

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 20, 2024

Specification Of Embedded, Real-time Systems

Skakkebæk, Jens Ulrik; Ravn, Anders P.; Rischel, Hans; Chaochen, Zhou

Published in:
Proceedings of the Fourth Euromicro workshop on Real-Time Systems

Publication date:
1992

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Skakkebæk, J. U., Ravn, A. P., Rischel, H., & Chaochen, Z. (1992). Specification Of Embedded, Real-time
Systems. In Proceedings of the Fourth Euromicro workshop on Real-Time Systems (pp. 116-121). IEEE.

https://orbit.dtu.dk/en/publications/0964540f-515e-40b9-8d85-500e464729c9

Specification of Embedded, Real-Time Systems*

Jens U. Skakkebzk, Anders P. Ravn, Hans Rischel & Zhou Chaochen t
Department of Computer Science

Technical University of Denmark, Bldg. 344
DK 2800 Lyngby, Denmark

Abstract
A n approach t o requirements specification and sub-

sequent verification of designs for embedded, real-time
systems is presented. A system is given by a con-
ventional mathematical model for a dynamic system,
where application specific state variables denote total
f inctions of real t ime. Specifications are formulas in a
real-time, interval temporal logic, where atomic pred-
icates define durations of states. Requirements are
specified by a conjunction of formulas, which reflect
safety and functionality constraints on the total sys-
tem. A design specifies the behaviour of components
and the conjunction of component specifications can
be shown to imply the requirements. Designs can be
refined in a similar fashion.

1 Introduction
Requirements engineering [4] for software that con-

trols physical systems must investigate safety and
functional requirements for the system as a whole. Re-
quirements typically delimit expected behaviours over
time for a combination of given physical processes with
planned sensors, actuators and programmed comput-
ers. Requirements engineering is ideally completed
with precise specifications for components and the de-
sign binding them together. This paper illustrates
an approach to requirements engineering which has
evolved during our work with case studies within the
Provably Correct Systems (ProCoS) project [l, 131.

The approach uses a conventional time-domain
model of mathematical systems theory or control engi-
neering [12] and develops predicates describing prop-
erties of a total system in three steps:

1. An application domain system model of the equip-
ment and its intended environment of use is de-
fined. This defines the overall states of the system

model.
as functions of time. Requirements constrain this

*This work is partially supported by the Commission of the
European Communities (CEC) under the ESPRIT programme
in the field of Basic Research Action proj. no. 3104: “ProCoS:
Provably Correct Systems” and by The Danish National Engi-
neering Research Council

ton leave from Software Institute, Academia Sinica, Beijing
100080, China

:E-mail: jusQid.dth.dk, apr@id.dth.dk, hsr@id.dth.dk and
zcc@id.dth.dk

0-8186-2815-4/92 $3.00 Q 1992 IEEE

2. A control model extends the system model with an
explicit control strategy. The strategy is verified
to imply the requirements under a set of assump-
tions about the intended environment of use.

3. A design model for a distributed system defines
separate specifications for a set of interface units
and programs. Interface units relate system states
to event values under certain timing and approx-
imation constraints. Programs implement the
control strategy by controlling timing and order
of events, and by computing relevant event values.

The approach is based on refinement of models.
Each refinement removes some freedom (choice, non-
determinism) by adding further constraints. At each
stage the resulting model is verified to be contained in
(or imply) the model of the previous stage.

The following sections introduce the specification
language, and then discuss the system and control
models with associated refinements in more detail, us-
ing a simple Railway Level Crossing as a running ex-
ample. The approach has also been used on a simple
Auto Pilot [14] (example due to Boyer and Moore) and
on a Gas Burner [ll].

