
Time-Aware Relational Abstractions for Hybrid Systems

Sergio Mover∗
FBK, Trento

mover@fbk.eu

Alessandro
Cimatti

FBK, Trento
cimatti@fbk.eu

Ashish Tiwari∗†
CSL, SRI

International
tiwari@csl.sri.com

Stefano Tonetta
FBK, Trento

stonetta@fbk.eu

ABSTRACT
Hybrid Systems model both discrete switches and continu-
ous dynamics and are suitable to represent embedded sys-
tems where discrete controllers interact with a physical plant.

Relational abstraction is a new approach for verifying hy-
brid systems. In relational abstraction, the continuous dy-
namics in each location of the hybrid system is abstracted
by a binary relation that relates the current value of the
continuous variables with all future values of the variables
that are reachable after a time elapse (continuous) transi-
tion. The abstract system is an infinite-state system, which
can be verified using k-induction or abstract interpretation.

Existing techniques for computing relational abstractions
are time-agnostic: they do not construct any relationship
between the state variables and the time elapsed during
the continuous evolution. Time-agnostic abstractions can-
not verify timing properties.

We present a technique to compute a time-aware rela-
tional abstraction for verifying (timing-related) safety prop-
erties of cyber-physical systems. We show the effectiveness
of the new abstraction on several case studies on which the
previous techniques fail.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; D.2.4 [Software verifi-
cation]: Formal methods

General Terms
Design, Verification

∗Supported in part by NSF grants CSR-0917398 and
SHF:CSR-1017483.
†Supported in part by DARPA under contract FA8750-
12-C-0284 and under subcontract VA-DSR 21806-S4 under
prime contract FA8650-10-C-7075.

Keywords
Hybrid Systems, Formal Methods, Verification, Abstraction

1. INTRODUCTION
Hybrid systems exhibit both discrete and continuous be-

haviors. For this reason, they are a suitable formalism to
model the embedded systems used in several domains (e.g.
automotive, avionics, . . .), where digital controllers interact
with the physical environment. Since many such systems are
safety critical, it is imperative to have effective verification
techniques that can prove safety of such systems. However,
ensuring safety of these kind of systems is a challenging task,
due to the interaction between the discrete and the contin-
uous dynamics.

Hybrid automata is the formal framework used to model
the discrete and continuous behavior of hybrid systems [19].
One approach for verifying safety properties of hybrid au-
tomata is based on constraint solvers called Satisfiability
Modulo Theories (SMT) solvers. In this approach, hybrid
automata are encoded as infinite-state transition systems
using SMT constraints, which are then verified using tech-
niques such as k-induction. The encoding may be either
precise or it may be an over-approximation of the original
system.

Linear hybrid systems is an important class of hybrid sys-
tems, where the dynamics of the continuous variables are
described by means of linear Ordinary Differential Equa-
tions (ODEs). Unfortunately, the SMT-based verification
approach can not directly be applied to linear hybrid sys-
tems. This is because it is unclear how to map continuous
transitions specified by linear ordinary equations into SMT
constraints.

One way to enable SMT-based verification for linear hy-
brid systems is based on using relational abstraction [28].
Relational abstraction replaces ordinary differential equa-
tions by a binary relation over the state space that over-
approximates the binary reachability relation induced by
the ordinary differential equations. Thus, by replacing the
ODEs in each mode by their relational abstraction, it is
possible to over-approximate a linear hybrid system with an
infinite-state transition system. Relational abstraction has
been used successfully to verify several systems [28, 33].

There are two shortcomings in the procedure for com-
puting relational abstractions as implemented in Hybrid-
Sal [33]. First, HybridSal generates one fixed abstraction
for any given ODE. Hence, if relational abstraction fails to
prove a valid property, then there is no option for refining the
abstraction. Second, the abstractions generated by Hybrid-

Sal are time-agnostic: they do not relate the time elapsed in
the continuous transitions with the state variables.

Time-agnostic relational abstractions can prove several
nontrivial properties in many cases, but they fail in two
important cases. First, obviously, time-agnostic relational
abstractions cannot be used to verify timing properties. Sec-
ond, time-agnostic abstractions are very coarse (imprecise).
In fact, they often do not capture the relationship between
different variables of the system. Even in simple cases, the
loss of information in time-agnostic relational abstraction is
very significant; see Section 3 for an example.

In this paper, we present a new technique to compute
a more precise, time-aware, relational abstraction. Time-
aware relational abstraction overcomes both the shortcom-
ings of relational abstraction procedure implemented in Hy-
bridSal. First, it is not time-agnostic and it contains infor-
mation about the relationship between the state variables
and the time-elapse variable. Second, time-aware relational
abstraction enables tuning the precision of the abstraction.

Our main contribution is a procedure for computing time-
aware relational abstraction that can be tuned to achieve any
desired precision-efficiency trade-off. The abstraction can be
made more and more precise, but that increases the cost of
analyzing it using bounded model checking.

Our approach for generating time-aware relational abstrac-
tions is based on exploiting the eigenstructure of the matrix
A of the linear ordinary differential equations. The tech-
nique for creating time-agnostic relational abstractions, as
implemented in HybridSal [33], was also based on the same
basic idea. However, we have to non-trivially extend that
idea to preserve information about time (rather than throw-
ing it away) in the abstraction. The key challenge in ex-
tending the procedure for creating time-agnostic relational
abstractions to time-aware relational abstractions is that the
relationship between the time elapsed (∆t) and the change
in the value of any state variable (∆x) is seldom linear. It is
often nonlinear, and it often contains quadratic terms and
transcendental functions, such as the exponential function
and the trigonometric functions. Since we wish to perform
bounded model checking on the abstraction, we need the
abstract system to be specified in “easy” theories, namely,
in linear real arithmetic. The main technical contribution of
the paper shows how to create time-aware relational abstrac-
tion of linear ODEs using piecewise linear approximations of
nonlinear (transcendental) functions.

We extended the HybridSal tool to optionally also com-
pute time-aware relational abstractions. Time-aware ab-
stractions generated by HybridSal are then analyzed using
the SAL infinite bounded model checker and k-induction
prover [15]. Both tools are publicly available from SRI In-
ternational. We show the effectiveness of our approach on
two case studies, a PID controller and an active suspension
controller. We show that, while the previous relational ab-
straction was too coarse, time-aware abstraction is able to
verify time properties on both benchmarks.

The paper is organized as follows. In Section 2 we intro-
duce some background notions while in Section 3 we show
with an example the need of a more precise abstraction. In
Section 4 we present the time-aware abstraction. We com-
pare our technique with the related works in Section 5 and
then we show the effectiveness of the novel approach in Sec-
tion 6. In Section 7 we draw some conclusion and outline
possible directions of future works.

2. PRELIMINARIES
We fix our definition and notation for hybrid automata,

infinite-state transition systems, SMT-based verification, and
relational abstractions below.

