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ABSTRACT
The use of deductive techniques, such as theorem provers,
has several advantages in safety verification of hybrid sys-
tems; however, state-of-the-art theorem provers require ex-
tensive manual intervention. Furthermore, there is often a
gap between the type of assistance that a theorem prover
requires to make progress on a proof task and the assis-
tance that a system designer is able to provide. This paper
presents an extension to KeYmaera, a deductive verification
tool for differential dynamic logic; the new technique allows
local reasoning using system designer intuition about per-
formance within particular modes as part of a proof task.
Our approach allows the theorem prover to leverage for-
ward invariants, discovered using numerical techniques, as
part of a proof of safety. We introduce a new inference rule
into the proof calculus of KeYmaera, the forward invariant
cut rule, and we present a methodology to discover useful
forward invariants, which are then used with the new cut
rule to complete verification tasks. We demonstrate how
our new approach can be used to complete verification tasks
that lie out of the reach of existing deductive approaches us-
ing several examples, including one involving an automotive
powertrain control system.
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1. INTRODUCTION
Modern physical systems such as automobile engines, avion-

ics, and medical devices are controlled by software running
on embedded computing platforms. In the software domain,
techniques such as model checking, theorem proving, and ab-
stract interpretation have had success verifying purely soft-
ware systems. For physical systems, techniques from dynam-
ical systems theory and control theory such as Lyapunov
analysis have long been used to help characterize system
performance. Most cyberphysical systems, however, are hy-
brid, i.e., have both continuous state evolution governed by
differential equations and discrete mode transitions. Most
interesting analyses for such systems (e.g., reachable set esti-
mation) are undecidable [14], and most software verification
techniques are not directly applicable.

Many extant approaches to hybrid system verification fo-
cus on creating an overapproximation of the set of system

states reachable over a fixed time horizon [18, 9, 10, 6].
While these approaches enjoy a high degree of automation,
they are restricted in scope and scalability. Tools such as
SpaceEx [10] and Flow* [6] are susceptible to approxima-
tion error that worsens when the reachable set estimation
over continuous state-space interacts with discrete switch-
ing, leading to false positives. The theorem prover PVS
has been used to reason about hybrid systems as compos-
able hybrid automata in [2] [1]. However, the continuous
components are modeled by the explicit solutions of the dif-
ferential equations. Explicit solutions can only be obtained
for restricted classes of differential equations, e.g. linear.
On the other hand, dL allows reasoning about continuous
dynamics by using only the differential equations.

An alternative approach is to employ deductive techniques
that attempt to construct a symbolic proof of safety us-
ing a semi-interactive theorem prover [23]. This approach
has several advantages in safety verification of hybrid sys-
tems. Unlike explicit reach-set computation techniques, the-
orem provers can handle nonlinear dynamics directly, with-
out introducing approximation artifacts. Further, theorem
provers can handle proof tasks that involve symbolic param-
eters, with only the minimal constraints required to guaran-
tee safety. This makes the verification result reusable across
systems with parameter variations. In the context of dy-
namical or hybrid systems verification, a human may pro-
vide insight to the theorem proving tool in the form of a
safety certificate, i.e., a symbolic expression representing a
set containing all reachable states from a given initial set,
while excluding unsafe states [3, 23]. The tool can then use
this certificate to automatically prove system safety.

In [25], the authors propose an approach that begins with
a global candidate certificate (in the form of a differential
invariant) that overapproximates the reachable set of states.
Constraints are iteratively added until the overapproxima-
tion is small enough to exclude the unsafe set, at which point
the invariant becomes a safety certificate. This approach has
had success in verifying aircraft roundabout maneuvers us-
ing the KeYmaera theorem prover. The notable aspects of
this approach are: the initial input is in the form of a global
certificate of system safety, which is eagerly constructed and
then (globally) refined.

Cyberphysical system designs have distinct modes of oper-
ation, with each mode corresponding to an (often) indepen-
dently designed controller operating regime. Consequently,
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a designer has much more nuanced information about mode-
specific behaviors rather than overarching knowledge about
the entire system. The central thesis of this paper is that
when available, such additional information can be useful
for a theorem prover compared to a technique relying on
construction of a global safety certificate. Our approach en-
courages local reasoning and lazy construction of certificates.

As an example of augmented local information, consider
the scenario where a designer knows that from a given set
of modes, there are no discrete transitions to unsafe system
modes. This is a form of local certificate; in this case derived
purely by reasoning over the finite transition structure of
the discrete modes. Also consider the designer insight that
a system is expected to be stable in a certain mode. This
is another form of local information that makes it possible
to employ Lyapunov analysis-based techniques to obtain a
forward invariant set or barrier certificate that provides a
local certificate for that mode.

To support local reasoning, we introduce a new proof rule
that we call the forward invariant cut rule in the calculus of
KeYmaera. Given a region of operation and a safe forward
invariant for the behaviors of that mode, the forward invari-
ant cut rule allows us to decompose the overall global safety
proof into three proof obligations: (1) a proof of invariance of
the proposed certificate, (2) a proof that the certificate guar-
antees safety, and (3) a proof of safety of everything but the
behaviors associated with the region covered by the certifi-
cate. This makes it possible to carve out safe behavior and
focus analysis only on the remaining part of the system. An
advantage of the decompositional approach is that it allows
us to defer the process of producing a local certificate until
we reach the relevant sub-goal in the safety proof. In other
words, it allows lazy construction of safe forward invariants,
which is convenient as certificates for system components
are often easier to obtain than certificates for the aggregate
system.

We demonstrate how our methodology can be used to
complete verification tasks that lie out of the reach of ex-
isting deductive techniques. The systems we consider are
hybrid and contain examples with continuous dynamical be-
haviors that are described by nonlinear ordinary differential
equations (ODEs). Deductive approaches exist for address-
ing this class of systems, but the existing frameworks alone
are insufficient to complete the proof tasks for the exam-
ples herein. For example, the framework in [25] provides a
means to address the examples we present using differen-
tial invariants, but the authors provide no general method
of computing the required differential invariant candidates.
Further, their technique requires reasoning about the global
behavior of the system, as opposed to the local invariant
property that we require (a much weaker requirement). The
deductive proof system presented in [8] uses local safety cer-
tificates to reason about behaviors but applies to continuous
(as opposed to hybrid) systems. Also, [8] provides no con-
structive means of generating the necessary local safety cer-
tificates. This is in contrast to our approach, which provides
methodologies for generating the local safety certificates and
including them in the proof task.

We present three examples that demonstrate the practi-
cal application of the forward invariant cut rule. The first
hybrid system is a hybrid system with three stable modes
and one fail mode. The second system is a non-autonomous
switched system, in which a user has the freedom to switch

modes at arbitrary instants. The third system is a simpli-
fied model of an automotive subsystem that is responsible
for maintaining the air-to-fuel (A/F) ratio in an engine near
an optimal setpoint. In the automotive context, this is one
of the most important control problems with significant im-
plications on fuel efficiency and exhaust gas emissions. We
are able to prove that the A/F ratio remains within 10% of
the optimal setpoint value using KeYmaera.

