Multi-Staged Discrete L oops
for Real-Time Systems

Roland Lieger' and Johann Blieberger
Department of Automation (183/1)
Technical University of Vienna
Treitlstr. 1/4
1040 Vienna, Austria
rlieger/blieb@auto.tuwien.ac.at

Abstract

Inthispaper Multi-Staged Discrete L oopsareintroduced
to narrow the gap between for-loopsand general loops. Al-
though multi-staged discrete loops can be used in situations
that would otherwiserequire general loopsitisstill possible
to determine the maximum number of iterations, which is
trivial for for-loopsbut extremely difficult for general loops.
Thus multi-staged discrete loops form an excellent frame-
work for determining the wor st-case performance of a pro-
gram.

1. Introduction

One of the most important properties of a red-time sys-
tem is, that it must not only supply correct results, but
that the computation must be compl eted within apredefined
deadline. It iswell known that major progress towards the
goad of timeliness can be achieved if thescheduling problem
issolved properly. As most scheduling algorithms(e.g. [3],
[4]) assume that the runtime of atask is known a-priori, the
wor st-case performance of atask playsacrucia role.

Common programming languages support two kinds of
loops:

o for-loops. The loop variableis set to all values within
arange of integers. Starting with the smallest value,
the loop variable is incremented on each iteration of
the loop body until it is outside the range. Some lan-
guages are more flexible and allow some extensions of
this concept, such as starting with the biggest val ue of
therange and decrementing on every iteration or incre-
menting/decrementing by afixed step size.

! Supported by the Austrian Science Foundation (FWF) under grant
P10188-MAT

e genera-loops. The other loop-statements are of avery
general form and are used for implementing |oops that
can not be handled by for-loops. General loops in-
clude while-loops, repeat-loops and loops with exit-
statements. (cf. eg. [2])

Computing the number of iterations for a for-loop is
trivia. For example the following for-loop is executed ex-
actly [N/S Jtimes.

For 1:=1 To N By S Do
Loop- Body
End;

Analyzing general loopsisamuch moredifficult task. In
order to avoid the problems connected with estimating the
worst-case performance of genera loops some researchers
simply forbid genera loops and force the programmer into
supplying a constant upper bound for the number of itera-
tionsthus actualy transforming the general loop into afor-
loop with an additional exit-statement, or they directly re-
quire a constant time bound within which the loop has to
complete (e.g [6]). Other researchers attempt to do static
and dynamic program path analysis using regular expres-
sions(e.g. [9]).

In [1] the concept of discrete loopsisintroduced. Like a
for-loopadiscreteloop usesaloop variablethat isincremen-
ted/decremented on every iteration of the loop until it does
no longer fall into a given range. With a common for-loop
afixed value (usually one) is added to the loop variable on
each pass. Discrete loops permit the use of awide range of
functionsfor the computation of the next value of the loop-
variable. Nevertheless tight bounds on the number of itera-
tions can be computed at compile-time.

One limitation of discrete loopsis that the next value of
the loop variable can only be based on its current value. It
is not possible to refer to past values. This problem is re-
solved by the use of multi-staged discrete loops, that will be



introduced in this paper.

2. General Notation

Let N denote the natural numbers {1,2,3,4,5,...} and
Z bethesetof integers{...—3,—2,-1,0,1,2,3,.. }.

A n-dimensional vector (ay, as, . . ., a,) of natural num-
bers is written as [a,]. A constant n-dimensional vector
(¢,c, ..., c) iswrittenas [c],. We define some binary rela-
tionson n-dimensional vectors

ap = by, forall]gkgn
ap < bg fOfa”lSk’STL
[an] < [bn] and [an] # [br]

[an] = [bn] =
[an] < [bn] <
[an] < [bn] <=
Note that we are only comparing vectors of equal length.
Notefurther that thereare vectors|[a,], [b,] such that neither
[an] < [ba] MOF [an] > [ba] (€0. [az] = (2,5), [b2] =
(3,4)).

