

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 16, 2024

A distributed implementation of a mode switching control program

Holdgaard, Michael; Eriksen, Thomas Juul; Ravn, Anders P.; Andersen, Torben Ole

Published in:
Proceedings of the Seventh Euromicro Workshop on Real-Time Systems

Link to article, DOI:
10.1109/EMWRTS.1995.514307

Publication date:
1995

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Holdgaard, M., Eriksen, T. J., Ravn, A. P., & Andersen, T. O. (1995). A distributed implementation of a mode
switching control program. In Proceedings of the Seventh Euromicro Workshop on Real-Time Systems (pp. 164-
168). IEEE. https://doi.org/10.1109/EMWRTS.1995.514307

https://doi.org/10.1109/EMWRTS.1995.514307
https://orbit.dtu.dk/en/publications/87e93765-7dd2-4b3d-8d60-a8bfc18d722b
https://doi.org/10.1109/EMWRTS.1995.514307

A distributed implementation of a mode switching control program*

Michael Holdgaard, Thomas J. Eriksen, Anders P. Ravnt
Department of Computer Science, bldg. 344

Torben 0. Andersen
Institute of Control Engineering, bldg. 424

Technical University of Denmark
DK-2800 Lyngby, Denmark

Email: aprQid. dtu. dk

Fax: +45 42 88 45 30

Abstract
A distributed implementation of a mode switched

control program for a robot is described. The design of
the control program is given b y a set of real-time au-
tomatons. One of them plans a schedule for switching
between a B e d set of control functions, another dis-
patches the control functions according to the schedule,
and a final one monitors the system for eaceptions that
shall lead to a halt.

The implementation uses four transputers with a
distribution of phases of the automatons over the in-
dividual processors. The main technical result of the
paper is calculations that illustrate how to justify that
the implementation meets real-time constraints.

1 Introduction
A promising paradigm for the control of complex

dynamical systems is to use an automaton that dur-
ing the activation of the system switches between a
number of reasonably simple control algorithms. Such
a system is hybrid [4] because it combines continuous
states of the plant with discrete states of the automa-
ton. The area of hybrid systems is still very young and
raises many questions about the mathematical prop-
erties of such controllers, and also how to implement
them, In order to investigate these problems we have
experimented with hybrid control. The preliminary
results indicates that more precise plant control can
be achieved than with state of the art model based
or adaptive control algorithms alone. The plant in
question is a hydraulically powered dual axes robot (a
continuous path manipulator), as used for instance in
grinding and arc welding. It is an experimental facil-
ity for investigating the problems arising in the digital
control of oil hydraulic systems [3]. The instrumenta-
tion includes sensors for the measurement of various

*Supported by the Danish Technical Research Council under
the CO-design and IMCIA projects.

t Currently Visiting Professor at Institut fur Informatik
und Praktische Mathematik, Christian-Albrechts-Universitat
zu Kiel, Germany.

dynamic variables and some on/off switches. Each
cylinder can yield a static force up to 20 kN. With
maximum pay-load there is still adequate power to
obtain tool center point velocities around 3.5 m/s. In
this situation the centrifugal and Coriolis couplings
as well as the gravity force and change of inertia mo-
ments implies a non-linear and coupled dynamic rela-
tion. Furthermore, the flow pressure relations in the
valves are non-linear: the same control input signal
gives a different response for different arm positions.
These characteristics motivate the hybrid control ap-
proach.

The system is controlled through a network of 4
transputers. Two T225 without floating point directly
connected to interface electronics for each of the two
separate joints, and two T805 processors with floating
point capability, where one is placed in a PC-based
development system.

A design in terms of timed automatons within a
chosen architecture is outlined in Section 2 below. The
challenge is then to implement this architecture as a
collection of communicating processes on the hardware
platform. The approach taken and the resulting imple-
mentation is given in Section 3. The conditions for the
implementation to preserve the real-time constraints
of the design are given in Section 4 that relies on the
general approach explored by the ProCoS project [l].

2 The controller design
The architecture of the implemented system is

based on the concept of a multi-layered control sys-
tem as defined in [6, 51. It consists from top to bottom
(closest to the plant) of the following layers:

Analysis layer: performs dynamic selection of the
control tasks.

