
Multi-Staged Discrete Loops
for Real-Time Systems

Roland Lieger
�

and Johann Blieberger
Department of Automation (183/1)

Technical University of Vienna
Treitlstr. 1/4

1040 Vienna, Austria
rlieger/blieb@auto.tuwien.ac.at

Abstract

In this paper Multi-Staged Discrete Loops are introduced
to narrow the gap between for-loops and general loops. Al-
though multi-staged discrete loops can be used in situations
that would otherwise require general loops it is still possible
to determine the maximum number of iterations, which is
trivial for for-loops but extremely difficult for general loops.
Thus multi-staged discrete loops form an excellent frame-
work for determining the worst-case performance of a pro-
gram.

1. Introduction

One of the most important properties of a real-time sys-
tem is, that it must not only supply correct results, but
that the computation must be completed within a predefined
deadline. It is well known that major progress towards the
goal of timeliness can be achieved if the scheduling problem
is solved properly. As most scheduling algorithms (e.g. [3],
[4]) assume that the runtime of a task is known a-priori, the
worst-case performance of a task plays a crucial role.

Common programming languages support two kinds of
loops:

� for-loops: The loop variable is set to all values within
a range of integers. Starting with the smallest value,
the loop variable is incremented on each iteration of
the loop body until it is outside the range. Some lan-
guages are more flexible and allow some extensions of
this concept, such as starting with the biggest value of
the range and decrementing on every iteration or incre-
menting/decrementing by a fixed step size.

�
Supported by the Austrian Science Foundation (FWF) under grant

P10188-MAT

� general-loops: The other loop-statements are of a very
general form and are used for implementing loops that
can not be handled by for-loops. General loops in-
clude while-loops, repeat-loops and loops with exit-
statements. (cf. e.g. [2])

Computing the number of iterations for a for-loop is
trivial. For example the following for-loop is executed ex-
actly

�����	��

times.

For I:=1 To N By S Do
Loop-Body

End;

Analyzing general loops is a much more difficult task. In
order to avoid the problems connected with estimating the
worst-case performance of general loops some researchers
simply forbid general loops and force the programmer into
supplying a constant upper bound for the number of itera-
tions thus actually transforming the general loop into a for-
loop with an additional exit-statement, or they directly re-
quire a constant time bound within which the loop has to
complete (e.g [6]). Other researchers attempt to do static
and dynamic program path analysis using regular expres-
sions (e.g. [5]).

In [1] the concept of discrete loops is introduced. Like a
for-loopa discrete loop uses a loop variable that is incremen-
ted/decremented on every iteration of the loop until it does
no longer fall into a given range. With a common for-loop
a fixed value (usually one) is added to the loop variable on
each pass. Discrete loops permit the use of a wide range of
functions for the computation of the next value of the loop-
variable. Nevertheless tight bounds on the number of itera-
tions can be computed at compile-time.

One limitation of discrete loops is that the next value of
the loop variable can only be based on its current value. It
is not possible to refer to past values. This problem is re-
solved by the use of multi-staged discrete loops, that will be

introduced in this paper.

2. General Notation

Let N denote the natural numbers �������������
	�������
�
�
 � and
Z be the set of integers ��
�
�
��������������������������
��������
�
�
 � .

A � -dimensional vector ����� ����!"��
�

�����#�$ of natural num-
bers is written as % � #�& . A constant � -dimensional vector��'"��'"��

�

��'�$ is written as %(' &)# . We define some binary rela-
tions on n-dimensional vectors% � #�&+* %(, #�&.-0/ ��1 * ,�1 for all ��243524�% � #�& 26%(, #�&.-0/ ��1728,�1 for all ��243524�% � #�&:9 %(, #�&.-0/ %(� #�& 2;%(, #�& and % � #�&=<* %(, #�&
Note that we are only comparing vectors of equal length.
Note further that there are vectors %(� #�& , %(, #�& such that neither% � #�& 2>% , #�& nor % � #�&@? %(, #A& (e.g. %(� !B&C* ��������$, % , !B&D*�����B	�$).

We will see that it can be useful to base the comparison
of two vectors on their trailing ends. Thus we define for all��24E724�% ��# &F*HG %(,�# &.-0/ � 1 * , 1 for all �D�IEKJL�M243024�% � #�& 2 G %(, #�&.-0/ ��172N,�1 for all �D�IEKJL�M243024�% ��# &O9�G %(,�# &.-0/ % ��# & 2 G %(,�# & and %(��# &=<*HG %(,�# &

For E * � these definitions are equivalent to the original
relations on vectors. Obviously %(� 1 &O* % , 1 &F/ %(� 1 &F*HG %(, 1 &
and %(� 1 & 2P%(, 1 &F/ %(� 1 & 2 G %(, 1 & .