We will see that it can be useful to base the comparison
of two vectors on their trailing ends. Thus we define for all
1<d<n
[an] =4 [bn]
[an] <a [bn]
[an] <4 [bn]

ar =b fordln—d+1<k<n
ar <b, fordln—-d+1<k<n
[an] <a [bn] and [an] #4 [bn] -

For d = n these definitions are equivalent to the origina
relations on vectors. Obviously [ax] = [bx] = [ax] =4 [bk]
and [ax] < [bx] = [ax] <a [bx].

Let (ax) denote a sequence of natural numbers (i.e. a
functionN — N).

We write f*) : N¥ — N for a k-dimensional function
and (F) = (f("), (), .. ) for asequence of functions.

(F)(z) = (ax) such that

aq = Z

agyr = fEN(a]) foral k41> 1.
3. Some Interesting Examples

Examplel Catalan Numbers

a1 = 1
k=2
2a_1 + g a;Qp_1_;

i=1

ap = forall k > 1

Evaluating for a few elements of [ax] we get
[ax] = [1,2,5,14,42,132,429,1430, .. ].

Example2 Fibonacci Numbers

a; = 1
asg = fl([al]) =2
ap = ax_1+ag_o foralk>2

Computing some Fibonacci Numbers we see that the vector
[ax] beginswith[1,2,3,5,8,13,21,34,55, .. ].

Example3 Factorial Numbers k!

a1 = 1

ay = k- ap_y foralk>1
Thus the first few dements of [ax] are

[1,2,6,24,120,720, .. ].

Example4
a; = 1
1 Qg1
ap = 14 ay_ forallk > 1
= e e

Where [«] denotesthe smallest integer n withn > z. This
formula produces the sequence
[ar] = [1, 2,2, 3,3,3, 4,4,4,4, 5,..].

4. Multi-Staged Discrete L oops

Definition 4.1 (Multi-Staged Discrete Loops) A multi-
staged discrete loop (MSDL) £ is characterized by a
value N € N (producing a range [1...N]) and a fi-
nite number of sequences of successor functions (F;),
1 <1 < e. Furthermore we require a set of starting values
S=]s...5].

Definition 4.2 (Pathsin MSDL) Let £ beaMSDL. A path
P through £ is defined by a starting value s € S and a se-
quence of successor functions (£, f),...) where 1 <
i; < eforall j > 1. The vector [a,] of traveled places
along the path P istherefore

the startingvalues € S
forsomei, : 1 <ip <e
forallk4+1>1.

aq = 8 -
arpr = 0 ([ar))

Let K bethe set of all possible pathsP.

Definition 4.3 (History Depth) Let D(f*)) = max(j :
ak4+1—; isaccessed to compute a1 = ) ([ax]). If there
existssaC' € Nsuchthat D(f*)) < C for all k € N, then
D(F) = maxg > D(f*)) iscalled thehistory depth of (F).
Otherwise we define D(F) = oo.

The history depth of a MSDL £ is defined asD (L) =
maxlSZ-SeD(Fi).

Definition 4.4 (M onotonic Functions, Sequences, L oops)
We call f*) a monotonic function if [a;] < [bx] =
FE) ([ag]) < f&)([bg]). Itis called a strictly monotonic
function if [ax] < [bx] = FE(ax]) < FE (b))



and drictly d-monotonic if it is monotonic and
[ar] <a [bx] = f®(ax]) < f*)([bx]). Note that
strict monotonicityisa special case of strict d-monotonicity
(i.e d=k).

Smilarly (F) = (f(l),f@),f(f’) ..) iscalled a mono-
tonic sequence of functionsif f*) is monotomcfor al k e
N. AMSDL iscalled monotonicifall (F;),1 < i < e are
monotonic.

An analogousdefinitionisused for strictly (d-)monotonic
MSDL.

Definition 4.5 (Length of a Path) Let [ax] be a path P of
a gtrictly monotonic multi-staged discrete loop, and [ bethe
smallest value with a; > N, then we call / the length of P
and writelen(?) = . Since we require strict monotonicity
such al will alwaysexist.