The paper is organized as follows. In Sec. 2, we introduce
the terminology and review material on hybrid programs
(the syntactic form used by KeYmaera to express hybrid
systems). We introduce the forward invariant cut rule in
Sec. 3, and in Sec. 4 we describe techniques for obtaining
local certificates. We show how the forward invariant cut
rule can be applied to specific case studies in Sec. 5. Finally,
we conclude and discuss related and future work in Sec. 6.

2. HYBRID SYSTEMS AND HYBRID PRO-
GRAMS

A hybrid system is a dynamical system with continuous-
valued state variables x that take values from a domain X ⊆
R

n and a discrete-valued state variable q taken from a finite
set Q. The system evolves in continuous or discrete time,
and the configuration of a hybrid system at time t can be
described by the values of its continuous and discrete state
variables. The discrete-valued states are called modes of
operation. The hybrid state is given by the ordered pair
(x, q) ∈ X × Q. In a discrete mode q, the evolution of the
continuous-valued state variables is described by ordinary
differential equations (ODEs)

ẋ(t) = fq(x(t)), (1)

where fq is a function from X to X, often called the vec-
tor field. Though hybrid systems are often described with
external inputs, in this paper we consider only autonomous
systems, i.e., systems in which all transitions depend only
on the system states. The state-dependent conditions that
allow the system to transition from one discrete state to
another (possibly same) discrete state are called guards.

Hybrid systems are often modeled using hybrid automata.
We use Fig. 1 as a running example. This example has four
modes and two continuous-valued state variables, with asso-
ciated ODEs. Modes are represented by nodes in the graph;
each mode q has associated a unique set of ODEs (fq). There
is a guard on the outgoing transition from q0 to q1, and the
transition from q0 to q2 is unguarded, so it can always be
taken. The transition from q0 to q2 has a nondeterministic
reset allowing a jump from current state values x1 and x2

to any pair of values within the circle of radius two. The
set of feasible initial conditions is indicated on the default
transition. Mode q0 and q2 have stable linear dynamics, and
q1 has stable nonlinear dynamics, as in Example 4.10 of [19].

While hybrid automata are a convenient formalism, in this
paper we use the formalism of hybrid programs in order to
facilitate the use of the KeYmaera theorem prover, which
is the workhorse for our deductive approach. Note that any
hybrid automaton can be transformed into a hybrid program
[23], therefore there is no loss of generality in considering hy-
brid programs. KeYmaera uses the formalism of differential
dynamic logic, denoted by dL .1

1 The syntax and semantics of dL are described in detail in
[23]; we provide only a minimal overview here.



q1
[

ẋ1
ẋ2

]

=

[

−(x2 + 1)x1

x2
1

]

q0
[

ẋ1
ẋ2

]

=
[

−x1
−x2

]

fail

q2
[

ẋ1
ẋ2

]

=
[

−3x1 + 13x2
−5x1 − x2

]

x2
1 + x2

2 < 1/ (x1 < −10 ∨ x1 > 10)∨
(x2 < −10 ∨ x2 > 10)/

/(x1, x2) :=

{(v1, v2) | (v2
1 + v2

2 < 4)}

(x1< −10 ∨ x1> 10)∨
(x2< −10 ∨ x2> 10)/

(x1< −10 ∨ x1> 10)∨
(x2< −10 ∨ x2> 10)/

x2
1 + x2

2 ≤ 10/

Figure 1: A running example: All the modes have stable continuous dynamics, and there is a special “fail”

mode.

2.1 The logic dL
A hybrid program is specified by the grammar

α, β ::= x := θ | x := ∗ | {x′
1 = θ1, . . . , x

′
n = θn&H} (2)

|?H | α ∪ β | α;β | α∗ (3)

where α, β are hybrid programs, θ, θ1, . . . , θn are terms, and
H is a logical formula. Intuitively, the program x := θ means
that x is assigned the value of the term θ. The program
x := ∗ means that x is nondeterministically assigned an ar-
bitrary real value. The program {x′

1 = θ1, . . . , x
′
n = θn&H}

means that the variables x1, . . . , xn evolve continuously for
some duration, with derivatives θ1, . . . , θn, subject to the
constraint that x1, . . . , xn satisfy H during the entire flow.
The hybrid program ?H behaves as a skip if the logical for-
mula H is true, and as an abort otherwise.

The nondeterministic choice α∪β means that either α or
β may be executed. The sequential composition α;β means
that α is executed, then β. The nondeterministic repetition
α∗ means that α is executed an arbitrary (possibly zero)
number of times. The logic dL itself is a multimodal logic,
in which the modalities are annotated with hybrid programs.
The formulas of dL are described by the grammar:

φ,ψ ::= θ1 = θ2 | θ1 ≥ θ2 | ¬φ | φ ∧ ψ (4)

| φ ∨ ψ | φ→ ψ | [α]φ | 〈α〉φ (5)

where φ, ψ are formulas of dL , θ1, θ2 are terms, and α is a
hybrid program. The box modality [α]φ means that φ holds
after all traces of the hybrid program α, and 〈α〉φ means
that φ holds after some execution of hybrid program α.

In the sequel, we will abuse notation and use a formula
interchangeably with the set that it represents.

2.2 Example
Model 1 shows a hybrid program representation of the

running example. Line 2 shows how the subprograms are
assembled into the overall program. The system starts at a
set I (Line 3), and at each iteration of the loop, one of the
subprograms is nondeterministically chosen for attempted
execution. If the guard of the subprogram succeeds, execu-
tion proceeds. The verification task is to show that when
this loop is executed any (finite) number of times, the state
remains in the set S (Line 16). Line 4 is the guard and
differential equations of q0. Line 5 is the transition from q0
to q1 and the required guard. Line 7 proceeds to specify
the continuous evolution of q1. Line 9 applies the reset of

the transition into q2, which indicates that the state resets
anywhere in the circle of radius two. Line 10 checks the
incoming guard to q2 and Line 11 specifies the associated
differential equations. Line 13 specifies the guard that al-
lows transitions into the failure mode. Note that the guard
does not check the current mode, since all of the modes may
transition into the failure mode if the continuous states leave
their prescribed bounds. Line 15 specifies that once the fail-
ure mode is entered, it is not possible to leave it, and states
x1, x2 maintain their previous values and do not evolve.