2.1 Hybrid Automata

Definition 1. A Hybrid Automaton (HA) [19] is a tuple
〈Q,Q0, R,X, µ, ι, ξ, θ〉 where:

• Q is the set of modes/locations,

• Q0 ⊆ Q is the set of initial modes,

• R ⊆ Q×Q is the set of discrete transitions,

• X is the set of continuous variables,

• µ : Q→ P (X ∪ Ẋ) is the flow condition,

• ι : Q→ P (X) is the initial condition,

• ξ : Q→ P (X) is the invariant condition,

• θ : R→ P (X ∪X ′) is the jump condition,

where Ẋ represents the derivative of the variables X during
a continuous evolution, X ′ represents the variables X after
one transition and P represents the set of predicates over
the specified set of variables.

A state of a hybrid automaton H is a tuple 〈l, v〉, where
l ∈ Q is a mode, and v : X 7→ R is a valuation of all the
continuous variables X.

Definition 2. A sequence 〈l0, v0〉
δ1→ . . .

δk→ 〈lk, vk〉 of states
is a trace of the hybrid automaton H if:

• l0 ∈ Q0, v0 |= ι(l0) and for 0 ≤ i ≤ k li ∈ Q, vi ∈ Rn,

• for 1 ≤ i ≤ k, δj ∈ R and 〈li−1, vi−1〉
δi→ 〈li, vi〉 we

have that either:

– Discrete transition: δi = 0 and 〈li−1, li〉 ∈ R,
vi−1 |= ξ(li−1), vi |= ξ(li), 〈vi−1, vi〉 |= θ(〈li−1, li〉).

– Continuous transition: δi > 0 and there exists
a continuous and differentiable function fli−1 :

Rn+1 → Rn such that ˙fli−1 |= µ(li−1), vi−1 =
fli−1(vi−1, 0), vi = fli−1(vi−1, δi), vi |= ξ(li) and
for all t ∈ [0, δi), fli−1(vi−1, t) |= ξ(li−1).

A state 〈l, v〉 ∈ Q× Rn is reachable if there exists a trace

π of H such that π = 〈l0, v0〉
δ1→ . . .

δk→ 〈l, v〉. A set S of
states is an invariant if, for all the reachable states 〈l, v〉, we
have 〈l, v〉 ∈ S.

Definition 3. Given an hybrid automaton H and a set of
states S ∈ Q × Rn, the safety verification problem consists
of checking if S is an invariant for the hybrid system H.

We will denote with ~x a vector of all the variables x ∈
X, where the order of the variables is chosen arbitrarily.
This notation enables to describe a system of ODEs. In this
paper, we deal with Linear Hybrid Systems, where for all

q ∈ Q the flow condition µ(q) is of the form ~̇x = A~x + ~b,
with A ∈ Rn×n and b ∈ Rn.

2.2 Infinite-state Transition system (ITS)
Infinite-state transition systems are defined by first-order

logic formulas. Here, we assume the standard definition of
first-order logic formulas (a comprehensive treatment of this
topic may be found in [7]). Satisfiability Modulo Theory T
(SMT(T)) [5] is the problem of checking if a first-order logic
formula φ is satisfiable, for some background theory T . In
this paper, we will interpret the formulas in the Linear Real
Arithmetic Theory (i.e. a quantifier-free Boolean combina-
tions of atoms in the form

∑
ai · xj ./ a, where xj is a

real-valued variable, ai, a ∈ Q and ./∈ {<,≤, >,≥, 6=}).
Given a set V of variables, we denote with V ′, V 0, V 1, . . .

copies of such set. An infinite-state transition system (ITS)
is a tuple S = 〈V, Init, Inv, Trans〉 such that:

• V is a set of variables;

• Init is a first-order formula over V (called initial con-
dition);

• Inv is a first-order formula over V (called invariant
condition);

• Trans is a first-order formula over V ∪V ′ (called tran-
sition condition).

A state s is an assignment to the variables V . We de-
note with s′, s0, s1, . . . the corresponding assignment to the
copy V ′, V 0, V 1, . . . of V . A sequence s0, s1, . . . , sk of states
is a model (also called path) of the transition system S =
〈V, Init, Inv, Trans〉 iff:

• s0 satisfies Init;

• for every 0 ≤ i ≤ k, si satisfies Inv;

• for every 0 ≤ i < k, si, s
′
i+1 satisfy Trans.

Many verification techniques for infinite-state transition sys-
tems, such as Bounded Model Checking (BMC) [6] and k-
induction [29], are based on satisfiability checking using SMT
solvers.

SMT-solvers may also handle formulas in the Theory of
Reals (i.e. elementary algebra). However, despite of the re-
cent results [23], SMT-based verification techniques are not
efficient for systems with non-linear arithmetic constraints [11].
Moreover, in the case of non-linear constraints with tran-
scendental functions the satisfiability problem is undecid-
able. Thus, a basic requirement to keep the analysis of
infinite-state transition systems tractable is to avoid formu-
las in the Theory of Reals, and restrict to the more tractable
Linear Real Arithmetic.

2.3 SMT-based verification of hybrid automata
In the Satisfiability Modulo Theory (SMT) verification an

hybrid automaton H is encoded as an infinite-state transi-
tion system S. Then, the infinite-state transition system is
analyzed using SMT-based verification techniques.

The discrete structure of H (i.e. the locations and the
discrete transitions) can be easily encoded in S. Here, we do
not give the details of the encoding of the discrete locations
and discrete transitions of H (see [30, 1] for examples of this
encoding). In fact, we assume we have a one-to-one mapping
between the discrete locations and the discrete transitions of
the hybrid automaton and their encoding in the transition
system S. (Intuitively, S has a copy of the discrete structure
of H).

The encoding of the continuous dynamics (i.e. the flow
condition µ) is more complex, since it requires to have an
explicit solution to the differential equations and to faith-
fully encode the invariants during the continuous evolution.
In practice, the precise encoding can be done only for some
very restrictive sub-classes of Linear Hybrid Systems [30, 14,
1, 11]. By compromising precision, relational abstraction
provides a general way to encode the continuous dynamics
µ for any Linear Hybrid System.

We will write loc = q to refer to the encoding in S of the lo-
cation q ∈ Q. Also, we assume that for each continuous vari-
able x ∈ X of H, there is a corresponding real-valued vari-
able x ∈ V of S. Thus, we map a state 〈l, v〉 ofH to a state of
the transition system ρ(〈l, v〉) = 〈loc = l, x1 = v1, . . . , xn = vn〉.

In the following, we assume that both the continuous and
the discrete transition of H are encoded in the Trans con-
straint of S:

Trans :=
∧
q∈Q

(loc = q → (TransD(q) ∨ TransC(q)))

where TransD(q) and TransC(q) encode respectively the
discrete transitions leaving the location q and the continuous
dynamics in q.

2.4 Relational Abstraction
Relational abstraction [28] abstracts the continuous evo-

lution in each location of the hybrid automaton, leaving un-
changed its discrete locations and transitions. In particular,
the abstraction relates all the values assigned to the contin-
uous variables with all the possible future values assigned to
the continuous variables after a continuous transition. We
encode the relational abstraction for a location q in the for-
mula TransC(q).

Definition 4. TransC(q) is a relational abstraction for the
location q ∈ Q if ∀vi ∈ Rn, δ ∈ R, it is the case that:

ρ(〈q, vi〉), ρ(〈q, fq(vi, ε)〉) |= TransC(q)

where fq : Rn+1 → Rn is the solution to the flow condition
µ(q).