2 Specification language
A system is described by a collection of state vari-

ables which are functions of Time, modelled by the
real numbers. Properties of systems are expressed by
constraints on the state variables. We wish to express
requirements and design without explicit mentioning
of time instants, and introduce a notation which is a
real-time, interval logic [9] based on state durations:
The Duration Calculus [Z].
2.1 Syntax

We assume names for state variables X , Y, . . . to-
gether with their value domains Typex, Typey , . , .
given by declarations in a suitable specification lan-
guage, here VDM (cf. [5]). The language should
comprise names for constants and operators, The type
R of real numbers should be available with the usual
operators, and so should the type Boo1 of Boolean
values with the usual propositional operators. The
Boolean constants are denoted tt and 8 (the names
true and false are reserved for duration formulas). We
use lower case names a , b, . . . t o denote constants or
static variables of any type in the language. Static
variables denote time-independent entities.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 08:04 from IEEE Xplore. Restrictions apply.

State expressions and state assertions

A state explression is generated b a constant, a static
variable, a state variable or any 6ype correct) expres-
sion op(S1, . . . , S,) formed from an operator symbol
op and state expressions S I , . . . , S,.

A state assertion is a state expression with type
Bool.

Durations and duration terms

For any state assertion P , s P is a duration. A du-
ration ternt (of type R) is a duration, a real con-
stant, a real static variable or the term o p (q , . . . , y,),

where op is; an n-ary operator symbol of type R and
rl, . . . , r, are duration terms.

The symbol .t is used as an abbreviation for the
duration te:rm J'tt.

Duration formulas

If A is any n-ary predicate symbol on R and q , . . . , r,
are duration terms, then A(q, . . . , r,) is an atomic du-
ration formula. Atomic duration formulas, the sym-
bols true and false, (~ D I) , (9 1 V D z) , (D1 ; D2) ,
and (V x)Dll, where x is a static variable and D1, 2) 2
are duration formulas, are dumtion formulas of type
Bool. We use standard abbreviation A, j, U for
both state assertions and duration formulas, and we
introduce abbreviations for commonly used duration
formulas:

Abbreviaition Formula Legend
t = O point
s p = L A 1 > 0 almost

everywhere P
OD true ; 2) ; true somewhere 2)
OD l(0-a) always 2)

11
[PI

D1 -+D2 2)1 ; true + 2)2 follows 2)1
Dl V (D l ; 2) 2 ; true)

The following precedence rules are used

first: 1 1 0, 0

third: 3, --+

2.2 Semantics
A (particular) behaviour B of a system assigns a

function [O, CO) -+ Q p e x to each state variable X, and
selects a value V (z) for each static variable z. Each
state expression then denotes a function obtained by
evaluating the expression for each point of time. For
a state assertion P it seems reasonable to demand f i -
nite variability: For each behaviour, any observation
interval can be divided into finitely many subintervals
with P constant on each (open) subinterval.

An observation interval is a closed and bounded in-
terval [b, e] CC [0, CO). For a given interval the duration

P of a state assertion P denotes the real number

second: V , A , ;

J,"(if P (t) = t t then 1 else 0)dt

which is the measure of the set of points where P
has value t t . For any behaviour B and interval [b, e]
duration terms denote real values and atomic duration
formulas denote Boolean values.

The d u e s of complosite duration formulas are ob-
tained by the usual interpretation of the logical oper-
ators and quantification, cf. e.g. [6]. The value of a
"chop" formula D1 ; D2 is t t if and only if the in-
terval [b, e] can be divided into [b, m] and Em, e] such
that ID1 is t t on [b, m] and 272 is tt on [m, e] .

A duration formula 'D holds on the interval [b, e] for
the behaviour B just when D has value tt on [b , e] with
any assignment V of values to the static variables.

The formula 2) hola!s from start for the behaviour
B just when it holds on any interval of the form [O, 2'1
for the behaviour B.

A duration formula 2) is valid (a tautology) just
when it holds for every behaviour B and every interval
[b, e] . It is sufficient for a formula to be valid, that it
holds from start for every behaviour B.
2.3 Specifications and refinement

A specification for a, system is a duration formula
2). A behaviour €3 satisfies the specification if D holds
from start for 8.