Model 1: Hybrid program for the running example

1 Ex ≡ I → [(m0 ∪ s07→1 ∪ m1∪ s07→2∪ m2

2 ∪s{0,1,2}7→fail∪ mfail)
∗]S

3 I ≡ x2
1
+ x2

2
≤ 10 ∧ M = q0

4 m0 ≡ ?(M = q0); {x′
1
= −x1, x′

2
= −x2}

5 s07→1 ≡ ?(M = q0); ?(x2
1
+ x2

2
< 1); (M := q1);

6 m1 ≡ ?(M = q1);

7 {x′
1
= −(x2 + 1) ∗ x1, x′

2
= x2

1
}

8 s07→2 ≡ ?(M = q0);

9 x1 := ∗; x2 := ∗; ?(x2
1
+x2

2
< 4); (M := q2)

10 m2 ≡ ?(M = q2);
11 {x′

1
= −3x1 + 13x2, x′

2
= −5x1 − x2}

12 s{0,1,2}7→fail ≡ ?(−10 > x1 ∨ x1 > 10

13 ∨ − 10 > x2 ∨ x2 > 10);
14 M := fail
15 mfail ≡ ?(M = fail);
16 S ≡ M 6= fail

3. SAFETY VERIFICATION WITH THE FOR-
WARD INVARIANT CUT RULE

3.1 The safety verification problem
The safety verification problem is to decide whether the

state of a system is always contained within a given safe set
when starting from a designated initial set, or equivalently,
whether none of the behaviors enter an unsafe set.

To formalize this problem in dL , suppose α is a hybrid
program representation of the system of interest. Suppose
S is the safe set and I is the set of initial states. Then the
behaviors of α are contained in S if the following formula is
a theorem of dL .

I → [α∗]S.

The theorem prover KeYmaera can be used to attempt to
prove this.



To solve this problem, one might construct a set that con-
tains all of the system behaviors from the initial set and is
contained in the safe set. We call such a set a safety cer-
tificate. A safety certificate must contain the initial state
set, exclude the unsafe set, and be invariant for system be-
haviors. We say that a set is initialized if it includes the
initial set, safe if it excludes the unsafe set, and invariant if
whenever a system behavior enters it, the behavior remains
in the set for all future time. Arguments with safety cer-
tificates are captured in dL using the invariant proof rule,
where C is a safety certificate:

I → C C → [α]C C → S

I → [α∗]S

The general task of finding a safety certificate is difficult. In
this work, we propose instead a procedure that incremen-
tally works towards a proof. Instead of a safety certificate,
we use knowledge of system structure to propose sets that
are invariant and safe, but not necessarily initialized, and
leverage them in the proof procedure.

In our running example, modes q1 and q2 have stable dy-
namics. If a Lyapunov function can be computed for ei-
ther of these modes, its sublevel sets (i.e., sets of the form
{x | V (x) ≤ ℓ}, for some ℓ ≥ 0) will be invariant. The sub-
level sets will be safe if they exclude the transition to the
fail mode, but they will not be initialized, since they do not
contain mode zero.

3.2 The forward invariant cut rule
A cut in a logical proof allows introducing a lemma. The

main contribution of this paper is a type of cut that sim-
plifies the proof procedure by leveraging knowledge of local
invariance properties.

The following theorem establishes that if it can be shown
that a predicate (C) is locally invariant (C → [α]C) and
safe (C → S), then the remaining conditions (¬C) can be
separately addressed to prove safety.

Theorem 1 (Forward Invariant Cut Rule). The following
is a sound inference rule for the logic dL.

I ∧ ¬C → [(α; ?¬C)∗]S C → [α]C C → S

I → [α∗]S
(6)

Proof. We first provide a sketch in natural language. Let
ν0, ν1, . . . , νn be any sequence of states of any length that
are connected by runs of the hybrid program α.

Case a: Suppose that none of the states in this sequence
satisfy C. Then this sequence is a run of the hybrid program
(α; ?¬C)∗, and is safe by the first premise.

Case b: On the other hand, suppose νi ∈ C for some
0 ≤ i ≤ n. Then the subsequence νi, . . . , νn is a run of the
program α starting from C. Then from the second and third
premises of the rule, νj ∈ C ⊆ S for all j ≥ i. Note that the
subsequence ν1, . . . , νi−1 is a run of program α∗ such that no
state satisfies C, and is therefore safe by the previous case.

The formal proof follows. Fix an interpretation I and
an assignment η. From semantics of the second premise,
if ν ∈ C and (ν, ω) ∈ ρI,η(α), then ω ∈ C. From the
semantics of the third premise, if ω ∈ C, then ω ∈ S. From
the semantics of the first premise, if ν ∈ I and ν /∈ C,
and ω is such that (ν, ω) ∈ ρI,η((α; ?¬C)∗), then ω ∈ S.
This is equivalent to saying that for any ω such that there
is a sequence of states ν0, . . . , νn, with ν0 = ν ∈ I ∧ ¬C

and νn = ω, n ∈ N, and (νi, νi+1) ∈ ρI,η(α; ?¬C) for each
0 ≤ i ≤ n− 1, it is the case that ω ∈ S.

The proof is to show by induction that any state reachable
by α∗ from I in n ≥ 0 executions of α must be contained
in S. For the base case, let n = 0. Then given ν ∈ I , the
only reachable state by a sequence of length zero is ν itself.
If ν ∈ C, then ν ∈ S by semantics of the third premise. If
ν /∈ C, we have that (ν, ν) ∈ ρI,η((α; ?¬C)∗) by a chain of
length zero, so that by semantics of the first premise, ν ∈ S.

As an inductive hypothesis, suppose that for every ω reach-
able by a chain of length n, ω ∈ S (i.e., there exists ν0, . . . , νn
with ν0 = ν and ω = νn such that (νi, νi+1) ∈ ρI,η(α), for
0 ≤ i ≤ n− 1. Now choose any state ξ such that there is a
chain of length n+1, ν0, . . . , νn+1 with ν0 = ν and νn+1 = ξ,
such that (νi, νi+1) ∈ ρI,η(α), for 0 ≤ i ≤ n).

First suppose that νn ∈ C. Then by semantics of the
second premise, νn+1 ∈ C, and then νn+1 ∈ S by semantics
of the third premise. On the other hand, suppose νn /∈ C.
We claim that for all j ≤ n, νj /∈ C. To see this, note that
if νj ∈ C for some j ≤ n, then νn ∈ C by semantics of
the second premise, which would contradict our assumption
on νn. Then we have that (νi, νi+1) ∈ ρI,η(α; ?¬C) for all
0 ≤ i ≤ n. By semantics of the first premise, it follows that
ξ ∈ S. This establishes the theorem.

3.3 Example
For the running example, mode q1 has a Lyapunov func-

tion of the form V1(x1, x2) =
1

2
x2
1 +

1

2
(x2 − 2)2 as described

in Example 4.10 of [19] (we discuss Lyapunov functions as
sources of invariants in Section 4). The sublevel set V1(x1, x2) ≤
5 contains the reset into mode q1. We apply the forward in-
variant cut rule with C1 = V1(x1, x2) ≤ 5 ∧ M = M1,
a set that is invariant and safe, but not initialized since it
does not contain the initial mode q0 of the hybrid system.
The rule application causes the proof tree to split into three
branches. The first branch requires showing that whenever
the system begins in C1, it remains in C1. The only por-
tions of the model that may run in this case correspond to
q1 and the transition into the fail mode (programs m1 and
s0,1,27→fail. KeYmaera can readily check that since the pro-
posed sublevel set excludes the guard into fail, C1 will in
fact be satisfied by the end of each system trace. The sec-
ond branch of the proof tree requires showing C → S, which
is trivial, since S is simply M 6= Mfail and C stipulates
M =M1. We now turn our attention to the third branch.