Theorem 4.1 When checking whether a function f(¥) is
monotonic or not, it is sufficient to look at the monotonicity
inthelast d = D(f*)) dements of the argument, i.e.

(las] < [B) = F9) ([an]) < FO(])) =
= (lo] <a bl = 1O ([a]) < £9(104)
for any d > D(f*)).

Proof. If d = k then [ax] <4 [bk] < [ax] < [_ ] and the
theoremistrivia. Thusthecase k > d > D(f )) remains
to be proved:

< Aslay] < [be] = [ar] <a [bs] and [ax] <a [bk]

44

F8)(ag]) < F8([be]) we have [ax] < [by]
) ([ax]) < £ ([bx])

= Let [ak] <d [bk] where [ak] =
(al,...,ak_d,ak_(d_1),...,ak_l,ak) and [bk] =

(bl,-~-,bk—d,bk_(d_1),~~-,bk—1,bk)- We now con-
Sructa[b;c] = ((11, . --;ak—d;bk—(d—U; .. -,bk—l,bk)-
Obvioudy we have [ar] <4 [b] and as the first
k — d eements of [ax] and [b;] are the same
dso [ax] < [b,]. By definition of D(f*)) we
know that f*)([bx]) = f*)([b,]). All together
we now have [ax] <4 [bx] = [ak] _g [bL.],
@] < B S W) < O(E) ©
well as fEN(]) = fR)([bg]) and therefore
[ax] <a [be] = f®)([ax]) < FF)([be]). O

Definition 4.6 (Complete, Partial and Bounded History)
Depending on D (L) various forms of MSDL can be distin-
guished. If D(L) = 1 (e.g. Example 3- Factorial Numbers)
we have a (plain, single staged) discrete loop. This case as
been studied extensively in [1], and will not be treated in
thispaper. If 1 < D(L) < oo (e.g. Example 2 - Fibonacci
Numbers) we call £ a MSDL with bounded history.

Otherwise (L) = oo. I D(f*)) = k for all k (eg.
Example 1 - Catalan Numbers) thanwe say £ uses the com-
pletehistory. Otherwise(e.g. Example 4) wespeak of partial
histories.

5. Iteration Boundsfor MSDL

Definition 5.1 (Min./Max. Successor and Path) Let

L be a monotonic MSDL and i([ax]) be deflned by
i las)) = maxicice £ ([]). Then 00 1 (i)
is called the maximum successor and fZ_, (2] one of the
maximum successor functions of [ax]. This leads to the
definition of a maximum path P along [ax]

a = §

g+l = f—-(k) A[@x]).

Also select i([az]) such that f.(k) pllad) =
miny ;<. f*)([ax]). Then fz o ([ax]) is called the
minimum  successor and f i([a]) @ MINiMUM successor
function of [ax]. The minimum pthP along [ay] isdefined
by

a = s

Titoay las])-

A 41

Lemmab.1 Let £ be a monotonic multi-stage discrete
loop, then we know for any path P € K that

P<P<P orequvaently [ax] < [ax] < [az].

Proof. Weonly show P < P. Theother haf of the proof
isanaogous.

e k = 1: Obvioudy we have[a;] = (a;) =
((11) = [a1]

e k > 1: By induction we know that [ax—1] < [ar_1].

(5) < (3 =

Now

ap = fj(k_l)([a,c 1)) forsomej:1<j<e
< 5 (@)
< max [ (@) = @0

1<i<e
Theorem 5.1 Let £ be a monotonic MSDL and let
¥ ([ax]) > ax forall 1 <i < e,k € Nthen

1. the multi-staged discrete loop compl etes,

2. 1:=len(P)

= minpek Ien(77),



3. [ :=len(P) = maxpex len(P).

Proof. We will elaborate only the proof of the first two
properties, and just hint theideato the proof of (3), whichis
quitesimilar to that of (2).

1. By requirement we have apy1 = fi(k)[ak] > ay, for
al k € N. Asthe g, are elements of N there are only
a finite number of elements (exactly: V) in the range
[1...N] theloop must complete after at most IV itera
tions.