For specifications 2) ~ and 2) 2 we say, that 2) 2 is a
refinement of 2)1 if any behaviour satisfying 2) 2 also
satisfy D1. It follows, that V2 is a refinement of 2)1 if
the duration formula 232 2)1 is valid.
2.4 Proof system, Verification

It is almost certain, that the general Duration cal-
culus is undecidable, and hence we cannot expect to
find a complete set of axioms and proof rules. The
proofs in this paper may, however, be based on the
set of axioms and prooif rules given below. In the fol-
lowing, P denotes a state assertion, r a non-negative
real number and 2) denotes a formula in the Duration
Calculus.

Axiom 1 J'#= 0

Axiom 2 s P 2 0

Axiom 3 + sP2 == s(PI V P2) + s(PI A P2)

Axiom4 (J P = r l) ; (J P = n) * J P = n + 4

Axiom 5 If PI U P2 is a valid state assertion then
JP1 = JP2 is an axiom

The following induction rule is sound due to the finite
variability of states.

Induction Rule If D ([l is provable, and
D X v (X ; [P I) v (X ; ['P \)) is provable from
D[X), then D(true) has been proved.

It has a dual, backward induction rule.

3 System model
The first step in formalising requirements to a sys-

tem is to construct a system model. Requirements are
constraints on this mod,el. This section builds a sys-
tem model for our running example: A railway level
crossing.

I I7

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 08:04 from IEEE Xplore. Restrictions apply.

3.1 Informal description
The following informal description is based on the

description found in [lo] and on discussions with en-
gineers from DSB (Danish National Railways):

The railway level crossing is a crossing between a
single track railway and a road. For simplicity it is as-
sumed that all trains passing the crossing will travel in
the same direction. The crossing is shown in figure 1.

--
Approaching Passing

Figure 1: Railway Crossing

Road traffic is controlled by a gate at each side of
the railway. The gates close only when road traffic is
not stuck in the crossing.

Train traffic is controlled by a signal on the side
of the tracks along which the trains approach. The
signal indicates: “stop” or “go” for oncoming trains.

Sensors keep track of trains in the system. A sensor
is placed in a reasonable distance from the signal such
that a train will reach the first sensor point before it
reaches the signal. A train enters the system, when-
ever it is determined by this sensor. A train has left
the crossing, whenever the sensors determine that the
rear end of the train has passed the crossing.

When a train approaches, the gates are closed, pro-
vided road traffic is not stuck in the crossing. The
signal is only set to “go” after the gates have closed.

When no trains are approaching or passing, the sig-
nal must be set to “stop” and the gates opened.

The main objective of the system controlling the
gates and the signal is to ensure safety: The system
must never allow train and road traffic to pass the
crossing at the same time.

Furthermore, the system must ensure that both
road traffic and trains are able to pass the crossing
within some reasonable time.

The device that controls the system is the Railway
Crossing Control System (RCS). The RCS gets input
data from the train sensors and the gate sensors, and
sends commands to the signal and the gates.
3.2 State variables

trains.
The Signal can be “stop” (8) or “go” (t t)

The state models a signal, gates, road traffic and

Signal : Boo1

The gates can be open, closed, opening or closing

Gates : {open, closed, opening, closing)

The road traffic can be stopped at the crossing, be
stuck in the crossing or be free to cross

Traffic : {stopped, stuck,free)

Trains are either approaching or passing

Appr : N-&
Pass : N-&

where a train, identified by a unique, natural number
i, is approaching (i E Appr) if some part of the train
is between the sensor and the signal, and passing (i E
Pass) if some part of the train is between the signal
and the end of the crossing. Trains are active if either
approaching or passing (or both). We define three
state assertions expressing the state of the trains

Passing 2 Pass # I
Approaching P Appr # 0
Active 2 Act # 0

where Act = Appr U Pass
3.3 Requirements

The requirements concern safety and function

3

Req o(SafReq A A FunReq z)
i=l

Safety requirement

If the gates are not closed or road traffic is stuck in
the crossing, the trains must not pass

+- rlPasszng1
SafReq 2 [(Gates # closed) V (Trafic = stuck)l

Functional requirements

The road traffic should maximally be held back
for a predefined period of time, Tstopped

FunReql 2 [%fie = stopped] ! 5 Tstopped

When all trains have left the railway crossing, the
gates must be open for at least time, Topen

FunReq2 e [Active] ; [l d c t i v e l ; [Active]
3 l (G a t e s = open) > Topen

Provided the road traffic is not stuck, a single
train must be able to pass within time, Tactive

FunReq3 P [i E Active A (Traffic # stuck)] + L 5 Tactive

I I X

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 08:04 from IEEE Xplore. Restrictions apply.