Mode q2 has a Lyapunov function V (x1, x2) = 2x2
1 +4x2

2,
computed using standard Lyapunov techniques for linear
systems. The sublevel set V2(x1, x2) ≤ 16 contains the cir-
cle of radius 2; all incoming transitions to mode q2 make
the system state to be reset to somewhere within this circle.
By applying a forward invariant cut with C2 = V2(x1, x2) ≤
16 ∧ M = M2, we again get three branches. As before,
C2 is invariant because the only portions of the model that
may run from C2 are the programs m2 and s0,1,27→fail. Since
V2(x1, x2) ≤ 16 excludes the guard to fail, KeYmaera can
show that C2 represents a safe set. The next branch is to
prove that C2 implies safety, which is easy because C2 re-
quires M =M2, which implies M 6=Mfail.

The third branch can now be easily proved with the stan-
dard tools of KeYmaera, using the loop invariant M =
M0 ∧ x2

1 + x2
2 ≤ 10.



4. OBTAINING SAFE FORWARD INVARI-
ANTS

This section describes various techniques to generate safe
forward invariants, which are invariant sets that are safe but
not necessarily initialized. Let x(t) denote any solution tra-
jectory for a given (hybrid) dynamical system. A set S is
forward invariant if for all x(0) ∈ S, for all t, x(t) ∈ S. The
general problem of identifying safe forward invariant sets
that are useful is hard, but the techniques that we present
can, in some cases, automatically identify safe forward in-
variant sets that can be used to complete safety proofs.

4.1 Safe forward invariants based on Lyapunov
analysis

Lyapunov analysis provides one way to construct forward
invariant sets for hybrid systems. We briefly review the
basics of Lyapunov analysis to aid our presentation. Lya-
punov’s direct method is a well-known method used to prove
stability of dynamical systems within a region of interest.
In this method, the user provides a local Lyapunov function
V : X → R that over the domain of interest X satisfies the
following properties:

1. Positive definiteness: for all x in X,

V (x) > 0, (7)

and V (0) = 0;

2. Derivative negative semidefiniteness: for all x in X,

V̇ (x) =
d

dt
V (x) ≤ 0, (8)

and V̇ (0) = 0.

Existing techniques from dynamical systems theory use
sum-of-squares optimization [22] and semidefinite program-
ming [4, 30] to identify Lyapunov functions [21] for systems
described by polynomial differential equations. A Lyapunov
function V is analogous to a ranking function for a discrete
system, and it maps each continuous state x to a positive
real number, with the property that along any system tra-
jectory the quantity V (x) monotonically decreases until it
reaches 0 at the equilibrium point. It is well-known that the
sublevel set of a Lyapunov function, Sℓ = {x|V (x) ≤ ℓ} is a
forward invariant set, i.e., given any initial condition in Sℓ,
all future states remain in Sℓ. Thus, any sublevel set of a
Lyapunov function that includes the initial set and excludes
the unsafe set serves as a safety certificate [16, 26].
Remark: It is well known that for stable linear systems, a
quadratic Lyapunov function of the form V = xTPx, where
P is a positive definite matrix, always exists and can be
computed by solving the matrix equation

ATP + PA = −Q (9)

where Q is a positive definite matrix. Several scientific com-
puting tools have built-in commands to solve this equation,
such as lyap in MATLABand LyapunovSolve in Mathemat-
ica.

We now show how we can use Lyapunov-like functions to
construct local certificates.

Barrier Certificates. In the hybrid systems community,
barrier certificates have been proposed as a Lyapunov-like
analysis technique to prove that starting from an initial set

of states X0, no system trajectory ever enters an unsafe set
U [26, 27, 28]. The main step is to identify a barrier function
B from the domain X to R, with the following properties:

∀x ∈ X0 : B(x) ≤ 0 (10)

∀x ∈ U : B(x) > 0 (11)

∀x ∈ X s.t.B(x) = 0 :
∂B

∂x
f(x) < 0. (12)

Given a local Lyapunov function V valid in the domain X,
if an ℓ can be selected such that (10) and (11) are satisfied,
then B(x) = V (x) − ℓ is a barrier certificate. This follows
from the definition of barrier certificates and the Lyapunov
conditions (7) and (8).

Discovering Barrier Certificates. To discover barrier
certificates, we employ a modification of a technique from
[29], which uses concrete system executions to generate a se-
ries of candidate Lyapunov functions. Our technique, which
is based on [17], uses concrete executions to generate a set of
linear constraints. A candidate Lyapunov function is then
generated by solving a linear program (LP) associated with
the constraints. A series of candidates is iteratively im-
proved upon, using a global optimizer to search the region
of interest for executions that violate the condition (8) for
the given candidate. The search is guided by a cost function
that is based on the Lie derivative of the candidate Lyapunov
function; if this cost function can be minimized below 0, then
the minimizing argument provides a witness (which we call a
counterexample) showing the candidate Lyapunov function
is invalid. Once such counterexamples are obtained, we in-
clude the associated linear constraints in the LP problem
and update the candidate Lyapunov function. The process
terminates when the global optimizer is unable to find coun-
terexamples to the candidate Lyapunov function. We then
define the candidate barrier function B(x) = V (x)−l, where
l is selected such that (10) and (11) are satisfied.

Because there are no optimality guarantees from the global
optimizer used to generate the candidate barrier function,
the resulting candidate may not strictly satisfy the desired
constraints. To check whether the candidates satisfy (10)
through (12), we rely on a satisfiability modulo theories
(SMT) solver that can handle nonlinear theories over the
reals. We use the dReal tool, which uses interval constraint
propagation (ICP) [11]. dReal supports various nonlinear el-
ementary functions in the framework of δ-complete decision
procedures, and returns “unsat” or “δ-sat” for a given query,
where δ is a precision value specified by the user. When the
answer is “unsat”, dReal produces a proof of unsatisfiability;
when it returns “δ-SAT”, it gives an interval of size δ, which
contains points that may possibly satisfy the query.

When a “δ-SAT” result is returned from a query to check
(10) through (12), we do the following: 1.) construct a new
linear constraint based on the interval returned, 2.) add
the new constraint to the existing set of linear constraints,
and 3.) re-solve the LP to obtain an updated (improved)
Lyapunov function candidate. If this process terminates,
then the result is a barrier certificate.

Our technique attempts to use discovered barrier certifi-
cates locally, that is, for each mode we attempt to construct
a certificate that proves that the system will not leave the
mode. If such a local barrier certificate is found, then the
forward invariant cut rule can be applied to the mode to



ẋ = A1x ẋ = A2x

x := R21x
x := R12x

x := R21x

Figure 2: Hybrid automaton for the nonautonomous

switched system.

simplify the safety proof for the system, which may be com-
posed of several modes.

