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Abstract
In this paper we present a study of the effects caused

in distributed real-time systems by jitter in the activation
of tasks and messages. We show that although jitter has
usually a small impact in the schedulability of single-
processor systems, in distributed architectures the worst-
case response times are significantly delayed. Reducing or
eliminating jitter in these systems can increase the
schedulability of the system up to 50% more than when
jitter is permitted. Jitter can be prevented by using a
bandwidth-preserving scheduling algorithm such as the
sporadic server. Since this kind of scheduling policy is not
designed for communication networks, in this paper we
describe how to adapt and implement the sporadic server
algorithm for communication networks. Using the sporadic
server both in the processors and networks, we can build
distributed systems with up to 100% utilization of the
CPUs and communication resources, while still
guaranteeing that hard real-time requirements are met.
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1. Introduction

Distributed real-time systems have an increasing
importance in today’s control systems, since low-cost
networking facilities allow the interconnection of multiple
devices and their controllers into a single large system.
This architecture is very frequent in industrial
environments in which the whole plant is controlled from
an integrated system. A high degree of flexibility is
achieved in the configuration of the plant, which becomes

easier to maintain, upgrade, and adapt quickly to evolving
manufacturing needs. Most of the distributed architectures
used currently in industrial automation only have soft real-
time requirements because of the technological limitations
imposed by the interconnection networks and software
technology. However, there is great interest in being able
to handle hard real-time requirements across the entire
system, because this would add more flexibility to the
system and could be used to optimize the productivity
even further.

One problem that is known to affect the
schedulability (i.e., the maximum utilization at which a
distributed system can run while guaranteeing that all hard
real-time requirements are met) is deferred activation or
jitter. The objectives of the work presented in this paper
are to carry out a quantitative study of the effects of jitter
in the schedulability of distributed real-time systems, and
provide solutions to minimize these negative effects. In
Section 2 we discuss the model of the distributed real-time
system that we consider, and we point to the techniques
used to analyze its timing behavior. Section 3 shows the
results of the study of the effects of jitter. Section 4
suggests the use of the sporadic server to eliminate the
negative effects of jitter. Section 5 provides details of the
implementation of this scheduling policy in the
communications subsystem. Finally, Section 6 gives our
conclusions.

2. Distributed system model

The typical architecture in a distributed real-time
control system consists of several processor nodes
interconnected through one or more interconnection
networks. The system’s software is composed of
concurrent tasks that are often statically allocated to
processing nodes, because the effects of dynamic node



allocation are very difficult to predict for hard real-time
systems. Each task may exchange messages with other
tasks in the same node or in different nodes. Messages
exchanged within tasks in different nodes are also
statically allocated to a particular network. Tasks allocated
in the same node may also share data or resources,
through the usual synchronization mechanisms used in
shared memory systems.

Each task in the system is activated by the arrival of
a triggering event that may be generated by the
environment, a timer, or by the arrival of a message from
another task. Many of these events have an associated
timing requirement, such as an end-to-end deadline, which
is the maximum response time allowed from the arrival of
an event to the final completion of the associated
response. Events usually arrive in sequences, and events
with hard deadlines are usually periodic or have a
minimum interarrival time. During the execution of the
response to an event, a sequence of several tasks and
messages may, respectively, need to be executed in one
or more nodes, or transmitted across the networks. Other
timing requirements may also be imposed on individual
actions within the response.

In order to make it possible to predict worst-case
response times, we can schedule the activities in each
processing node by using a priority-based approach that
allows processing activities with shorter deadlines before
(at a higher priority) activities with longer deadlines. One
analysis technique used to assess the schedulability of the
real-time system is called Rate Monotonic Analysis
(RMA) and is well defined for single-processor systems
[4]. The RMA techniques can also be applied to
distributed systems [5][4][10] by modeling each network
as if it were a processor, and each message as if it were
a task. Priorities can be assigned to tasks and messages in
these systems by using an optimization algorithm that tries
to optimize on the ability of the different tasks and
messages to meet their deadlines [8][2]. The analysis
techniques take into account the effect of jitter in the
activation of messages and tasks. The main question that
we address in the following sections is how much does
jitter influence the response time, and how can we prevent
its negative effects.