We now define when an infinite-state transition system is
an abstraction of a hybrid system.

Definition 5. An infinite-state transition system S is an
abstraction of the hybrid system H if for all traces πH =

〈l0, v0〉
δ1→ . . .

δk→ 〈lk, vk〉 of H there exists a path πS =
ρ(〈l0, v0〉), . . . , ρ(〈lk, vk〉) of S.

It follows immediately from the definitions above that a re-
lational abstraction of a hybrid automaton H is an infinite-
state transition system S, and moreover, S is an abstraction
of H.

Similarly to the setX ′, we will write x′ and ~x′ for the value
of the variable x and the vector of variables ~x after a transi-
tion. If µq describes a linear system ~̇x = A~x+ b a relational
abstraction may be computed exploiting the eigenstructure
of the matrix A [33]. First, the system of differential equa-
tions is rearranged partitioning the variables ~x into ~y and ~z
such that:1 [

~̇y
~̇z

]
=

[
A1 A2

0 0

] [
~y
~z

]
+

[
~b1
~b2

]
1Note that if there are no variables with constant derivative
the dimension of ~z is 0, which is a simpler special case.

Given an n×n matrix M , we denote with ΛM the set of all
the pairs 〈λ,~c〉, where λ is an eigenvalue of the matrix M and
~c is one of its associated left eigenvectors. More precisely,
for each eigenvalue λ we consider only linearly independent
eigenvectors. The abstraction TransC(q) is computed from
each pair 〈λ,~c〉 ∈ ΛA1 :

TransC(q) :=
∧

〈λ,~c〉∈ΛA1

φ〈λ,~c〉 ∧
∧

z1,z2∈~z

z′1 − z1

b21

=
z′2 − z2

b22

where φ〈λ,~c〉 is a formula that depends on the kind of eigen-
values and eigenvectors, which may be real or complex.

If ~c ∈ Rn and λ ∈ R, the abstraction is defined with

the predicate p(~x) = ~cT ~y + ~dT~z + e, where ~dT = ~cT A2
λ

,

e = ~cT ~b1+~dT ~b2
λ

. In the following, we use p to denote the
linear expression p(~x) and p′ to denote the linear expression
p(~x′) over the next-state variables.

φ〈λ,~c〉 :=


(p′ ≤ p < 0) ∨ (0 < p ≤ p′) ∨ (0 = p = p′) if λ > 0

(p ≤ p′ < 0) ∨ (0 < p′ ≤ p) ∨ (0 = p = p′) if λ < 0

t′ − t = ~cT (~y′−~y)

~cT ~b1
λ = 0

If ~c ∈ Cn and λ ∈ C, the abstraction is defined using two

predicates, p1(~x) and p2(~x). Suppose ~c = ~d+ i~e and λ = α+

iβ. We define p1 and p2 as follows: p1(~x) = ~dT ~y+ ~c1
T~z+e1,

p2(~x) = ~eT ~y + ~c2
T~z + e2 and c1, c2, ~c1

T , ~c2
T , e1, e2 are such

that ṗ1 = αp1−βp2 and ṗ2 = βp1 +αp2. The formula φ〈λ,~c〉
added to TransC(q) is:

φ〈λ,~c〉 :=

{
p2

1(~x) + p2
2(~x) ≥ p2

1(~x′) + p2
2(~x′) if α ≤ 0

p2
1(~x′) + p2(~x′) ≥ p2

1(~x) + p2
2(~x) if α ≥ 0

A practical requirement for the abstraction is that it has
to be expressed in a formula in the Linear Real Arithmetic
Theory. Note that the abstraction, φ〈λ,~c〉, generated in the
complex eigenvalue case is non-linear and thus it is approx-
imated in the original approach [33].

3. SIMPLE MOTIVATING EXAMPLE
We illustrate the main idea underlying time-aware rela-

tional abstraction with a simple contrived example.
Consider the linear system

ẋ = −2x,

ẏ = 0.5− y

with initial condition x ∈ [−1, 0.9], y ∈ [1.1,∞). We want
to prove that x is always less-than y; that is, G(x < y).

One way to prove safety of such systems involves con-
structing a relational abstraction of the system and then
verifying the abstract system using infinite bounded model
checking and k-induction.

Relational abstraction replaces the differential equation
by a discrete transition. The abstract transition relates the
current value of x, y with any future value x′, y′. The de-
fault relational abstraction, constructed by HybridSal, for
the above differential equation is the following transition:

(x = x′ = 0 ∨ 0 < x′ ≤ x ∨ 0 > x′ ≥ x) ∧
(y = y′ = 0.5 ∨ 0.5 < y′ ≤ y ∨ 0.5 > y′ ≥ y)

In the abstract system, there is a transition from (x, y) to
a new state (x′, y′) if these four values satisfy the above
constraint.

The abstraction is sound: starting from (x, y) and follow-
ing the solutions of the differential equations, if we reach
(x′, y′) at any future time instance, then x, y, x′, y′ will nec-
essarily satisfy the above constraint. However, the relational
abstraction is very coarse (imprecise). In particular, the
rate at which x and y are changing is abstracted away. If
ẋ = −2x were replaced by ẋ = −0.2x, we would still get the
same relational abstraction.

As a result of this imprecision, the default relational ab-
straction is insufficient to prove the safety property. (We get
a spurious counterexample when trying to prove the safety
property using the above relational abstraction.)

In this paper, we construct more precise relational ab-
stractions, called time-aware relational abstraction. First,
we make the implicit time variable explicit by adding a new
variable called t to the state space and the differential equa-
tion ṫ = 1 to the dynamics. Time t is the glue that will help
relate the change in x to the change in y.

The new time-aware relational abstraction relates the old
values x, y, t to the new values x′, y′, t′. For the above sys-
tem, the new abstract transition is the conjunction of two
constraints: the first constraint, shown below, relates x, x′, t, t′:

(x = x′ = 0) ∨
(0 < x′ ≤ x ∧ lnlb(x)− lnub(x

′) ≥ −2(t′ − t) ≥
lnub(x)− lnlb(x

′)) ∨
(0 > x′ ≥ x ∧ lnlb(−x)− lnub(−x′) ≥ −2(t′ − t) ≥

lnub(−x)− lnlb(−x′))

There is a similar second constraint that relates y, y′, t, t′.
There are two key points to note here. First, there is

no simple linear relationship between the time variable and
the x, y variables. They are related through the natural
logarithm (ln) function; specifically, x(t) = x(0)e−2t is (part
of) the solution of the above differential equation; and hence
we have −2(t′ − t) = ln(x′) − ln(x). To enable analysis
using BMC/SMT tools, we need a piecewise linear function
that computes a sound lower- and upper-bound of the ln
function. These approximate functions, called lnlb and lnub

respectively, will be defined later.
Second, all interactions between different state variables

are captured via the time variable. Note that the first con-
straint above relates x, x′ with the time elapsed t′ − t, and
similarly the second constraint relates y, y′ with the time
elapsed t′− t. By reasoning over the conjunction, we deduce
the relationship between x and y.