4.2 Other Techniques

Bounded-time Invariant Certificates. Inspired by the
success of reachability analysis using bounded model check-
ing for verifying software systems, there has been significant
research in estimating the reachable set of states for hy-
brid and continuous-time dynamical systems. See [10] and
references therein. A common theme among various ap-
proaches is to compute a flowpipe, or an overapproximation
of the reachable states over a bounded time horizon τ . If
the computed flowpipe does not intersect with the unsafe
set, then it is safe, and it is invariant over bounded-time,
as the initial states lie within it as wells as the set of all
future states reachable within a fixed time bound also lie
within it. The general form of a bounded-time invariant set
is Sreach = (R(x) < 0) ∧ (tl < t < tu), where R(x) < 0 is
some compact subset of the domain, and (tl, tu) is the time
interval over which the set R(x) < 0 is invariant.

Discrete Transition-based Certificates. These certifi-
cates are useful to prove unreachability of certain modes be-
cause of the transition structure of an underlying hybrid au-
tomaton. Standard techniques from automata theory such
as identifying strongly connected components can be used
to obtain such certificates.

5. CASE STUDIES

5.1 Non-autonomous Switched System
Consider an open two-mode system, where an external

input can cause the system to arbitrarily switch between the
system modes. This example is significant, because neither
of the two modes is invariant, so the proof cannot rely on
cutting out entire modes.

The continuous dynamics are defined by matrices A1 and
A2, as given below:

A1 =

[

−1.0 4.0
−0.25 −1.0

]

,

A2 =

[

−1.0 −0.25
4.0 −1.0

]

.

Linear reset maps are applied to the state when a transition
is made between Modes 1 and 2. The resets are defined by
matrices R12 and R21:

R12 =

[

−0.0658 −0.0123
0.1965 −0.0658

]

,

R21 =

[

−0.0658 0.1965
−0.0123 −0.0658

]

.

Model 2: A dL model of the nonautonomous switched
system

1 TS ≡ I → [(s ∪ m1 ∪ m2)
∗]S

2 I ≡ M = 1 ∧ x2
1
+ x2

2
≤ 0.49

3 s ≡ M := 1 ∪M := 2
4 m1 ≡ (?M = 1);
5 x1 := −0.0658x1 + 0.1965x2;
6 x2 := −0.0123x1 − 0.0658x2;
7 {x′

1
= −x1 + 4x2, x′

2
= −(1/4)x1 − x2}

8 m2 ≡ (?M = 2);
9 x1 := −0.0658x1 − 0.0123x2

10 x2 := 0.1965x1 − 0.0658x2

11 {x′
1
= −x1 − (1/4)x2, x′

2
= 4x1 − x2}

12 S ≡ x1 > −2 ∧ x1 < 2 ∧ x2 > −2 ∧ x2 < −2

Figure 2 shows a hybrid automaton for the system, and
Model 2 defines the corresponding hybrid program. For
both modes, the continuous-time dynamics given by A1 and
A2 are stable and linear. It is well known that even for
switched-mode systems with stable linear continuous dy-
namics, switching conditions exists that lead to instability
for the switched system [5]. We wish to prove that it is not
possible to switch between A1 and A2 to create unstable be-
havior. The safety property for this system is that it should
remain within ‖x‖∞ < 2.0. We apply the forward invari-
ant cut rule to the example to successfully prove the safety
property. Below, we describe the steps of the proof.

Here, the designer provided two forward invariants of the
system by independently solving the Lyapunov equation (9)
for the linear dynamics of the system in each of the modes.
The designer then picked level set sizes to ensure that the
resulting forward invariant is contained within the safe set
S. The invariants are given below:

C1 = {x | V1(x) < l1} (13)

C2 = {x | V2(x) < l2} (14)

Here, V1(x) = 0.3828x2
1+0.9375x1x2+2.3750x2

2, and l1 =
1.0, and V2(x) = 2.3750x2

1 + 0.9375x1x2 + 0.3828x2
2, and

l2 = 1.0.
We sequentially apply two forward invariant cuts in order

to prove Model 2 safe. The first forward invariant cut rule
uses the set C1 as the cut. After applying C1, the proof tree
has three branches: I ∧ ¬C1 → [(α; ?¬C1)

∗]S, C1 → [α]C1,
and C1 → S. Of these, the third branch is trivially true as
C1 ⊆ S. To prove the second branch valid, KeYmaera needs
to prove that C1 is invariant for the disjuncts.

For the hybrid program m1, KeYmaera computes the for-
ward image of the set C1 when transformed by the linear
transformation R21, i.e., the set F = {y | y = R21x ∧
V1(x) < l1}. Note that this step requires performing quan-
tifier elimination, and KeYmaera utilizes Mathematica for
this purpose. It then uses C1 as a differential invariant to
prove that F → [{x′ = A1x}]C1. This is facilitated by
the fact that C1 is in fact invariant for the linear system
ẋ = A1x.

The difficult branch is the one requiring us to prove that
C1 is invariant for mode m2. To do so, we assist KeYmaera
with certain lemmas; the intuition for these lemmas is as
follows: Any state in set C1 upon executing the program m2
is linearly transformed by R12. Let Ĉ1 = {x̂ | x ∈ C1 ∧ x̂ =
R12x} represent the forward image of C1 under R12. Next,
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Example 5.1.

we show that the set Ĉ1 is a subset of a specific sublevel set
C∗

2 of V2(x). As C∗
2 is a sublevel set of V2(x), it is invariant

under the dynamics ẋ = A2x; thus, any state beginning
in C∗

2 will remain in C∗
2 . Finally, we choose C∗

2 in such a
way that C∗

2 ⊆ C1. This essentially proves that any state
starting in the set C1 will be contained in set Ĉ1, of which
any state will under the dynamics ẋ = A2x remain in the
set C∗

2 , i.e., in the state C1.
Formally, we establish the following:

C1 → [x := R12x]Ĉ1 (15)

Ĉ1 ⊆ C∗
2 (16)

C∗
2 → [{x′ = A2x}]C

∗
2 (17)

C∗
2 ⊆ C1 (18)

We can combine these to infer that C1 → [m2]C1.
Finally, the first branch of the proof considers I∧¬C1; this

contains the set of initial states not in C1. These can now
be addressed by the second forward invariant cut (set C2)
following a symmetric argument as above. After applying
the second cut C2, the first branch has an empty antecedent
(I ∧ ¬C1 ∧ ¬C2 is empty), i.e., the proof has accounted for
all initial states, which closes the proof. The sets we have
discussed are shown in Figure 3.