2. By definition of [ := len(P) (cf. Def. 4.5) it is ob-
viousthat @_7 < N < @. InLemma 5.1 we have
shownP < Pforal P € K. Thusa;_y <@y < N
and hence len(P) > [ — 1, i.e, len(P) > [ for dl
P € K. Thusminpex len(P) > . AsP € K we
aso know that minpex len(P) < len(P) = L. Thus
L > minpex Ien(P) >1lorl =minpex Ien(P)

3. Similar the the above case we have N < a; < a; and
thuslen(P) < 1. O

Theorem 5.1 requires that f*)([ax]) > aj. Sometimes
an aternative conditionis easier to prove.

Theorem 5.2 If (F) isstrictly d- monotonicfor somed > 1
and f%) ([1]x) > 1 for all k, then £ ([ax]) > ax.

Proof. Inductionon ay:

e ap = 1: [ak] = (al,a2,...,ak_1,1),aj > 1 for all
1 < j < k. Thus[ag] > [1]g. As(F) isstrictly d-
monotonic f) ([ax]) > F*)([1]x) and f&) ([1]x) > 1
we have f*) ([ax]) > 1 = ax.

* aj > 1t Assume tha we have aready
shown f*)([a}]) > aj, for al [a}] =

(a1,a9,...,ak-1,a5),1 < a < ag. By defini-
tion we know that [ak] >1 [a;] (= [ax] >a [a]
and therefore f(k ([ak]) > f(’”([ 1) e

FO(ae]) = fS(ap]) + 1 > a, + 1. Using
the special case a;, = a; — 1 it is obvious that
F®)([ar]) > ap. O

Remark 5.1 Note that the above condition not only
provides f)([ax]) > ax but aso f*)([ag]) >
Z?:k—(d—l)(aj -+1= Z?:k—(d—l) aj —d+1.

For d = 1 thisisequivalent to the original £*) ([ax]) > ax
or ag+1 > ag + 1. Mentioningthat a; > 1 it is obvious
that ay, > k.

For d = 2 thissumexpandsto f*) ([ax]) > aj + ap_1 — 1
or ag41 > ap + ak_1. Using the smallest possible values
a; = 1 and ay = 2 itiseasy to showthat a; > Fib(k), the
kth Fibonacci Number.

In the extreme case of d = k (i.e., (F) isstrictly monotonic)

we have £ ([ax]) > Y25_(a; — 1) + 2. Together with
a; > 1thismeansthat a, > 252 + 1.

6. Number of lterationsof a MSDL

Note that P isindependent of any run-time parameters.
Thusiit can effectively be constructed during compile-time
making it simple to obtain /. As discussed in Theorem 5.1
1 is the upper bound for the length of any path through the
MSDL. Obviously the length of a path through a MSDL is
the same as the number of iterationsit takesto complete the
loop. Thus? is an upper bound for the number of iterations
of the MSDL.

Using !, itis easy to compute maximum amounts of pro-
cessing time required to execute the loop.

An upper bound for the time required to process theloop
issimply obtained by multiplying! with an upper bound for
the time required to execute a single pass through the loop
body.

Obvioudly it is possible, that the loop body does itsdlf
contain loops. Note that this does not create any additional
problem, because the same concepts that were used on the
outer loop can aso be used on theinner loops. Asthere has
to be an innermost loop, thisrecursion is bound to end.

Thestack space required to hold the vector [a] iSpropor-
tiona tok. Therequirementsof other variables, e.g. tempor-
ary internal variables to store intermediate results can eas-
ily be computed at compiletime. Thus the worst case stack
usage isthe sum of the space needed for auxiliary variables
plus! times the space needed for anatural .

Frequently D(F) < [ making it inefficient to store the
entire history. Mgjor reductions of space consumptions can
be obtained by keeping only thelast D(F') elements (e.g. in
acycliclist).