In particular, using the refined time-aware relational ab-
straction, we can prove the safety property G(x < y).

4. TIME-AWARE RELATIONAL ABSTRAC-
TION

A time-aware relational abstraction of a dynamical system
is a binary relation that holds between the current state
of the system, including the current time, and any future
reachable state of the system (including the future time). In
this section, we describe a procedure for constructing time-
aware relational abstractions of linear dynamical systems;
that is, systems whose dynamics are specified using linear

ordinary differential equations of the form ~̇x = A~x+~b.

4.1 Overall Approach

Consider a linear system ~̇x = A~x+~b. The exact relation-
ship between t and the variables ~x is given by the explicit
solution:

~x(t) := x0e
At +

∫ t

s=0

e(t−s)A~b ds (1)

It is hard to reason with this solution directly. In some
very special cases, this explicit solution can be used to effec-
tively solve the reachability problem for linear systems [24].
This happens, for example, when either A is nilpotent, or its
eigenvalues are either all reals or all purely imaginary [24],
but even in these restricted cases, the solution requires rea-
soning over nonlinear real arithmetic. Hence, working with
the explicit solution in Equation 1 is not very practical.

In our approach, we create an abstraction of the solution.
Specifically, we construct a relationship between the current
value ~x of the state variables, the future value ~x′ of the state
variables, the current value t of time, and the future value t′

of time. The relationship we construct will overapproximate
the binary reachability relation.

To ease the presentation, we assume that the set of con-
tinuous variables X of the hybrid automaton H contains a
clock variable t, which counts the total time elapsed in the
system. Initially t is 0 and its derivative is 1 in all the lo-
cations. Also, t is never used in a jump or in an invariant
condition2. For keeping the presentation simple, we assume
~b = ~0. The results extend easily to the case when ~b 6= ~0.

Let R be a set of tuples 〈r,~c〉 such that d~cT ~x
dt

= r, for
some r ∈ R. For each location q ∈ Q, for each 〈λ,~c〉 ∈ ΛA
and for each 〈r,~c〉 ∈ R, we obtain the following time-aware
relational abstraction:

TransC(q)t :=
∧

〈λ,~c〉∈Λ

φt〈λ,~c〉 ∧
∧

〈r,~c〉∈R

φc〈r,~c〉 (2)

where φt〈λ,~c〉 is the time-aware abstraction generated from
〈λ,~c〉 and φc〈r,~c〉 is the abstraction generated for linear ex-

pressions with a constant-rate derivative. We define φt〈λ,~c〉
and φc〈r,~c〉 below. As in the case of the eigenstructure-based

abstraction, the definition of φt〈λ,~c〉 depends on whether the
eigenvalue λ is real or complex.

4.2 Real Eigenvalues
We define φt〈λ,~c〉 for real λ now. Consider a linear dy-

namical system ~̇x = A~x. Let ~c be a left eigenvector of A
corresponding to some real eigenvalue λ; that is,

~cTA = λ~cT

where ~cT is a column vector obtained by transposing (the
row vector) ~c. (Equivalently, ~c is a eigenvector of the trans-
pose of A). Consider the linear expression

p(~x) = ~cT~x

Clearly, we have

dp(~x)
dt

= d~cT ~x
dt

= ~cT d~x
dt

= ~cTA~x = λ~cT~x = λp(~x)

Hence, the value of p changes exponentially; that is:

p(~x(t)) = p(~x(0))eλt (3)

2If we are not interested in the total amount of time elapsed,
we can keep only the time elapsed during a continuous tran-
sition and not its total.

ln(x)

x

e−2e−1 e0 e1

Figure 1: Piecewise linear approximation for natural
logarithm function. The solid line plots ln(x) and the
dotted lines shows the piecewise linear under- and
over-approximations.

The linear expression p can be used to constrain the fu-
ture value, ~x′, and the current value, ~x, of the state vari-
ables. We use p to denote the linear expression p(~x) and
p′ to denote the linear expression p(~x′) over the next-state
variables. When λ > 0, the following constraint holds be-
tween any future value ~x′ and the current value ~x of the
state variables:

ψ(p, p′) := (p = p′ = 0) ∨
(0 < p ≤ p′ ∧ lnlb(p

′)− lnub(p) ≤ λ(t′ − t) ≤
lnub(p

′)− lnlb(p)) ∨
(0 > p ≥ p′ ∧ lnlb(−p′)− lnub(−p) ≤ λ(t′ − t) ≤

lnub(−p′)− lnlb(−p))

When λ < 0, the constraint is the same as above, but with
p and p′ swapped. We thus have

φt〈λ,~c〉 =

 ψ(p, p′) if λ > 0
ψ(p′, p) if λ < 0
p = p′ if λ = 0

(4)

where ψ is as defined above.
We remark that we only need a linear expression p(~x) that

satisfies the equation dp(~x(t))
dt

= λp. For linear dynamical
systems, such a p can be found using the left eigenvectors of
the A matrix. For nonlinear dynamics, one needs to develop
other techniques to obtain such a p, but once found, it can
be used to construct time-aware relational abstractions of
nonlinear systems too [34].

We now define the functions lnlb and lnub. These functions
are piecewise linear approximations of the (lower and upper
bounds for the) nonlinear natural logarithm function ln; that
is, they satisfy the following condition:

lnlb(x) ≤ ln(x) ≤ lnub(x), ∀x ∈ R+

Piecewise Linear Approximation for Natural Logarithm
The natural logarithm function, ln(x), can be approximated
using a piecewise linear function, as described in [21]. Fig-
ure 1 illustrates this approximation.

We first divide the real number line into infinitely many in-
tervals. Consider the infinitely many intervals Ik := [ek, ek+1],
k ∈ Z. Clearly, we have

⋃
k∈Z Ik = (0, inf).

Since the logarithm function is concave, it is easy to obtain
a piecewise linear underapproximation of the function. This
underapproximation is obtained by just linearly extrapolat-
ing within each interval, as shown in Figure 1. Specifically,

if x is in the interval Ik, then ln(x) is approximated by:

lnlb(x) =
e−k

e− 1
x+ k − 1

e− 1
(5)

This idea for approximation works not only for the base e,
but also for any base a > 1. For base e, the approximation
error is defined by γ(x) = ln(x)− lnlbx. In any interval Ik,
γ is bounded by

ln(e− 1)− 1 +
1

e− 1
(6)

In general, γ depends only on the base of the logarithm and
not on the interval itself.

The function lnlb(x) gives a lower bound for the function
ln(x). The upper bound can be obtained by just adding γ
to the lower bound.

lnub(x) =
e−k

e− 1
x+ k − 1 + ln(e− 1) (7)

Thus, we get a piecewise linear function for both under and
over approximating the natural logarithm function.

In practice, we cannot use the above piecewise linear func-
tion because it is defined over infinitely many intervals. We
pick finitely many intervals.