3. Effects of jitter in the response time

A major problem that appears in distributed systems
is the effect of deferred activation of tasks or messages,
also called jitter. The activation time of messages
generated by the execution of periodic tasks is not
perfectly periodic, but depends on the completion time of
the triggering task, which is variable. The same happens
with tasks activated from messages. In general, jitter in
one task causes delay in the worst-case response time of
lower priority tasks. The analysis of a system with jitter is
addressed by Tindell [10].

Figure 1 shows an example of the importance that
jitter has in the schedulability of a hard real-time
distributed system. The average of the maximum
schedulable utilization of the CPUs and networks is
plotted (with and without jitter) as a function of the ratio
deadlines/periods (D/T) of the different responses to the
events arriving to the system. The graphs are based on an
example system with 50 periodic tasks distributed in 8
processors, and 43 periodic messages sent through three
different networks. As an example, the maximum
utilization for D/T=7 is around 50% if jitter is present, and
almost 100% when jitter is avoided. The same kind of
results is obtained with other examples. We can see that
the difference between the two graphs is larger for longer
end-to-end deadlines. Long deadlines are a very common
situation in distributed systems, where a response that
executes in different resources (CPUs and networks) has
a local deadline of one period in each resource, and thus
a global deadline equal to the period multiplied by the
number of different resources used.

This negative effect on schedulability can be avoided
by calculating the worst-case response time of a task that
triggers either a message or another task, and creating a
high priority agent task that releases the message or task
with jitter only after the worst-case response time of the
original task has elapsed. However, from a software
engineering perspective, this technique is no better than
the traditional cyclic executive approach in which the
software design was constrained by timing requirements.
In this paper we propose the use of the sporadic server
scheduling policy [6] to eliminate the problem of jitter in
the response time, but preserving the software engineering
principle of separation of concerns between logical and
timing requirements.

The sporadic server scheduling policy was designed
to schedule the execution of aperiodic activities in a hard
real-time system. The sporadic server reserves a certain



amount of execution time (the execution capacity) for
processing aperiodic activities at the desired priority level.
When an aperiodic event arrives, it activates the execution
of an aperiodic task. The arrival time of the event is
recorded for future reference. As the task is processed,
the execution time spent is subtracted from the capacity,
until the capacity gets exhausted. At this point, execution
of the aperiodic task is suspended. Each portion of
execution capacity that is consumed is replenished, i.e.,
added back to the available capacity, at a later time. This
time is equal to the instant when the portion of consumed
capacity became active (usually the instant when the
triggering event arrived), plus a fixed time called the
replenishment period. In some implementations, the
aperiodic task can continue executing at a background
priority level.

With the sporadic server policy, the effects of
processing aperiodic activities using a sporadic server can
be no worse than the equivalent effect of a periodic task
with a period equal to the replenishment periodic and an
execution time equal to the initial execution capacity of
the sporadic server. Suppose a periodic task that suffers
from deferred activation. If this task is scheduled using a
sporadic server with a replenishment period equal to the
task’s period and an initial capacity equal to the task’s
worst-case execution time, then its effects on lower
priority tasks cannot be worse than that of an equivalent
periodic task, with no deferred execution. The worst-case
completion time of the task itself is equal to the worst
possible deferral in the activation, plus the worst-case
completion time of the purely periodic task, which is
easily obtained from the usual RMA schedulability
analysis.

4. Optimized scheduling in communication
networks

The sporadic server can be adapted to schedule
message traffic in a network. Most of the currently
available networks and network protocols do not use
priorities, and many have unpredictable worst-case
transmission times. However, some networks have been
used in hard real-time communications, such as TDMA
[10], token rings [7][1], the CAN bus [9], etc. Network
protocols can be implemented with message priorities in
order to increase the message schedulable utilization. For
example, the CAN bus uses the message identifiers as a

means to control access to the bus and also as the message
priorities.