Rule layer: determines the control algorithms for a
given task.

1068-3070/95 $4.00 0 1995 IEEE 164

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 16,2010 at 05:40:29 EST from IEEE Xplore. Restrictions apply.

Monitor

Planner

Figure 1: Monitor and Planning Automatons

Process layer: executes the current control algo-
rithm including analog/digital and digital/analog
conversions.

The layers interact through state variables that de-
note functions of time. For discrete states, the rate
of change increases while the complexity of the value
range decreases from top to bottom. Thus, a t the bot-
tom, a state value is a simple scalar representing a set-
point or a measurement, and the states change in the
order of milliseconds. At the rule layer, a state value
is a sequence of control algorithm identifiers and start
and stop times. Such a state will change only in the
order of 100 milliseconds. Finally, the analysis layer
is given full descriptions of desired trajectories and in-
formation about major events that shall lead to a new
control task. This layer also monitors safety-critical
conditions.

The design is given by phase automatons, shown in
Figure 1. The analysis layer is a two phase automa-
ton called Monitor. It changes between a halt and
lhalt phase dependent on whether the safety condi-
tions are satisfied. The rule layer is given by a four
phase Planner automaton, that enters stop whenever
the analysis is in halt, and otherwise proceeds to a
preplanning plan phase from where it either enters a
moue phase when a schedule of control algorithms is
found, or a notfeas phase if none can be found. In the
moue phase, the schedule may be improved dynami-
cally.

3 The implementation
The implemented components are a collection of

Occam processes, distributed over the transputers as
illustrated in Figure 2.

Analysis layer

We have chosen to consider the input trajectory a pa-
rameter for a given "run" of the system. The imple-
mentation of the analysis layer then becomes rather
simple as only the safety critical conditions are to be
monitored and reacted on. The implementation con-
sists of only one process:

Monitor Determines on the basis of data received
from the process layer within every period of sampling
whether or not the robot should be halted. The data
is received on the channel PLANT.ENVIR. In case of
a change in safety critical conditions a flag is commu-
nicated to the rule layer through the channel HALT.

Rule layer

In the implementation of the rule layer we do not con-
sider dynamic improvement of a schedule. The layer
consists of three process:

Coordinator A coordinating process which - by the
use of a state with a value domain directly corre-
sponding to (the names of) the phases - ensures cor-
rect serialization of the phases of Planner. In case a
schedule for the trajectory can be found the sched-
ule is send down to the process layer on the channel
COORD.2.SC. Coordinator reacts on input from the
analysis layer on the channel HALT and in case the
robot needs to be halted, Coordinator interrupts the
possible execution of a schedule in the process layer
on the channel COORD.2.SC.

Planner Determines whether or not a schedule of
control algorithms can be found for the trajectory.
The planning of a schedule may involve iterative time
consuming calculations which is why Planner is a sep-
arate process instead of just a subroutine called from
Coordinator.

User A simple interface to the host system. Reads
the trajectory from a host file and enables the writing
of results to the host. The results are received from
the analysis layer on the channel MON.2. USER.

Process layer

The task of the process layer is to perform the ac-
tual switching between the control algorithms in the
schedule. Thus major considerations in implement-
ing the layer are to decide what is meant by switching
and what information will be required and sufficient
to perform a switch. A schedule is a list of events,
where each event consists ofi

MP Identifier for a control algorithm (a motion plan-

Tact Activation time of motion planner.

Tout Output enabling time (time of actual switch).

ner)

165

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 16,2010 at 05:40:29 EST from IEEE Xplore. Restrictions apply.

Info Trajectory information.

The rationale for operating with the two time points is
firstly that it facilitates for instance the use of so called
learning controllers and secondly that it ensures that
the transmission of data to a motion planner will not
delay the actual switch to it.

The intuitive processing of a schedule is to regard
it as a queue of jobs to be executed:

WHILE TRUE
ALT

coord.2.s~ ? event
enq(event) -- rece ive new event.