In our implementation, we use two parameters l,m to
specify the intervals that are used to create the piecewise lin-
ear lower- and upper-bound functions. Given natural num-
bers l,m, our implementation uses the intervals

(−∞, e−l], [e−l, e−l+1], . . . , [em−1, em], [em,∞) (8)

We use linear-interpolation based approximation on the bounded
intervals and we use a sound coarse approximation on the
unbounded intervals. Clearly, we can refine our abstraction
by increasing the number of intervals; that is, by increasing
the values of the parameters l,m. Automated abstraction-
refinement of this kind is left for future work.

One advantage of this approximation is that the size of
the intervals grows exponentially. Hence, a few intervals
can approximate the logarithm for a “reasonable” range of
x values. Also, note that the error is bounded and depends
only on the base of the logarithm. Thus, changing the base
of the logarithm provides another way to get a better ap-
proximations (refinements).

4.3 Constant Rate
We define φc〈r,~c〉 now. Consider the linear expression p =

~cT~x such that ṗ = r, where r is a nonzero constant, then we
get the following time-aware relational abstraction φc〈r,~c〉:

φc〈r,~c〉 := (p′ − p) = r(t′ − t) (9)

where t is the time variable. We can then add the conjunct
φc〈r,~c〉 to the time-aware relational abstraction of linear sys-
tem.

4.4 Complex Eigenvalues
We define φt〈λ,~c〉 for complex λ now. Consider a linear

dynamical system ~̇x = A~x, where A contains only real (in

practice, rational) entries. Let ~c := ~d+ ι~e be a left eigenvec-
tor of A corresponding to the complex eigenvalue λ := a+ιb;
that is,

(~dT + ι~eT)A = (a+ ιb)(~dT + ι~eT)

Now, consider the two linear expressions

p(~x) = ~dT~x q(~x) = ~eT~x

Computing the time derivative (Lie derivative) of these two
expressions, we find that the expressions p and q satisfy the
differential equation ṗ = ap− bq, q̇ = bp+ aq, and hence the
closed-form solution for them is given by

p(~x(t)) = reat cos(bt+ φ)

q(~x(t)) = reat sin(bt+ φ)

where r, φ are determined by the initial conditions (that is,
values of p(~x(0)) and q(~x(0))) as follows:

r2 = p(~x(0))2 + q(~x(0))2

tan(φ) = q(~x(0))/p(~x(0))

We want to find linear relationships that hold between the
initial value p, q of these two expressions, any future value
p′, q′ of these two expressions, and the initial value t of the
time, and the future value t′ of time. We divide the task into
two parts: first, we will find relationships φampl

〈λ,~c〉 that result

from the exponential change in the amplitude (reat) with
time, and second, we will find relationships φphase

〈λ,~c〉 that result

from the linear change in phase (bt + φ) with time. Then,
the conjunct added to the time-aware relational abstraction
will be

φt〈λ,~c〉 := φampl

〈λ,~c〉 ∧ φ
phase

〈λ,~c〉 (10)

where φampl

〈λ,~c〉 and φphase

〈λ,~c〉 will be defined below.

Relating Amplitude and Time
Let us denote p(~x(t′)) by p′ and p(~x(t)) by p; and similarly
for q, q′. We are given p, q and the fact that

(p′
2

+ q′
2
)0.5 = (p2 + q2)0.5ea(t′−t) (11)

We wish to find linear constraints that are implied by the
above equation. Those linear constraints can then be added
to the time-aware relational abstraction without compromis-
ing soundness.

We use the piecewise linear approximation of the natural
logarithm to deal with the exponential in the above expres-
sion, but there still remains the problem of handling the
other quadratic sub-expressions. We will use coarse linear
lower- and upper-bounds for the quadratic sub-expressions
to finally obtain the conservative linear constraint that ap-
proximates Equation 11. Specifically, the following deriva-
tion shows how we obtain the linear approximation φampl

〈λ,~c〉 of

Equation 11:

(p′
2

+ q′
2
)0.5 = (p2 + q2)0.5ea(t′−t)

⇒ a(t′ − t) = ln(p′
2

+ q′
2
)0.5 − ln(p2 + q2)0.5

⇒ a(t′ − t) ≤ lnub(qub(p
′2 + q′

2
)0.5)−

lnlb(qlb(p
2 + q2)0.5) ∧

a(t′ − t) ≥ lnlb(qlb(p
′2 + q′

2
)0.5)−

lnub(qub(p
2 + q2)0.5)

Let φampl

〈λ,~c〉 denote the last conjunction above.

We have already defined the functions lnlb and lnub before.
We now define the functions qlb and qub that compute linear
lower and upper bound for the expression (x2 + y2)0.5. In

time

p

−p

q

−q

-2

-1

0

1

2

int
0

p > q

q ≥ 0

2π

8b

int
1

q ≥ p

p > 0

2 2π

8b

int
2

q > −p
−p ≥ 0

3 2π

8b

int
3

−p ≥ q

q > 0

4 2π

8b

int
4

−p > −q
−q ≥ 0

5 2π

8b

int
5

−q ≥ −p
−p > 0

6 2π

8b

int
6

−q > p

p ≥ 0

7 2π

8b

int
7

p ≥ −q
−q > 0

2π

b

Figure 2: Extracting time elapsed information from
analyzing the phase of the sinusoidal signals. The
red line shows p, the blue line shows q, and the par-
tition of the time axes based on the sign of p, q and
p ≥ q.

other words, qlb and qub are piecewise linear and satisfy the
following condition:

qlb((x
2 + y2)0.5) ≤ (x2 + y2)0.5 ≤ qub((x

2 + y2)0.5)

We use the value |x|+|y| as a linear upper bound for (x2 +
y2)0.5 and the expression max(|x|, |y|) as the lower bound for
(x2 + y2)0.5.

qlb((x
2 + y2)0.5) := max(|x|, |y|)

qub((x
2 + y2)0.5) := |x|+ |y|

Note that the functions qlb and qub are both piecewise linear
functions.

We thus get a linear and sound relationship between the
current values p, q, the future values p′, q′ of the two linear
expressions and the current and future values t, t′ of time
based on analyzing the change in the amplitude with time.

Relating Phase and Time
We now consider the problem of finding a linear relationship
between p, p′, q, q′, t, t′ based on analyzing the change in the
phase with time. We are given p, q and the fact that

p′ = (p2 + q2)0.5ea(t′−t) cos(b(t′ − t) + tan−1(q/p))

q′ = (p2 + q2)0.5ea(t′−t) sin(b(t′ − t) + tan−1(q/p))

We wish to find linear constraints that are implied by the
above equation based on analyzing the phase.

Given p′, q′, let ω(p′, q′) denote the angle b(t′−t)+tan−1(q/p).
For example, ω(p, q) is just b(t−t)+tan−1(q/p) = tan−1(q/p).
We have the following relationship based on analyzing the
phase.

b(t′ − t) = ω(p′, q′)− ω(p, q)

Now, we need piecewise linear approximations of the ω
function. The main point to note is that the phase deter-
mines the sign of p′, q′ and the value of p′ ≥ q′. Hence,
we can get an estimate of the phase of p, q if we analyze

the signs of p, q, p− q. Depending on the sign of p, q, p− q,
the time axis is partitioned into infinitely many intervals, as
shown in Figure 2.

Let us define the function ωa(p, q) that takes the values of
p, q and returns a number based on the phase as illustrated
in Figure 2.