A network layer with priority preemptive messages
can be implemented by dividing messages into fixed-size
packets. Each message carries a network-wide priority,
and all of its packets are assigned the same priority. The
network scheduler has at each node a priority queue of
message packets to be transmitted (Figure 2-a). An
individual packet is non-preemptible (i.e., once its
transmission starts no high priority messages can interrupt
it), but higher priority packets are always inserted before
lower priority packets at the scheduler’s queue. In this
way, high priority tasks do not get blocked by the
transmission of a potentially very long message from a
lower priority activity.

In this priority scheduling context, it is easy to adapt
the sporadic server concept (Figure 2-b). For a given
sequence of messages, the sporadic server parameters are
the initial capacity, or number of packets that may be
transmitted at the normal priority, and the replenishment
period. The network scheduler can transmit as many as the
reserved number of packets at the normal priority. For
each of these packets transmitted, the capacity to transmit
another packet is replenished one replenishment period
after the packet was queued.

In the sporadic server scheduler for tasks, we
associate one sporadic server to each task. However, for
messages there is no such concept as a task, which wraps
multiple responses associated to a particular event
sequence; messages arrive at the communications
subsystem with no apparent relation to other previous
messages. As a consequence, we have defined each
sporadic server scheduler to work over any message of a
particular priority level. This means that a sufficient
number of priorities is needed to provide each message
sequence with a different priority level.

Figure 2-b shows the general structure of a conceptual
sporadic server message scheduler. The sporadic server
has the same interface as the conventional priority
message scheduler (Figure 2-a) with the addition of an
operation to set the attributes of each sporadic server.
These attributes are:

• Initial capacity: number of message packets that may
be transmitted at the normal priority without
restriction

• Replenishment period. Time that has to elapse from
the instant when a message packet was queued until
the server regains the capacity consumed by the



transmission of that packet.

FigureFigure 11. Effects of jitter on the maximum schedulable utilization

For each priority level, and thus for each sporadic
server, there is a per-priority state that is defined by the
following parameters:

• Actual Capacity. At any instant, it is the number of
message packets that may be transmitted at the
associated priority. Initially, the actual capacity is
equal to the initial capacity.

• Activation time. This parameter is set equal to the
current time at two situations: when message packets
of the associated priority are queued to a sporadic
server with an actual capacity greater than zero and
there are no other messages queued; and also when
a replenishment is executed (see description below).

• Used Capacity. Number of message packets
consumed (i.e. set at the associated priority) since the
last recorded activation time.

According to the state of the queue and the value of
the actual capacity, a sporadic server may be in three
different states:

• Idle: No packets are queued for that priority
• Normal: There are packets queued for that priority

and the capacity is greater than zero.

• Background: There are packets queued for that
priority and the capacity is zero.

There is a special object that is responsible for
managing the replenishment operations for all the sporadic
servers, which is called the replenishment manager. It has
a queue of pending replenishments, which are sorted
according to their replenishment time. Each replenishment
operation stored in this queue has the following
information:

• Replenishment time. It is the instant at which a
replenishment expires, i.e. when a portion of
consumed capacity can be added back to the actual
capacity.

• Replenished capacity. It is the capacity to be
replenished, in number of packets.

• Priority: It is the priority level that has to be
replenished.

The operations that may be invoked on the
replenishment manager are:

• Schedule a replenishment. This operation consists of
adding a replenishment to the replenishment queue.
The replenishment time, capacity and priority must be
supplied by the caller.



• Execute pending replenishments. This operation
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consists of extracting from the replenishment queue
all the replenishment operations that have expired
(i.e., whose replenishment time is before or at the
current time). For each replenishment operation, the
replenished capacity is added to the actual capacity of
the associated priority, and the activation time is
recorded. If that actual capacity was zero and the
state of the associated sporadic server was
background, it is switched to normal.