4 Control model
We now turn to selecting the assumptions and a

control strettegy, such that the controlled system can
be proved to satisfy the requirements under the given
assumpt.ions.
4.1 Ass,umptions

The assumptions constrain the system environ-
ment. In the case of the railway level crossing, it is
necessary tlo constrain the behaviour of both the road
traffic and the trains, as well as the devices

2 5 3

A S M G D(A RTAsm i A A T A s m i A A D A s m i)
i = l i=l i=l

Road traffic assumptions

1. When running freely, the road traffic might even-
tually either be stopped properly by the gates or
become stuck in the crossing. Stopped and stuck
road titaffic might in turn become free again

(r f i f f i c = stopped] + r%afic = f i ee l)
R T A s m l 2

A ([Traffic = free] -+

A ([Traffic = stuck] + [D u f i c = free])
([Traf f ic = stopped] V [Traffic = stuck]))

2. Road .traffic is stopped, if and only if the gates
are not open

RTAsm2 2
[%a& = stopped1 e [Gates # open]

Train assumptions

1. Trains must only pass if the signal is ‘‘go”

T A s m l [Passing1 [Signall

2. An active train travels in one direction only (ap-
proaches initially and passes finally)

TAsnn2 2

A (‘i E Appr A i @ Pass1 --f [z E Pass])
A (I -i E Pass] + [i 4 A c t])

([i @ Act1 -+ [i E Appr A i @ Pass])

3. The last train in a series of trains passes the cross-
ing before leaving the crossing

TAsm3 2

A 1 [i$Ejhing A +assing1 -+ [Passing
A
A [1-Active] t [Passing])

-+ [Approaching A

-Passing] + ([l Active] V [Active]))

4. The tirains do not linger if the signal is “go”

TAsm4 2 [Signal A Active1 + -! 5 Tsched

5 . The railway tracks are not overloaded with trains
TAsm5 S [Activel; r ldc t i ve l ; [Active1

j 1 ;. Tinactive + Twait
-t Tgateopen + Topen

The assumptions 1, 2 and 4 are examples of “obvi-
ous” parts of train behaviours; but we have to state
them explicitly in order to use them in a verification.

Device assumptions

1. It takes at most Tgateclose for the gates to close,
if the road traffic is not stuck in the RLC

DAsml 2 [Gatea = closing A Trafic # stuck]
-! Tgateclose

2. It takes at most I’galeopen for the gates to open
DAsm2 S [Gates = opening] + -! 5 Tgateopen

3. The physical properties of Gates constrain the
value of gates to the cycle: open, closing, opening,
open (in that order)
DAsm3 1

([Gates = open] t [Gates = closing])
A ([Gates = closing1 -+ [Gates = closedl)

Gates = closed) -+ [Gates = opening])
Gates = opening] -+ [Gates = open])

4. The signal switches between “stop” and “go”

4.2 Control strategy
The control strategy is selected by the system de-

signer with the purpose of defining an implementable
control satisfying the requirements under the assump-
tions. The following strategy is a formalisation of the
obvious finite state control, cycling through phases
with passive, approaching and passing trains. This
is expressed by the predicate

7

RCS G U (A RCS i)
a=1

Approaching trains

1. The gates will remain open when no trains are
present

RCSl 2 ([lAc t i ve) A ([Gates = open) ; true))
j [Gates = open1

2. If trains are present, the gates are open for at

RCS2 2 [Gates = open A Active] j .! 5 Beact

3. It takes at most Tnts before the signal is “go”

RCS3 e [(Gates = closed) A -&gnu1 A Active]

most Beact

when the gates have closed

j -! 5 Tnts

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 08:04 from IEEE Xplore. Restrictions apply.