ωa(p, q) =



0 if p > q ≥ 0
1 if q ≥ p > 0
2 if q > −p ≥ 0
3 if −p ≥ q > 0
4 if −p > −q ≥ 0
5 if −q ≥ −p > 0
6 if −q > p ≥ 0
7 if p ≥ −q > 0

Now, given ωa(p, q) and ωa(p
′, q′), we can compute bounds

on t′ − t. Specifically, if ωa(p
′, q′) ≥ ωa(p, q), then for some

natural number n ≥ 0, it will be the case that

φphase

〈λ,~c〉 := ∃n ≥ 0 :

b(t′ − t) ≥ 2πn+ ((ωa(p
′, q′)− ωa(p, q))− 1)

2π

8
∧

b(t′ − t) ≤ 2πn+ ((ωa(p
′, q′)− ωa(p, q)) + 1)

2π

8
(12)

The value of n indicates the number of complete cycles that
lie between the initial and final state.

Similarly, if ωa(p
′, q′) ≤ ωa(p, q), then for some natural

number n ≥ 0, it will be the case that

φphase

〈λ,~c〉 := ∃n ≥ 0 :

b(t′ − t) ≥ 2πn+ ((ωa(p
′, q′)− ωa(p, q)) + 7)

2π

8
∧

b(t′ − t) ≤ 2πn+ ((ωa(p
′, q′)− ωa(p, q)) + 9)

2π

8
(13)

In both cases, the constraint φphase

〈λ,~c〉 is an infinite disjunc-

tion: there is one disjunct for each value of n. There are
two different ways to handle the infinite disjunction. First,
in the time-aware relational abstraction, we can introduce
a new input variable n. When we perform infinite bounded
model checking on the abstract system, the input variable
n is automatically existentially quantified and all possible
values for n are considered. The alternative is to replace the
infinite disjunction by a finite disjunction (picking specific
values for n, say n = 0, 1, 2) and then over-approximating
the rest (n = 3, 4, . . .) of the disjuncts conservatively. Our
implementation uses the latter approach. We have a param-
eter that fixes the range of values we use for n. We will call
the parameter n subsequently.

4.5 Correctness
We can now formally state the correctness of the pro-

cedure outlined above for creating a time-aware relational
abstraction. First, we note the following immediate fact.

Lemma 1. If φ1(~x, ~x′) and φ2(~x, ~x′) are two relational ab-
stractions of the same system, then φ1(~x, ~x′) ∧ φ2(~x, ~x′) is
also a relational abstraction of that system.

Thus, for a given linear system ~̇x = A~x +~b, let Λ denote

all pairs 〈λ,~c〉 s.t. d~cT ~x
dt

= λ~cT~x, and let R denote all pairs

〈r,~c〉 s.t. d~cT ~x
dt

= r for some real number r. Then, we can

construct the following time-aware relational abstraction for

~̇x = A~x+~b:

TransC(q)t :=
∧

〈λ,~c〉∈Λ

φt〈λ,~c〉 ∧
∧

〈r,~c〉∈R

φc〈r,~c〉 (14)

where depending on whether λ is real or complex, φt〈λ,~c〉 is
defined in Equation 4 or Equation 10, and φc〈r,~c〉 is defined
in Equation 9.

The following theorem states the correctness of this con-
struction.

Theorem 1. Let ~̇x = A~x+~b be the continuous dynamics
of the location q ∈ Q of H. Then, TransC(q)t defined in
Equation 14 is a relational abstraction for the continuous
dynamics µ(q).

Proof. (Sketch) We have to prove that ∀si, si+1 ∈ Rn, δ ∈
R s.t. si+1 = fq(si, δ), s, s

′ |= TransC(q)t, where fq :
Rn+1 → Rn is the solution to the flow condition µ(q).

We will prove that s, s′ is a model for each conjunct φt〈λ,~c〉
and φc〈r,~c〉. Then, the proof will follow from Lemma 1.

The proof for the constant rate case, i.e. s, s′ |= φc〈r,~c〉 :=

p′ − p = rδ, follows directly from the fact that ṗ = r.
We prove that s, s′ |= φt〈λ,~c〉 considering the cases when

λ is real or complex. Suppose λ ∈ R and ~c ∈ Rn. If
λ > 0, then φt〈λ,~c〉 = ψ(p, p′), where p = ~cT~x. We have

that s, s′ |= ψ(p, p′) because:
(1) If s |= p = 0, then by the explicit solution of p (Equa-
tion 3), we also have p′ = 0 and thus s, s′ |= 0 = p = p′.
(2) If s |= 0 < p, then by Equation 3 we have s, s′ |=
0 < p ≤ p′ and s, s′ |= ln(p′) − ln(p) = λ(t′ − t). Thus,
s, s′ |= lnlb(p

′)− lnub(p) ≤ λ(t′ − t) ≤ lnub(p
′)− lnlb(p).

(3) The proof for the case when s |= 0 > p is similar.
The proof for λ < 0 is similar to the one for λ > 0. Similarly,
for the case when λ is complex, we can show that φt〈λ,~c〉 is al-
ways a conservative (piecewise linear) approximation of the
exact relation between p, p′, q, q′ and time t, t′ variables.

5. RELATED WORK
Verification of hybrid systems has been performed apply-

ing different techniques (see [2] for a recent survey).
Among these techniques there are symbolic reachability

and deductive verification. Symbolic reachability [20, 18,
34] consists of computing the reachable set of states, which
will be used to prove the system safety. In deductive verifica-
tion [26, 27, 31], the user interacts with a theorem prover to
produce a proof of correctness. Both approaches may handle
properties that involve predicates over time. However, we
stress that the main goal of the time-aware abstraction is to
provide a more precise relational abstraction, widening its
applicability in terms of hybrid systems and properties that
can be verified. Also, since the timed-aware abstraction is
a relational abstraction, it separates the reasoning task on
the continuous dynamics from the verification task on the
infinite-state transition system.

Another viable technique to the hybrid systems verifica-
tion consists of computing an abstraction of the system,
which may be subsequently verified [3, 13, 32]. Relational
abstraction falls in this class of techniques. There exists
several ways to compute relational abstractions. However,
the current techniques used to compute a relational abstrac-
tion [28, 33, 35] are not suitable to verify real-time properties
or to analyze a network of hybrid systems.

The template-based relational abstraction [28] does not
capture the relation among time and the continuous vari-
ables of the system. Moreover, the problem of finding the co-
efficients of the templates requires the use of non-linear real
arithmetic, which may be solved using expensive real quan-
tifier elimination techniques [16, 8] or SMT solvers which
handle non-linear real arithmetic [23].

The timed relational abstraction [35] is suitable to ana-
lyze control systems that sample the physical plant at fixed
time intervals. In that case, the relation is precise over time
since it relates the current values with the future values of
the variables after a continuous transition of fixed duration
(the sampling interval). However, since the continuous evo-
lution has a fixed duration, the relation does not capture
the possible evolution of the system for different intervals of
time.