NOT empty() & clock ? AFTER Tout()
SEQ

e:= deq()
-- perform ac tua l switching.

where Tout() returns the value of the Tout-field of the
first event in the queue. The actual processing is more
complicated:

Scheduler Scheduler is in charge of maintaining the
event queue. By the use of an Occam-timer Scheduler
makes sure that the activation and switching times
mentioned in the events (the Tact and Tout fields re-
spectively) are respected. At the time of activation
of a motion planner Scheduler transmits data to the
motion planner and notifies Dispatcher. At the time
of output enabling the front event Scheduler deqs the
event and notifies Dispatcher that the motion planner
is to be enabled for output.

Dispatcher Dispatcher maintains an array of flags
- one for each of the motion planners. The flag of a
motion planner is set just when it is active. At sam-
pling time Dispatcher receives measurements from Es-
timator and sends them to the active motion planners.
Dispatcher also maintains the identity of the output
enabled motion planner. Whenever a motion planner
is to be activated or enabled for output Dispatcher
updates its state.

Estimator Receives measured data from the hard-
ware interface to the robot (Lower.- and Upper.DATS)
and sends it on to Dispatcher as well as to the analysis
layer.

Effector Receives calculated data from one of the
MP processes and sends it on to the hardware interface
to the robot (Lower.- and Upper.DATS).

MP A motion planner. An MP is simply a process
that can be activated and en-/disabled for output in
the sense explained earlier on. We do not assume any-
thing else about it, especially not about how an MP
handles the data it receives at activation time and how
the calculations are carried out. Hence an MP could
be anything from a process which constantly outputs a
null value when enabled for output (useful for halting

the robot) to a process which might perform heavy
calculations and on-line change of parameters while
enabled for output.

Lower.-/Upper.DATS The hardware interface to
the robot. These processes are in charge of the sam-
pling rate of the control system, convertin the input
from the A/D channels (i.e. the sensors7 and con-
verting the output to the D/A channels (i.e. the ac-
tuators). Lower./Upper.DATS is concerned with the
lower/upper axis of the robot only. They utilize fa-
cilities provided by the hardware (called DATS') to
synchronize at sampling time.

The configuration of the processes is shown in Fig-
ure 2. The robot is equipped with two actuators and as
shown in the figure we have dedicated a Scheduler and
a Dispatcher to each of the actuators along with each
their set of motion planner (the sets are most likely
not equal). This division has the consequence that
the whole process layer is divided into separate parts,
one for each actuator. Since the interface to the other
layers of the system is simple and well-defined, each
part of the process layer could be placed on separate
transputers and would then be a part of the actuator
more than a part of an overall control system.

4 Checking Real-Time constraints
The critical constraint is the sample time for the

motion planners. If the implementation was simple
with one motion planner on each DATS, the time
would be

where t, is the time to read sensors, t, is the com-
putation time for the control algorithm and t,,, is the
write time to the actuator. Typically, t, and t, is less
than 20ps leaving sample time for computation with
a sampling time in the 1 ms range.

We shall now estimate the corresponding cycle time
for the actual implementation with dynamic schedul-
ing. The estimate is pessimistic and uses some simple
rules as seen in [8, 91.

The cycle time consists of: DATS time (t D A T S) ,
time in Estimator (t E) , in Dispatchers (t D) , and in
planners (t M p) . Furthermore, there is an overhead
because Schedulers and Communicators may interfere

The DATS are physically parallel, but readings are
(t s) .

serialized by Estimator and Effector

tDATS = tr + 2.C + tw + 2 . C

where c is a communication time for a reasonably short
message (lops). The factor 2 is caused by a delay of
c due to the serialization in Estimator and Effector.

The Estimator communicates serially to two Dis-
patchers, and the Monitor. We assume the Monitor
to be the only high priority process on its board, thus
it has no delay.

'Short for: Data Acquisition Transputer Subsystem

166

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 16,2010 at 05:40:29 EST from IEEE Xplore. Restrictions apply.

t E Z 3 . c

Each Dispatcher shall communicate the values to ac-
tive MP's (assume two).

t D = 2 ' c

CO ORD.2.SC PLANT..!CNVIR

/ T805 in PC \

Monitor

C ORD.2.SC

/ T805 in PC \

Lower.DATS TWO T225 F3 Upper.DATS a
Figure 2: The implemented components and the trans-
puter configuration.