Passing trains

4. The gates remain closed as long as the signal is
“go’,

RCS4 2 [Signall =& [Gates = closed]

5. The signal remains ”go”, while trains are present

RCS5 ([Act ive] A ([Signall ; tme))
+ [Signal]

6 . The signal will only indicate “go” for at most
Tinactive after the trains have left

RCS6 e [YActive A Signal] + 1 5 Tinactive

7. The gates will remain closed for at most Twait
after all trains have left

RCS7 1 [(Gates = closed) A TActiwe A TSignaq
=+- C 5 Twait

4.3 Verification of requirements
In order to verify that the formal specification of the

Control System satisfies the requirements, one must
prove: ASM A R C S =+- Req.

The verifications all have the same structure: From
an arbitrary interval, where the antecedent part of the
requirement holds, it is shown through several steps
of deduction that the consequent holds. The assump-
tions and the control strategy can be used freely in the
deduction, since they all hold for an arbitrary interval
(the 0 distributes over conjunction). Since it is shown
to hold for an arbitrary interval it also holds for any
subinterval.

The safety requirement

The safety requirement is verified without any timing
constraints

D a f i c = stuck)] {Trafic}
D a f i c # stopped)] {RTAsm2}

j [(Gates # closed) V (Gates = open)] {Gates}

{RCS4}
{TAsml}

cZosed) V (Gates # closed)]

The functional requirements

The proof of the first functional requirement ensur-
ing the flow of the road traffic relies on the maximum
opening and closing times for the gates, and the cal-
culated maximum time the gates can be closed:

[Tra f i c = stoppedl { RTAsmft}
{ DAsm3) j [Gates # open1

Gates = closing1 V
Gates = closedl V r

{DAsml}
{RTAsm2} ([G a t e s = opening] V [I)

+ ! 5 Tgateclose V [I);

=+- C 5 Tgateclose V 11); j(5 Tclosed V [I);
[Gates = opening1 V [])
(l 5 Tgateclose V [I);
5 Tclosed V [I) ;
! 5 Tgateopen V [I))

\[Gates = closed] V [I
([G a t e s = opening] V

(DAsm2)
+

{DurCalc}
j 5 Tgateclose + Tclosed + Tgateopen

where we have used the following lemma:
The time that the gates are closed is limited by a

sum of the time the gates are closed before the signal
indicates “go”, the active time with the signal on “go”,
the time the signal is after the trains have left the
crossing, and finally the time the gates can be closed
while the system is inactive

Lemma G U([Gates = closed] =j ! 5 Tclosed)

where Tclosed = Tnts + Tsched + Tinactive + Twait
Thus, we should choose Tstopped such that:

Tgateclose + Tclosed + Tgateopen 5 Tstopped

The second and third functional requirements are
proved in a similar manner.

5 Refining the control model
The control model presented above (from now on

referred to as RCSO) specified a set of properties of
the control system. This control model can be refined
to introduce a less abstract control model (RCSl), a
design. In this model, the control system is defined by
describing the communication between a controlling
processor and some interface units.
5.1 Informal description

The refined control model comprises:

A controlling processor

A unit monitoring the positions of the trains

A unit controlling the train signal

A unit controlling the gates

A unit monitoring the gates

The communication history between the processor
and the units is captured by extending RCSo with a
state variable

t r : Event’

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 08:04 from IEEE Xplore. Restrictions apply.

which contains a finite trace (i.e. list) of events. An
event occurring at time t is appended to the previous
value of tr . Hence, events occur at the points in time
where the value of tr changes, and tr holds the history
of events occurring prior to or at time t .

A detailed description of the refinement can be
found in [15].

5.2 Correctness of refinement

of the original control strategy RCSo if
The control strategy RCSI is a correct refinement

RCSi + RCSo

Since RCSo together with the assumptions has been
shown to satisfy the requirements, it follows that

RCSl A AS.M 3 Req

RCSo is a conjunction of 7 formulas:
RCS1, ..., RCS7. Verifying that RCSo holds whenever
RCS, holds, is therefore done by separately verifying
each of the conjuncts. The complete calculations can
be found in [15].