The eigenstructure-based relational abstraction [28, 33],
as shown in Section 3, is not precise enough to capture the re-
lation between the continuous variables and the time elapsed
in a continuous transitions and, in general, between the vari-
ables which evolve with different “rates”. Hence, it is not
suitable to analyze properties which predicate about time or
about other variables with a piecewise constant derivative
(like drifted clocks or resources which evolve with a non-
deterministic but bounded derivative). The time-aware ab-
straction increases the precision of the eigenstructure-based
abstraction.

Other works focuses on the analysis of hybrid systems
using Satisfiability Modulo Theory (SMT) solvers [4, 1].
However, these approaches are currently limited, since they
may only handle a subset of Linear Hybrid Systems [11].
Relational abstraction handles all the class of linear hy-
brid systems, even if in an approximate way. The time-
aware abstraction also widens the applicability of the veri-
fication techniques developed for networks of linear hybrid
automata, like scenario verification [12], to Linear Hybrid
Systems.

Since the produced abstraction is an infinite-state tran-
sition system, it can be verified by SMT-based verification
techniques such as k-induction [29] or ic3 [22, 9]. The time-
aware abstraction is orthogonal to these approaches, since
it only abstracts a dynamical system. Our approach will
benefit from any improvement in the performance of the
verification algorithms for infinite state transition systems
and of SMT solvers.

6. EXPERIMENTS
We describe some initial results obtained by using an im-

plementation of time-aware relational abstraction in Hybrid-
Sal. We used two examples for our initial evaluation: a
small, but challenging, example of a PID controller, and a
medium-size example of active suspension.

Consider a proportional-integral-derivative (PID) controller
(taken from an online tutorial at ctms.engin.umich.edu/

CTMS/) that is used to control a simple mass, spring, and
damper problem. The modeling equation of the mass, spring,
and damper system (plant) is

Mẍ+ bẋ+ kx = F

where M = 1kg, b = 10Ns/m, k = 20N/m are the given
parameters of the plant, and F is the (controllable) force.
Suppose the goal is to make the plant reach a steady state
where x = 1 with the some requirements on the overshoot

and rise time (that we will precisely specify later). Suppose
the desired trajectory r(t) for reaching the steady state x = 1
is a step function: at time t = 0, we want the system to go
from its initial state (say, x = 0) to its steady state x = 1;
that is, r(t) = 0 for t < 0 and r(t) = 1 for t ≥ 0.

Let us assume that we are given a PID controller that
has gains Kp = 350,Ki = 300,Kd = 50. The equation
describing the composed controller and plant system is

Mẍ+ bẋ+ kx = Kd(˙r − x) +Kp(r − x) +Ki

∫
(r − x)

Note that r−x is the error in tracking the desired trajectory
r. Substituting the parameters given above in this equation,
we get the following state-space model of the controller and
the plant subsystem. (Since r is not differentiable at t = 0,
we have used ṙ = 0 here).

dxint

dt
= x

dx

dt
= xder

dxder

dt
= −60 ∗ xder − 370 ∗ x− 300 ∗ xint+ 350 + 300 ∗ t

dt

dt
= 1

where x, xder (denoting ẋ), xint (denoting
∫
x), and t are

the four state variables.
For this model, we wish to check the following rise time

requirement: after t=0.5 units, x reaches within 90% of its
steady-state value. We check a stronger variant of this re-
quirement, namely

G(t > 0.5⇒ x ≥ 0.9 ∧ x ≤ 1.1)

which says that it is always true that whenever time is
greater than 0.5, then x is in the [0.9, 1.1] interval.

In Table 1, we present the results of analyzing the rise-
time requirements for different controllers. We pick three
controllers: a PD controller, a PI controller and a PID con-
troller. For each of the three controllers, we consider two
variants: one in which the integral term goes through a sat-
uration block (suffixed with “Sat”) and one in which there
is no such saturation block. (In PD, the coefficient of the
integral term is zero, but the integral is still computed and
hence, saturated in PDSat.) We analyze the above six sys-
tem models using time-agnostic relational abstraction (Col
2-3), and using time-aware relational abstraction (Col 4-15).
The analysis with time-aware relational abstraction is car-
ried out with four different settings of the three parameters:
l,m,n. Recall that precision of abstraction improves as we
increase these parameters (see Equations 8 for l,m, and text
following Equation 13 for n).

We note that we cannot prove the rise-time requirement
for any of the system models using only time-agnostic re-
lational abstraction. Using time-aware abstraction, we also
cannot prove the rise-time requirement for any of the models
unless we pick l ≥ 3. Note that the PD and PID systems
(and their saturated counterparts) satisfy the desired rise-
time requirement, whereas the PI system does not. The
bounded model checking time increases as we increase the
precision of the abstraction (which is achieved by using larger
values for the parameters l,m, n).

Note that we perform bounded model checking on the
computed time-aware abstractions. In general, failure to

find a counter-example in a bounded run does not imply
the validity of the property. But, for single mode hybrid
systems (such as PD, PI and PID), if there is no depth 1
counter example, then the property is valid. This is because
(time-agnostic and time-aware) relational abstractions over-
approximate unbounded time reach sets (for each mode).
For hybrid systems with multiple modes, a proof using k-
induction is required to prove a property.

As a second slightly more complex example, we applied
the time-aware relational abstraction technique to verifying
bounded deflection in a model of an active suspension. The
model was derived from the paper [17]. The 1/4-car active
suspension model consists of 5 state variables. There are
four modes in the hybrid automaton. The modes arise from
gain scheduling – essentially different parameters are used in
the controller in different regions of the state space. The cor-
rectness property stated that the deflection of the suspension
always remains within a safe interval. Time-agnostic rela-
tional abstraction is unable to verify this safety property; it
always produces a spurious counterexample. However, the
time-aware abstraction constructed using parameter values
l = 2,m = 2, n = 2, was sufficient to show that there were
no counterexamples up to depth 4.

7. CONCLUSION
In this paper, we have proposed a technique to compute

time-aware relational abstractions for linear hybrid systems,
which are suitable to prove time-related properties. Our ap-
proach to compute a time-aware abstraction is based on the
analysis of the eigenstructure of the matrix of the dynam-
ical system, and on the piecewise linear approximation of
non-linear functions.

In contrast to the previous works, time-aware relational
abstraction captures (an approximation of) the time elapsed
during a continuous transition. Also, as a consequence of
the more precise relation over time, the overall abstraction is
more precise. We show that the increased precision provided
by time-aware abstraction is necessary to prove time-related
properties on some interesting case studies.

As future work, time-aware relational abstraction can be
applied to networks of hybrid automata [10, 25], where the
information about time is needed to precisely compose the
abstraction of the automata. Also, techniques for abstraction-
refinement, based on changing the base of the logarithm or
increasing the number of intervals, can be developed.

8. REFERENCES
[1] E. Ábrahám, B. Becker, F. Klaedtke, and M. Steffen.

Optimizing Bounded Model Checking for Linear
Hybrid Systems. In VMCAI, pages 396–412, 2005.

[2] R. Alur. Formal verification of hybrid systems. In
EMSOFT, pages 273–278, 2011.

[3] R. Alur, T. Dang, and F. Ivancic. Predicate
abstraction for reachability analysis of hybrid systems.
ACM Trans. Embedded Comput. Syst., 5(1):152–199,
2006.