The basic operations of the sporadic server scheduler
are the following:

• Set attributes. The initial capacity and replenishment
period are stored for the requested priority

• Insert. Introduce a message packet into the queue of
the specified priority, in FIFO order. If the state of
the associated sporadic server was idle, it is switched

to normal or background (respectively for capacity>0
or capacity=0). If the state is switched to normal, the
activation time is recorded.

• Extract. Executes the pending replenishments, and
then extracts a message packet from the queue. This
operation is usually invoked from the data link driver,
to select a packet to be transmitted. The queue is
searched for the first highest priority message packet
whose associated server is in the normal state. If
there are no packets in the normal state, the highest
priority packet in the background state is extracted.
Extracting a packet that is in the normal state implies
consuming one unit of actual capacity and, if the
actual capacity becomes zero, or if the sporadic
server becomes idle (because there are no more
packets queued at that priority), scheduling a
replenishment operation. The replenished amount is
equal to the used capacity, and the replenishment



time is set to the recorded activation time plus the
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replenishment period. Extracting a packet that is in
the background state does not consume any capacity
(recall that in this case it is already zero), and can
only be done if no packet is queued in a server in the
normal state.

5. Implementation of hard real-time
communications with optimized scheduling

5.1. Message queues

We have implemented a hard real-time
communication system that uses the sporadic server
scheduling policy, in order to prove its implementability
using current network technology, and also as an
experimental tool with which we can do further research
in this area.

The implementation has been developed in Ada,
using for the transport layer the interprocess
communication interface specified in the POSIX.1b
standard [3]. This interface defines message queue
operations such as send or receive a message, and open or
close a message queue. Each message has an associated
priority that is used to queue the message in priority order.
Although the interface was designed for a single node, we

have implemented it for a distributed system, in a
network-transparent way. This introduces a high degree of
flexibility: Ada tasks communicate with each other without
knowing if the communication is local, or across the
network; this aspect is determined at configuration time,
when an optimization technique may be used to allocate
tasks to nodes and messages to networks. Our
implementation only uses a common extension to the Ada
83 language, which is the CIFO 3.0 suspend/resume
facility (or alternatively dynamic priorities), and it will be
completely portable using the Ada 95 features.

The message priorities are used to implement a
priority-preemptive message scheduler based on the
transmission of bounded-length packets. This hard real-
time message scheduler has been implemented for two
kinds of interconnection networks: A VME bus, in which
shared memory is used to implement the transmission of
messages to and from message queues, and point-to-point
networks such as serial lines (RS-232 and RS-485). Two
or more of these networks can be used in parallel in a
heterogeneous configuration.

5.2. Operations on remote message queues

When the message queue whose use is requested is
in another node, a message is sent to the remote node with



the information that is required to perform the operation.
In some cases, a response message with additional
information is required.Figure 3 shows a high-level model
of operations affecting message queues in remote nodes.
There are two different kinds of operations:

• Synchronous. The task that invokes the operation is
suspended waiting for the response from the remote
node. Once the response arrives, the task may
continue executing. An example of a synchronous
remote operation is receiving a message from a
remote queue.

• Asynchronous. The task invoking the operation does
not suspend, and may continue its execution after the
call. An example is sending a message to a remote
queue.

The communication network is used both for
transmitting application messages, as well as messages
required by the implementation of message queues. For
example, to receive an application message from a remote
queue we must first send a message requesting
transmission. A protocol has been defined to handle all the
different kinds of application and implementation
messages. All these messages are divided into packets for
transmission across a specific network. Several networks
may be used in parallel, but the allocation of message
queues to networks is static, and is determined at
configuration time.

5.3 Implementation of the data link layer

We have implemented a data link layer for two kinds
of networks: point-to-point serial lines, and a VME bus.
Point-to-point line drivers are very easy to implement,
because there is no priority arbiter needed. The line can
only be operated from one single node, and there is no
contention with other nodes. In this case, a conventional
driver (i.e., not based on priorities) may be used.

The implementation of the data link layer is more
complex in networks in which several nodes are able to
access the network at the same time. In these networks,
the contention must be solved based on the priorities of
the messages to be transmitted. For example, in the CAN
bus, the message identifier is used to resolve contention
and effectively acts as a message priority.