6 Conclusion
We have illustrated an approach to requirements

engineering for real-time systems using a mathemat-
ical specification of system requirements and system
design, where a design is verified by calculations. In
the first stage a system model is built. Requirements
for the system together with assumptions for the sys-
tem environiment are stated. A control model is then
constructed, and it is proved that the control model
satisfies the requirements whenever the assumptions
hold. Desigin for a particular control system is then
introduced and verified to preserve the properties of
the control model. The end result is a set of verified
specifications, which clearly expresses the responsibil-
ities of component implementors.

In further refinement steps towards concrete pro-
grams, we need to know the relationship between pro-
gramming language semantics and duration formulas.
In [3] the Dluration Calculus is used to give a real-
time semant.ics to communicating sequential processes
and also gives various specifications of schedulers for
shared processors. Furthermore, the Duration Calcu-
lus has in [7] been used to give semantics to circuits, to
prove the correctness of a circuit transformation, and
to give a precise definition of delay-insensitive circuits.
Current work is going on to extend Duration Calculus
to a version with probabilities [8] as well as to mech-
anise the calculations using existing theorem provers.

Zhou Chaochen, C.A.R. Hoare, A.P. Ravn: A Cal-
culus of Durations, Information Processing Letters,
40(5), 1992.

Zhou Chaochen, Michael R. Hansen, A. P. Ravn:
Duration Specifications for Shared Processors. In:
Proceedings of Symposium on Formal Techniques in
Real-time and Fault Tolerant Systems, Nijmegen,
January 6-10, 1992. (To appear in the LNCS se-
ries.)
A.M. Davis and P.A. Freeman: Guest Editors’
Introduction: Requirements Engineering, IEEE
Trans. Software Eng., 17, March 1991, p. 210-211.

John Dawes: The VDM-SL reference guide, Pit-
mann, 1991.

A.G. Hamilton: Logic for Mathematicians, Cam-
bridge University Press, Revised Edition, 1988.

M. R. Hansen, Zhou Chaochen and J0rgen
Staunstrup: A Real- Time Duration Semantics for
Circuits. ProCoS Rep. ID/DTH MRH 7/1, Septem-
ber 1991.

Zhiming Liu: A Probabilistic Duration Calculus.
Working Paper, Department of Computer Science,
Technical University of Denmark, December 1991.

Ben Moszkowski: ,4 Temporal Logic for Multilevel
Reasoning about Hardware, IEEE Computer, vol.
18, no. 2, 1985, pp. 10-19.

J. Nordahl: Requirements Specification for a Rail-
way Level Crossing, ProCoS Note ID/DTH JNO 2,
Feb. 1990.

K.M. Wansen, A.€’. Ravn, H. Rischel: Specifying
and Verifying Requirements of Real-Time Systems,
Proceedings of the ACM SIGSOFT ’91 Conference
on Software for Critical Systems, New Orleans,
December 4-6, 1991, ACM Software Engineering
Notes, vol. 15, no. 5, pp. 44-54, 1991.

David G. Luenberger: Introduction to Dynamic
Systems. Theory, Models 5’ Applications, Wiley,
1979.

A.P. Ravn, H. Rischel and V. Stavridou: Provably
Correct Safety Critical Software, in Proceedings of
IFAC SafeComp’913, London, England, Oct. 1990.

A.P. Ravn, H. Rischel: Requirements Capture
for Embedded Read-Time Systems, Proceedings of
IMA CS-MCTS Symp., Villeneuve-d’Asq, France,
May 1991, Vol. 2, p. 147-152.

J. U. Skakkebcek: Development of Provably Cor-
rect Systems, Master’s thesis, Dept. of Computer
Science, Technical University of Denmark, 1991.

References
[I] Dines Bjqirner: A ProCoS Project Description, ES-

PRIT BRA 3104, EATCS Bull., No 39, October
1989.

121

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 20, 2009 at 08:04 from IEEE Xplore. Restrictions apply.