[4] G. Audemard, M. Bozzano, A. Cimatti, and
R. Sebastiani. Verifying Industrial Hybrid Systems
with MathSAT. ENTCS, 119(2):17–32, 2005.

[5] C. W. Barrett, R. Sebastiani, S. A. Seshia, and
C. Tinelli. Satisfiability Modulo Theories. In Handbook
of Satisfiability, pages 825–885. 2009.

Model RA t1, t2 time-aware RA parameters, t1, t2
PD 0.6 CE 0.4 2,0,0 1.1 CE 0.2 3,0,0 0.4 CE 0.2 0,2,0 0.4 CE 0.2 4,2,2 0.6 P 0.6
PI 0.4 CE 0.1 2,0,0 0.6 CE 0.6 3,0,0 0.4 CE 0.2 0,2,0 1.2 CE 0.6 4,2,2 0.5 CE 0.2
PID 1.1 CE 0.1 2,0,0 0.4 CE 0.2 3,0,0 0.4 P 0.2 0,2,0 0.8 CE 0.6 4,2,2 1.2 P 0.8
PDSat 1.5 CE 0.4 2,0,0 1.5 CE 0.7 3,0,0 0.5 CE 0.2 0,2,0 0.8 CE 0.7 4,2,2 0.8 P 0.7
PISat 0.6 CE 0.2 2,0,0 1.2 CE 0.3 3,0,0 0.6 CE 0.3 0,2,0 0.9 CE 1.1 4,2,2 0.6 CE 0.5
PIDSat 1.5 CE 0.4 2,0,0 1.2 CE 1.1 3,0,0 0.6 P 0.3 0,2,0 0.8 CE 0.35 4,2,2 1.3 P 1.6

Table 1: Results on verifying feedback PD, PI and PID controllers, with and without saturation, using
different parameters for the time-aware relational abstraction. Model names with suffix “sat” are versions
that have saturation applied on the integral term. Time t1 is the time to create the abstraction and time t2
(both in seconds) is the time to perform infinite bounded model checking (inf-bmc) on the abstract model.
The return value of inf-bmc is either a counterexample (CE) or no counterexample (P). For single mode
hybrid systems, such as, PD,PI,PID, the absence of CE is equivalent to the property being “proved”.

[6] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu.
Symbolic Model Checking without BDDs. In TACAS,
pages 193–207, 1999.

[7] A. R. Bradley and Z. Manna. The calculus of
computation - decision procedures with applications to
verification. Springer, 2007.

[8] C. Brown. QEPCAD B: A program for computing
with semi-algebraic sets using CADs. SIGSAM
BULLETIN, 37:97–108, 2003.

[9] A. Cimatti and A. Griggio. Software Model Checking
via IC3. In CAV, pages 277–293, 2012.

[10] A. Cimatti, S. Mover, and S. Tonetta. HYDI: a
language for symbolic hybrid systems with discrete
interaction. In EUROMICRO-SEAA, pages 275–278,
2011.

[11] A. Cimatti, S. Mover, and S. Tonetta. A
quantifier-free SMT encoding of non-linear hybrid
automata. In FMCAD, pages 187–195, 2012.

[12] A. Cimatti, S. Mover, and S. Tonetta. SMT-based
scenario verification for hybrid systems. Formal
Methods in System Design, 42(1):46–66, 2013.

[13] E. M. Clarke, A. Fehnker, Z. Han, B. H. Krogh,
J. Ouaknine, O. Stursberg, and M. Theobald.
Abstraction and counterexample-guided refinement in
model checking of hybrid systems. Int. J. Found.
Comput. Sci., 14(4):583–604, 2003.

[14] L. de Moura, H. Rueß, and M. Sorea. Bounded Model
Checking and induction: from refutation to
verification. In CAV, pages 14–26, 2003.

[15] L. M. de Moura, S. Owre, H. Rueß, J. M. Rushby,
N. Shankar, M. Sorea, and A. Tiwari. SAL 2. In CAV,
pages 496–500, 2004.

[16] A. Dolzmann and T. Sturm. REDLOG Computer
Algebra Meets Computer Logic. ACM SIGSAM
Bulletin, 31:2–9, 1996.

[17] I. Fialho and G. J. Balas. Road adaptive active
suspension design using linear parameter-varying
scheduling. IEEE Trans. on Control Sys. Tech., 10(1),
2002.

[18] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton,
R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. SpaceEx: Scalable Verification of
Hybrid Systems. In CAV, pages 379–395, 2011.

[19] T. A. Henzinger. The Theory of Hybrid Automata. In
LICS, pages 278–292. IEEE CS, 1996.

[20] T. A. Henzinger, P. Ho, and H. Wong-Toi. HYTECH:
A Model Checker for Hybrid Systems. STTT,
1(1-2):110–122, 1997.

[21] R. Hilscher. Surprises about some elementary
functions: uniform linear approximations. Technical
report, 2000.

[22] K. Hoder and N. Bjørner. Generalized Property
Directed Reachability. In SAT, pages 157–171, 2012.

[23] D. Jovanovic and L. M. de Moura. Solving Non-linear
Arithmetic. In IJCAR, pages 339–354, 2012.

[24] G. Lafferriere, G. J. Pappas, and S. Yovine. Symbolic
Reachability Computation for Families of Linear
Vector Fields. J. Symb. Comput., 32(3):231–253, 2001.

[25] L. Pallottino, V. G. Scordio, A. Bicchi, and
E. Frazzoli. Decentralized cooperative policy for
conflict resolution in multivehicle systems. IEEE
Transactions on Robotics, 23(6):1170–1183, 2007.

[26] A. Platzer. Differential Dynamic Logic for Hybrid
Systems. J. Autom. Reasoning, 41(2):143–189, 2008.

[27] S. Prajna and A. Jadbabaie. Safety Verification of
Hybrid Systems Using Barrier Certificates. In HSCC,
pages 477–492, 2004.

[28] S. Sankaranarayanan and A. Tiwari. Relational
Abstractions for Continuous and Hybrid Systems. In
CAV, pages 686–702, 2011.

[29] M. Sheeran, S. Singh, and G. St̊almarck. Checking
Safety Properties Using Induction and a SAT-Solver.
In FMCAD, pages 108–125, 2000.

[30] M. Sorea. Bounded Model Checking for Timed
Automata. In Electronic Notes in Theoretical
Computer Science, page 2002. Elsevier, 2002.

[31] T. Sturm and A. Tiwari. Verification and synthesis
using real quantifier elimination. In ISSAC, pages
329–336, 2011.

[32] A. Tiwari. Abstractions for hybrid systems. Formal
Methods in System Design, 32(1):57–83, 2008.

[33] A. Tiwari. HybridSAL Relational Abstracter. In CAV,
pages 725–731, 2012.

[34] A. Tiwari and G. Khanna. Nonlinear Systems:
Approximating Reach Sets. In HSCC, pages 600–614,
2004.

[35] A. Zutshi, S. Sankaranarayanan, and A. Tiwari.
Timed Relational Abstractions for Sampled Data
Control Systems. In CAV, pages 343–361, 2012.