We have implemented the data link layer for real-
time communications across a VME bus, which is a very
common bus in industrial applications. In our

implementation, we use shared memory to exchange
messages between the different nodes. Transmission is
achieved by copying the packet into a buffer located in
shared memory. A global data structure is created also in
shared memory to store the information that is required to
implement the priority-based arbitration. Although this
structure is global it does not represent a major contention
problem, because the VME bus itself is already a global
resource shared by all the nodes in the system. Access to
the global control structure is protected through a bus
semaphore. The information stored in this data structure is
the maximum priority of the packets that are ready for
communication at each node, and two boolean parameters
that, respectively, reflect whether there are packets to
transmit, and whether an interrupted node is requested to
transmit or receive a packet. The operation of the bus
driver is as follows:

a) Packet queuing. When a packet is queued for
transmission and the bus is idle, the packet is
transmitted (see b).

b) Packet transmission. The packet is copied to shared
memory, and the receiver node is interrupted to
receive the packet (see c).

c) Reception Interrupt. The transmitter of packet
interrupts the receiver node when the packet is ready
to be retrieved. The receiver node copies the packet
from shared memory, and then checks if more
packets need to be transmitted (see d)

d) Checking for transmission. If there are packets to
transmit, the control data structure is checked to
determine which is the node with the maximum
priority packet. If it is the node executing the
operation, the packet is transmitted (see b); otherwise,
the corresponding node is interrupted for transmission
(see e).

e) Transmission interrupt. When a node is interrupted
for transmission it re-checks for transmission (see d).

In order to execute the above operations, the sporadic
server scheduler has to include an operation to query the
priority of the highest priority packet to be transmitted. In
addition, when a replenishment operation switches the
state of a sporadic server from background to normal, and
the maximum priority of the packets pending for
transmission in that node changes, the global control
structure must be updated accordingly. Finally, the
replenishment manager in the sporadic server scheduler
must be an active object, because replenishment operations



must be carried out at the time when they expire, to
maintain the consistency of the global control structure. In
the sporadic server implementation for point-to-point
networks the replenishment manager was a passive object
(executed in the environment of the task that extracts a
packet from the server) because replenishments only
needed to be executed when a new packet was going to be
transmitted.

5.4. Modeling the real-time performance of
message queues

The performance of this implementation has been
measured to determine the overheads introduced in the
communication by the sporadic server scheduling
algorithm. This overhead is modeled in the real-time
analysis process as extra transmission time, as well as
extra messages. Access to shared resources such as the
message queues or the packet priority queues is protected
with synchronization primitives, and thus is modeled as
blocking time, in the usual way synchronization is treated
in the real-time analysis. The interrupt handlers and the
task that manages the reception of messages have to be
included in the analysis as additional tasks. The sporadic
server for point-to-point communications does not need
any special treatment; we just have to account for a slight
increase in the execution times of the message scheduler
operations (about a 50% increment compared to the
normal priority scheduler). In the VME bus
implementation, the sporadic server introduces a new task,
the replenishment manager, that has to be taken into
account in the analysis. The model of the communications
system that has been developed together with the
measurements of the execution times of each of its actions
can be used to predict the worst-case response time of
any hard real-time distributed application using this
application.

6. Conclusions

In this paper we have shown that the schedulability
penalty introduced by the effects of deferred activation in
hard real-time distributed system is very large. By simply
eliminating jitter we can increase schedulability, up to a
surprising 50% increment. Jitter can be eliminated by
using the sporadic server scheduling mechanism both to

schedule tasks in each of the processing nodes, as well as
messages in each of the networks.

Although the sporadic server was designed as a
scheduling algorithm for processors, in this paper we have
shown that the concept can be easily adapted to schedule
messages in a real-time communication network. We have
implemented this algorithm in Ada using the POSIX.1b
message queue interface which provides for message
priorities. Our implementation allows us to design,
implement, and analyze hard real-time distributed systems
with a high degree of utilization and guaranteeing that all
hard real-time requirements are met.
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