mart´ın, Igor Gó mez,
Asuncio´n Santamaŕ ıa: BatNet: A 6LoWPAN-Based Sensors and Actu­
ators Network. Ubiquitous Computing and Ambient Intelligence. 7656,
58–65 (2012).

[9] Generic Types, http://docs.oracle.com/javase/tutorial/java/generics/
types.html. [Accessed on 18th June 2014].

[10] The Reflection A P I , http://docs.oracle.com/javase/tutorial/reflect/ [Ac­
cessed on 18th June 2014].

[I I] Core J2EE Patterns - Data Access Objects,
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html.
[Accessed on 18th June 2014].

http://�www.cedint.upm.es/residentialOntology.owlJParameterConfig�
http://www.universaal.org
http://docs.oracle.com/javase/tutorial/java/generics/
http://docs.oracle.com/javase/tutorial/reflect/
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html