5.2 Engine fuel control

Model. Our second case study is a hybrid system represent-
ing an automotive fuel control application. Environmental
concerns and government legislation require that the fuel
economy be maximized and the exhaust gas emissions (e.g.,
hydrocarbons, carbon monoxide, and nitrogen oxides) be
minimized. At the ideal air-to-fuel (A/F) ratio, also known
as the stoichiometric value, both these quantities are op-
timized. We present an automotive control system whose
purpose is to accurately regulate the A/F ratio.

The system dynamics and parameters were derived from
a published model [15] and then simplified, as in [17]. The
model consists of a simplified version of the physics of en-

gine subsystems responsible for air intake and A/F ratio
measurement, along with a computer control system tasked
with regulating the A/F ratio. The objective of the con-
troller is to maintain the A/F ratio within 10% of the nom-
inal operating conditions. The experiment that we model
involves an engine connected to a dynamometer – a device
that can control the speed of the engine and measure the
output torque. In our setting, the dynamometer maintains
the engine at a constant rotational velocity. The controller
has two modes of operation: (1) a recovery mode, which
controls fuel in an open-loop manner, i.e., with only feedfor-
ward control action, where the system runs for at most 8ms,
and (2) a normal run mode, which uses feedback control to
regulate the A/F ratio.

The controller measures both the air flow through the air-
intake manifold, which it uses to estimate the air pressure
in the manifold, and the oxygen content of the exhaust gas,
which it uses to compute the A/F ratio. The recovery mode
represents the behavior of the controller when recovering
from a sensor fault (e.g., aberrant sensor readings, environ-
mental conditions that cause suspicion of the sensor read-
ings). During the recovery mode, the controller has no ac-
cess to oxygen sensor measurements and so must operate
in a feedforward manner (i.e., using only the manifold air
flow rate). The normal mode is the typical mode of opera-
tion, where the oxygen sensor measurements are used to do
feedback control.

Model 3 is a hybrid program representing this system.
The ODEs representing the continuous dynamics in each
mode and the model parameters are presented in the Ap-
pendix. The state variables p̂, r̂, p̂est, and î represent the
manifold pressure, the ratio between actual air-fuel ratio
and the stoichiometric value, the controller estimate of the
manifold pressure, and the internal state of the PI controller;
these variables have all been translated so that the equilib-
rium point coincides with the origin. In the recovery mode,
the continuous-time state x is the tuple (p̂, r̂, p̂est, î, τ ). The
additional state variable in the recovery mode represents the
state of a timer that evolves according to the ODE τ̇ = 1.
In the normal mode, the state is given by (p̂, r̂, p̂est, î).

We assume the system is within 1.0% of the nominal value
at the initialization of the recovery mode. This represents
the case where the system was previously in a mode of oper-
ation that accurately regulated the A/F ratio to the desired
setpoint. A domain of interest for the state variables is given
by ‖x‖∞ < 0.2.

Safety proof using forward invariant cut. The verifica-
tion goal is to ensure that in the given experimental setting,
the system always remains within 10% of the nominal A/F
ratio after a fixed recovery time of 0.8 ms has passed. In
other words, we wish to show that the system begins in the
recovery mode, with the initial set of continuous states de-
fined by init = {x | ‖x‖∞ < 0.01}; the system transitions
to the normal mode after at most 8.0 ms; and the system
never transitions to the unsafe set, where |r| > 0.1, within
the domain of interest ‖x‖∞ < 0.2.

In previous work [17], the authors had established a for-
ward invariant set for the normal mode of operation using a
barrier certificate formulation. The authors formulated the
barrier certificate using simulation-guided techniques to ob-
tain a candidate Lyapunov function V and a number ℓ to
propose a barrier function of the form B(x) = V (x) − ℓ.
Here, V (x) = zTPz, and z is a vector of all monomials of



Model 3: A dL model of a closed-loop fuel control sys-
tem

1 EFC ≡

I → [
(

m1 ∪ m2 ∪ s17→2 ∪ s{1,2}7→fail ∪ mfail

)∗
]S

2 I ≡ (−0.001 ≤ p ≤ 0.001)
3 ∧ (−0.001 ≤ r ≤ 0.001) ∧
4 ∧ (pest = 0 ∧ i = 0 ∧M = 1)
5 m1 ≡ (?M = recovery ; ?τ ≤ 0.008;
6 {∃ℓ1.∃ℓ2.∃ℓ3
7 (−0.86 ≤ ℓ1 ≤ 0.74)
8 (−0.17 ≤ ℓ2 ≤ 0.18)
9 (−0.81 ≤ ℓ3 ≤ 0.68)

10 ∧ (p′ = ℓ1) ∧ (r′ = ℓ2) ∧ (p′est = ℓ3) ∧
11 i′ = 0 & τ ′ = 1 ∧ τ ≤ 0.008}
12 s17→2 ≡ (?M = recovery ; ?τ ≥ 0.008;
13 M := normal ; )
14 m2 ≡ (?M = normal ;
15 {p′ = fp,
16 r′ = fr ,
17 p′est = fpest ,
18 i′ = fi,
19 &− 0.02 ≤ p ≤ 0.02 ∧ − 0.02 ≤ r ≤ 0.02
20 ∧− 0.02 ≤ pest ≤ 0.02 ∧ − 0.02 ≤ i ≤ 0.02}
21 s{1,2}7→fail ≡ (?(r < −0.1 ∨ r > 0.1);

22 M := fail)
23 mfail ≡ (?(r < −0.1 ∨ r > 0.1);
24 M := fail)
25 S ≡ M 6= fail

degree ≤ 2 of the state variables p̂, r̂, p̂est and î. Note that
z thus contains 14 monomials, and P is a 14x14 matrix. We
omit the resulting P matrix for brevity.

We use the set enclosed by the barrier function to formu-
late the forward invariant cut

C ≡ (M = normal) ∧ (B(x) ≤ 0). (19)

Application of the forward invariant cut inference rule (6),
generates three proof obligations that KeYmaera has to dis-
charge.

Obligation 1. C → [α]C
Note that once we define C, the hybrid programs m1, s17→2

can be excised by KeYmaera, as both have the hybrid pro-
gram ?M = recovery as their first item, which is inconsistent
with C. Thus, KeYmaera can then focus on proving this
obligation only for the programs m2, s{1,2}7→fail and mfail.

In order to discharge the obligation for the program m2,
we first perform some trivial simplifications with KeYmaera
that leaves us with the following proof goal:

(B(x) ≤ 0) → [{x′ = f(x)&H}](B(x) ≤ 0)∧ (M = normal)
(20)

To discharge (20), we can use the barrier certificate rule
shown in (21) that we have added to KeYmaera’s proof cal-
culus.

init→B(x)≤0 B(x)=0→ ∂B
∂x

·f(x)<0 B(x)≤0→safe

init → [{x′ = f(x)}]safe
(21)

where H is the domain of evolution of the continuous dy-
namics. In our application of the barrier certificate rule,
we substitute init with (B(x) ≤ 0) and safe with (B(x) ≤
0)∧(M = normal). The first and the third proof obligations
in the barrier certificate rule are then trivially satisfied. For

the remaining (middle) proof obligation KeYmaera uses the
SMT solver dReal [11]. In particular, it asks dReal if the
query (B(x) = 0) ∧ ( ∂B

∂x
· fnormal(x) > −ǫ) is unsatisfiable,

where ǫ is a small positive number.
In order to discharge the proof obligation for m2, s{1,2}7→fail,

KeYmaera needs to show that if B(x) < 0 holds, either of
these programs cannot invalidate C by transitioning to mode
fail. It proves this by showing that the set B(x) < 0 is a
subset of the safe set using dReal.