The planners do the control algorithm. The output is
to the estimator.

tMp = t c + c

The estimator has been added to the DATS.
Multiprogramming means that if the Estimator,

two Dispatchers and four planners were the only active
processes we would have a cycle time of:

TMIN = t E + 2.tD + 4*tMP + tDATS -
(1 4 . ~ + & + t, + 4 . k)

This would also be the case if these were high pri-
ority processes on the board (t s = 0). Otherwise, we
must assume that the 3 communication and scheduler
processes get their fair turn. Since care has been taken
to make them communicate often by breaking event-
lists into smaller pieces in the interfaces, it is reason-
able to think that the processes are equally. Thus
TMAX is defined by:

processes in cycle
total processes

8
11

TMIN - TMAX =

- - -. TMIN

The calculations above demonstrates that there is
an acceptable overhead (14.c) on the dynamic schedul-
ing, provided that the number of active planners are
kept low (3 tc) , and provided that the scheduler is
given lower priority than the real time tasks. An im-
provement would be to place planners in the DATS
assemblies. This would reduce the computation part
of the overhead to a minimum.

5 Conclusion
We have presented the considerations leading from

a top level mode switching controller architecture to
a distributed implementation. Inevitably, distribution
incurs an overhead in communication, which may be
partly or fully offset by multiprocessing. In order to
check that real-time constraints are met, a calculation
with estimates of communication, computation and
multiprogramming delay times is performed. In [7]
a compilation framework is outlined that allows the
computation times to be checked automatically.

References
[l] J. P. Bowen, M. Franzle, E.-R. Olderog and A.

P. Ravn. Developing Correct Systems, In Proc.
5th Eummicro Workshop on Real- Time Systems,
IEEE Computer Society Press, pages = 176-189,
1993.

167

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 16,2010 at 05:40:29 EST from IEEE Xplore. Restrictions apply.

[2] F. Conrad, P. E. Hansen, and T. 0. Andersen.
Design and evaluation of adaptive controllers for
hydraulic robots. In Proc. 2nd Biennial EUTOP.
Joint Conf. on Engineering Systems Design and
Analysis, volume 8-Part B, 1994. London, Eng-
land, 4-7 July.

[3] F. Conrad et al. On mechanical design and dig-
ital adaptive control of the fast tud-hydralic test
robot manipulator. In ASME WAM’91, volume
91-WA-FPST-9. American Society of Mechanical
Engineering, 1991.

[4] R. L. Grossman, A. Nerode, A. P. Ravn, and
H. Rischel, editors. Hybrid Systems, volume 736
of LNCS, 1993.

From
physical modelling to compositional models of hy-
brid systems. In H. Langmaack, W.-P. de Roever,
and J. Vytopil, editors, Formal Techniques in
Real- Time and Fault- Tolerant Systems, volume
863 of LNCS, pages 583-604, 1994.

[6] Simin Nadjm-Tehrani. Reactive Systems in Phys-
ical Environments. PhD thesis, Dept. Comp. and
Inf. Science, LinkSping University, Sweden, May
1994. LinkSping Studies in Science and Technol-
ogy, Dissertation no. 338.

[7] J. He et al. Provably Correct Systems. In
H. Langmaack, W.-P. de Roever, and J. Vy-
top& editors, Fo~mal Techniques in Real- Time
and Fault- ToleTant Systems, volume 863 of LNCS,
pages 288-335, 1994.

[8] A. P. Ravn, H. Rischel and H. H. Lgvengreen. A
Design Method for Embedded Software Systems.

[5] S. Nadjm-Tehrani and J.-E. Stramberg.

BIT 28, 427-438, 1988.

[9] C. Fidge. Real-Time Refinement. In J. C. P.
Woodcock and P. G . Larsen, editors, FME ’93:
Industrial-Strength Formal Methods, volume 670
of LNCS, pages 314-331, 1993.

168

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 16,2010 at 05:40:29 EST from IEEE Xplore. Restrictions apply.