7. Examples of useful iteration functions

Only avery limited set of iteration functionsis actually
used in actual programming practice.
Probably the most frequently used type of iteration func-
tionis
» B*) fork < D(F)
(k) — . » .
Jo ) _{ ST e Wap_; 4+ 0®) otherwise

Wherecg.k) € N, B®¥) ¢ N, B&+1) » Bk) gnd

C® e z,0%) > D(F)+1- 20 B (p(F) - j).
Example 2 (Fibonacci Numbers) uses thlstype of recursion
function. _

It is not necessary that the values of cg.'” be the same in

dl f(*) independent of & (even so thisisthe most common



situation). For instance Example 3 (Factorial Numbers) uses
anew valuefor cék ) on every iteration.

Positive integral polynomials offer a wide field of pos-
sibleiteration functions.

» Bk fork < D(F)
(k) A = j ’
S5 (ax]) { ST e ijz(g)—l ai’jj +C otherwise

where C, B(F) € N constant, B*+1) > BK) ¢, d; ; € N
independent of £.

Probably the most frequently used type of (non-linear)
polynomial sare convolutions, asthey are used in Example 1
(Catalan Numbers).

_ Bk) ‘ fork < D(F)
Flar)) = § S cjar—jon—p(ry—j-1) + C
otherwise

where B() ¢ N congtant, B*+1) > B*) ¢, € Nin-
dependent of £ and C' € Z constant, C' > D(F) + 1 —
S e g (D(F) = j).

All the above types of iteration functions are guaranteed
to satisfy the prerequisites of Theorem 5.1.

Of course, this brief list of function types can not cover
all possihilities, but it gives a good overview of those types
that are frequently encountered in every-day use.

It is easy to extend the syntax of any common program-
ming language to accommodate MSDLs. If only the itera-
tion functionsof the above type are permitted then the com-
piler can easily check at compiletimewhether the codewrit-
ten by the user contains valid functions. If the syntax of
the programming language ensures that the program can use
only thegiveniterationfunctionsto modify theloopvariable
(i.e. side effects of non-loop-related statements that change
the loop variable are prohibited) then the upper bound for
thenumber of iterationscan be guaranteed without incurring
any runtime overhead.

8. Conclusion

In this paper we have introduced multi-staged discrete
loops and demonstrated how they help to bridge the gap
between for-loopsand generd-loops. SinceMSDLsare well
suited for determining bounds on the number of iterations
they form an excellent frame-work for estimating theworst-
case execution time of area-time program.

Obviously discrete loops are a specia case of MSDLs
where D(L) := 1. Asshownin[1] for-loopsand loopswith
a bound for the maximum runtime can also be expressed
in terms of discrete loops and therefore also in terms of
MSDLs, proving MSDL avery powerful, yet smpletool.

Nevertheless somework remainsto be doneinthefuture.
Thefollowinglistsafew items:

o Additional typesof useful iteration functionscan bein-
cluded.

e We can not yet handle loops that only eventudly in-
crease theloop variable, but do not do so on every pass
through the loop body (e.g. Example 4).

e The compile time computations should be done auto-
matically. Implementing the necessary toolsis part of
Project WOOP currently being performed at the Tech-
nica University of Vienna,

References

[1] J. Blieberger. Discrete loops and worst case performance.
Computer Languages, 20(3):193-212, 1994.

[2] Alice E. Fischer and Frances S. Grodzinsky. The Anatomy of
Programming Languages. Pretience Hall, Englewood Cliff,
New Jersey 07632, 1993.

[3] C.LiuandJ. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment. Journal of the
ACM, 20(1):46-61, 1973.

[4] A. K. Mok. The design of real-time programming systems
based on process models. In Proceedings of the |EEE Real
Time Systems Symposium, pages 5-16, Austin, Texas, 1984.
|EEE Press.

[5] C.Y.Park. Predicting program execution times by analyzing
static and dynamic program paths. The Journal of Real-Time
Systems, 5:31-62, 1993.

[6] P.PuschnerandC. Koza. Calculating the maximum execution
time of real-time programs. The Journal of Real-Time Sys-
tems, 1:159-176, 1989.