Obligation 2. C → S
This obligation is trivial as S requires the mode to be fail,
while C says that the mode is normal mode.

Obligation 3. I ∧ ¬C → [(α; ?¬C)∗]S

To prove this obligation, we use the lemma that the set
C1 is an invariant for all states remaining in I ∧ ¬C . This
is a bounded-time invariant certificate.

C1 ≡ (M 6= mfail) ∧ (0 ≤ τ ≤ 0.008) ∧ (x ∈ Sreach) (22)

Here Sreach is an overapproximation of reachable sets by
using upper and lower bounds on ṗ and ṙ computed using
dReal. The proof for this branch continues using standard
KeYmaera deduction procedures. There is one additional
barrier certificate application to show that the normal mode,
when starting from this set, lands within the barrier certifi-
cate and therefore also respects this invariant. This requires
a derivative negativity argument, which KeYmaera again
handles via an external dReal query.

6. RELATED WORK AND CONCLUSIONS

Lazy abstraction. In software verification using conser-
vative abstractions, an abstract program can be viewed as
a proof of program correctness if it satisfies the correctness
property of interest. A popular paradigm is that of lazy
abstraction [13], where the abstract program is not derived
from a global set of predicates, but is an abstract model
in which predicates change from state to state. Such an
abstraction is obtained through the process of lazy refine-
ment, where abstraction is done on-the-fly with a goal of
eliminating local spurious counterexamples. While the ex-
act mechanics of our technique are different, our technique
also generates correctness proofs consisting of lazily gener-
ated local invariants.

Logical cuts. In classical logic, a cut serves the role of
a lemma. In Gentzen’s sequent calculus [12], the cut rule
splits the proof tree into two branches, one in which the
lemma can be used as an assumption, and another in which
it must be proved. The cut-elimination theorem, states that
any proof of the sequent calculus that uses the cut rule has
another proof that does not use the cut rule. Ideas similar
to Gentzen’s cut rule have been developed for other reason-
ing frameworks. Craig interpolants [7] have been used to
compute cuts in frameworks that leverage first-order logic,
and they have been used successfully in a model checking
framework [20]. The differential cut rule of dL makes it
possible to introduce lemmas about the continuous evolu-
tion of differential equations. It has been shown that there
are theorems that cannot be proved without differential cuts,
i.e., the differential cut strictly adds deductive power [24].
Overall, the approach provides an iterative method to find a



safety certificate, by proposing sets that are initialized and
invariant, and repeating the differential cut procedure until
safety can be proved. This work proposes a forward invari-
ant cut rule, in which a lemma is proved about the evolution
of a hybrid system model. The proof rule requires showing
that a certain set is safe and invariant, and allows the proof
to continue for the behaviors that are not initialized within
the set. The forward invariant cut may be repeated, until
a proof of overall system safety is attained. Most crucially,
the proposed cuts allow the verification process to leverage
a designer’s knowledge of local system properties.

Deductive Proof System for Temporal Logic. In [8],
the authors present a deductive proof system for proving
alternating-time temporal logic assertions on a continuous
dynamical system. Some of the proof rules presented require
the user to provide auxilary predicates to establish proof-
subgoals. These predicates are essentially logical cuts, and
in particular can be barrier certificates. The key feature of
our approach is that we provide an automated mechanism
to leverage user insight about parts of the system to obtain
localized forward invariant cuts. It would be interesting to
see if the automation that we develop in this paper could be
used to mechanize the proof system presented in [8].

Conclusions. This paper presents a method to leverage
knowledge of local system behavior within a deductive frame-
work. In this framework, designer knowledge of system be-
havior can be leveraged lazily as part of a proof of global
system safety. The designer proposes sets that are invariant
and safe, which allows certifying the safety of some region of
state space. In future work, we would like to investigate the
use of sets that are safe, but not initialized or invariant, as
part of a proof effort. An example of this is when a collec-
tion of modes have continuous barriers that the differential
equations may not cross, but the set is not invariant because
there are outgoing transitions that are not excluded by the
set.
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Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang,
T., Maler, O.: SpaceEx: Scalable verification of hybrid
systems. In: CAV. pp. 379–395 (2011)

[11] Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision
procedures for satisfiability over the reals. In: J.
Automated Reasoning. pp. 286–300 (2012)

[12] Gentzen, G.: Untersuchungen Ãijber das logische
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APPENDIX

Appendix
A Semantics of dL

We follow the development of [23], Chapter 2. Symbols
in dL are classified into three different syntactic categories,
depending on their role.

1. Σr represents a set of rigid symbols that cannot change
their value, such as 0, 1,+, ·;

2. Σfl represents a set of flexible symbols, also called state
variables, which change their value as the system evolves;

3. V represents a set of logical variables, which do not
change as the system evolves, but can be quantified
over universally and existentially; they often serve the
role of parameters.

An interpretation is a function I that associates functions
and relations over the reals to function and relation sym-
bols in Σr. The standard arithmetic operators and relations
symbols, such as +, ·, ≥, are interpreted as usual.A state is
a map ν : Σfl 7→ R, which maps a real value to each state
variable. An assignment η : V 7→ R is a map that prescribes
the value of the logical variables. Note that the value of the
logical variables does not depend on the state.

A state variable is a term, and a logical variable is also a
term. The result of applying a function of arity n to n terms
is also a term. Nothing else is a term.

Definition 1 (Valuation of terms ([23], Defn. 2.5)). The
valuation of terms with respect to interpretation I, assign-
ment η, and state ν is defined as

1. valI,η(ν, p) = η(p) if p is a logical variable.

2. valI,η(ν, x) = ν(x) if x is a state variable.

3. valI,η(ν, f(θ1, . . . , θn)) = I(f)(valI,η(θ1), . . . , valI,η(θ2))
if f is a function of arity n ≥ 0 and θ1, . . . , θn are
terms.

The notation η[x 7→ d] represents the function that agrees
with η except for the interpretation of x, where it takes the
value d. The notation ν[x 7→ d] denotes the modification of
a state ν, that agrees with ν everywhere except the inter-
pretation of the state variable x, where it takes the value
d.

Definition 2 (Valuation of dL formulas ([23], Defn. 2.6).
The valuation valI,η(ν, ·) of formulas with respect to inter-
pretation I, assignment η, and state ν is defined as

1. valI,η(ν, p(θ1, . . . , θn) = I(p)(valI,η(ν, θ1), . . . , valI,η(ν, θn)).

2. valI,η(ν, φ ∧ ψ) = true iff valI,η(ν, φ) = true and
valI,η(ν,ψ) = true.

3. valI,η(ν, φ ∨ ψ) = true iff valI,η(ν, φ) = true or
valI,η(ν,ψ) = true.

4. valI,η(ν,¬φ) = true iff valI,η(ν, φ) 6= true.

5. valI,η(ν, φ → ψ) = true iff valI,η(ν, φ) 6= true or
valI,η(ν,ψ) = true.

6. valI,η(ν,∀xφ) = true iff valI,η[x 7→d]
(ν, φ) = true for

all d ∈ R.

7. valI,η(ν,∃xφ) = true iff valI,η[x 7→d]
(ν, φ) = true for

some d ∈ R.

8. valI,η(ν, [α]φ) = true iff valI,η(ω,φ) = true for all
states ω for which the transition relation (defined below)
satisfies (ν, ω) ∈ ρI,η(α).

9. valI,η(ν, 〈α〉φ) = true iff valI,η(ω,φ) for some state
ω such that the transition relation satisfies (ν, ω) ∈
ρI,η(α).

We now define the transition semantics of hybrid pro-
grams. We already saw a glimpse of it in the definition
of valuation of formulas, since the formulas and programs of
dL are constructed coinductively.

Definition 3 (Transition semantics of hybrid programs ([23],
Defn. 2.7)). The valuation of a hybrid program α, denoted
ρI,η(α) is a transition relation on states that specifies which
states are reachable from a state ν under the program α, and
is defined inductively as follows.

1. (ν, ω) ∈ ρI,η(x1 := θ1, . . . , xn := θn) iff the state ω
equals the state obtained by modification of ν as ν[x1 7→
valI,η(ν, θ1)], . . . , ν[xn 7→ valI,η(ν, θn)].

2. (ν, ω) ∈ ρI,η({x
′
1 = θ1, . . . , x

′
n = θn&H}) iff there is a

flow f of some duration r ≥ 0 from ν to ω along the
differential equations x′

1 = θ1, . . . , x
′
n = θn that always

respects the invariant H.

3. ρI,η(?χ) = {(ν, ν) | valI,η(ν, χ) = true}

4. ρI,η(α ∪ β) = ρI,η(α) ∪ ρI,η(β)

5. ρI,η(α; β) = ρI,η(α) ◦ ρI,η(β)

6. (ν, ω) ∈ ρI,η(α
∗) iff there is a sequence of states states

ν0, . . . , νn with n ≥ 0, ν = ν0, and νn = ω such that
(νi, νi+1) ∈ ρI,η(α) for each 0 ≤ i ≤ n− 1.

B Soundness proof for forward invariant cut
Fix an interpretation I and an assignment η. From seman-

tics of the first premise, if ν ∈ C and (ν, ω) ∈ ρI,η(α), then
ω ∈ C. From the semantics of the second premise, if ω ∈ C,
then ω ∈ S From the semantics of the third premise, if ν ∈ I
and ν /∈ C, and ω is such that (ν, ω) ∈ ρI,η((α; ?¬C)∗), then
ω ∈ S. This is equivalent to saying that for any ω such that
there is a sequence of states ν0, . . . , νn, with ν0 = ν ∈ I
and νn = ω, n ∈ N, and (νi, νi+1) ∈ ρI,η(α; ?¬C) for each
0 ≤ i ≤ n− 1, it is the case that ω ∈ S.

The proof is to show by induction that any state reachable
by α∗ from I in n ≥ 0 executions of α must be contained in
S.

For the base case, let n = 0. Then given ν ∈ I , the only
reachable state by a sequence of length zero is ν itself. If
ν ∈ C, then νinS by semantics of the second premise. If
ν /∈ C, we have that (ν, ν) ∈ ρI,η((α; ?¬C)∗) by a chain of
length zero, so that by semantics of the third premise, ν ∈ S.

As an inductive hypothesis, suppose that for every ω reach-
able by a chain of length n, ω ∈ S (i.e., there exists ν0, . . . , νn
with ν0 = ν and ω = νn such that (νi, νi+1) ∈ ρI,η(α), for
0 ≤ i ≤ n− 1. Now choose any state ξ such that there is a
chain of length n+1, ν0, . . . , νn+1 with ν0 = ν and νn+1 = ξ,
such that (νi, νi+1) ∈ ρI,η(α), for 0 ≤ i ≤ n).

First suppose that νn ∈ C. Then by semantics of the first
premise, νn+1 ∈ C, and then νn+1 ∈ S by semantics of the
second premise. On the other hand, suppose νn /∈ C. We
claim that for all j ≤ n, νj /∈ C. To see this, note that
if νj ∈ C for some j ≤ n, then νn ∈ C by semantics of
the first premise, which would contradict our assumption
on νn. Then we have that (νi, νi+1) ∈ ρI,η(α; ?¬C) for all



Table 1: Model Parameters for the Engine Fuel Con-

trol System.

Parameter Value
c1 0.41328
c2 200.0
c3 −0.366
c4 0.08979
c5 −0.0337
c6 0.0001
c7 2.821
c8 −0.05231
c9 0.10299
c10 −0.00063
c11 1.0
c12 14.7
c13 0.9
c14 0.4
c15 0.4
c16 1.0
û1 23.0829

0 ≤ i ≤ n. By semantics of the third premise, it follows that
ξ ∈ S. This establishes the theorem.

C System dynamics for the Engine Fuel Con-
trol Model

We now present the model parameters and the ODEs for
the Engine Fuel Control model. Figure 4 details the equa-
tions for the recovery mode, and Fig. 5 provides the dynamic
equations for the normal mode. In the figures, dp

dt
= fp,

dr
dt

= fr,
dpest
dt

= fpest , and
di
dt

= fi.
We translate the system so that the origin coincides with

the normal equilibrium point p ≈ 0.8987, r = 1.0, pest ≈
1.077, i ≈ 0.0 and call the translated variables p̂, r̂, p̂est,
and, î, respectively.
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Figure 4: System dynamics for the Engine Fuel Control System in the recovery mode.
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Figure 5: System dynamics for the Engine Fuel Control System in the normal mode.


	1 Introduction
	2 Hybrid systems and hybrid programs
	2.1 The logic dL 
	2.2 Example

	3 Safety verification with the forward invariant cut rule
	3.1 The safety verification problem
	3.2 The forward invariant cut rule
	3.3 Example

	4 Obtaining safe forward invariants
	4.1 Safe forward invariants based on Lyapunov analysis
	4.2 Other Techniques

	5 Case Studies
	5.1 Non-autonomous Switched System
	5.2 Engine fuel control

	6 Related Work and Conclusions
	7 References
	A Semantics of dL
	B Soundness proof for forward invariant cut
	C System dynamics for the Engine Fuel Control Model