Let �Q� 1 $ denote a sequence of natural numbers (i.e. a
function N R N).

We write SUT 1"V0W N 1 R N for a 3 -dimensional function
and �QX�$ * �QSUT � V ��S+T ! V ��

�
 $ for a sequence of functions.��X�$���Y�$ * ����1�$ such that� �Z* Y� 1\[� * S T 1"V �
%(� 1 & $ for all 3HJL�M];��

3. Some Interesting Examples

Example 1 Catalan Numbers� �Z* �� 1 * ��� 1�^ �UJ 1�^ !_ ` a � � ` � 1�^ � ^ ` for all 3D]P�
Evaluating for a few elements of %(��1 & we get% ��1 &F* %b��������������	c�B	������������d	���e�����	��"����
�
�
 & .
Example 2 Fibonacci Numbers��� * �� !f* S � �
%(� �d& $ * �� 1 * � 1�^ �OJ�� 1�^ ! for all 30]4�

Computing some Fibonacci Numbers we see that the vector%(� 1 & begins with %b����������������g���� �������"���"	���������
�

 & .
Example 3 Factorial Numbers 3+h� �Z* ���1 * 37i ��1�^ � for all 3D]P�
Thus the first few elements of %(��1 & are%b��������j����"	c��� ������k��"����
�
�
 & .
Example 4��� * �� 1 * l ���1�^ � �B�mJNn�o�p�q_ r a � � 1�^ r $ts for all 35]P�
Where

� Y
 denotes the smallest integer � with � ? Y . This
formula produces the sequence%(��1 &+* %b���5�������u�����������0	c�B	c�B	c�B	c�7����

�
 & .
4. Multi-Staged Discrete Loops

Definition 4.1 (Multi-Staged Discrete Loops) A multi-
staged discrete loop (MSDL) v is characterized by a
value

� w
N (producing a range %x�y

�
 � &) and a fi-

nite number of sequences of successor functions ��X ` $,��26zy26{ . Furthermore we require a set of starting values| * %(}
�

 } & .
Definition 4.2 (Paths in MSDL) Let v be a MSDL. A path~

through v is defined by a starting value } w |
and a se-

quence of successor functions �QS T � V`
q ��S T ! V`�� ��
�

 $ where �P2z��L2�{ for all � ? � . The vector %(� 1 & of traveled places

along the path
~

is therefore��� * } the starting value } w |��1"[�Z* S T 1"V`
o �
%(��1 & $ for some z)1 W �M28z)1728{

for all 3HJL��]P��

Let � be the set of all possible paths

~
.

Definition 4.3 (History Depth) Let �C��S:T 1\V $ *��u�A� �b� W��1\[� ^ � is accessed to compute ��1\[�K* S+T 1\V �B% ��1 & $. If there
exists a � w

N such that �C�QSOT 1"V $ 9 � for all 3 w
N, then�C��X�$ *��u�"� 1�� ������SUT 1\V $ is called the history depth of �QX�$.

Otherwise we define ����X�$ *L� .
The history depth of a MSDL v is defined as ����vK$ *�u�"� ��� ` �+���C�QX ` $.

Definition 4.4 (Monotonic Functions, Sequences, Loops)
We call SUT 1\V a monotonic function if % � 1 & 2 %(, 1 &�/S+T 1\V �B% � 1 & $I2�S+T 1"V �B%(, 1 & $. It is called a strictly monotonic
function if %(��1 &�9 % ,�1 &�/ SUT 1"V �
%(��1 & $ 9 S+T 1\V �B% ,�1 & $

and strictly d-monotonic if it is monotonic and% � 1 & 9�G %(, 1 & / S+T 1"V �
%(� 1 & $ 9 SUT 1"V �
%(, 1 & $. Note that
strict monotonicity is a special case of strict d-monotonicity
(i.e. E * 3).

Similarly ��X�$ * ��S T � V ��S T ! V ��S T � V ��

�
 $ is called a mono-
tonic sequence of functions if SOT 1\V is monotonic for all 3 w
N. A MSDL is called monotonic if all ��X ` $, �72 z 2 { are
monotonic.

An analogousdefinition is used for strictly (d-)monotonic
MSDL.

Definition 4.5 (Length of a Path) Let %(� 1 & be a path
~

of
a strictly monotonic multi-staged discrete loop, and

�
be the

smallest value with ���M] �
, then we call

�
the length of

~
and write len � ~ $ * �

. Since we require strict monotonicity
such a

�
will always exist.

Theorem 4.1 When checking whether a function S:T 1"V is
monotonic or not, it is sufficient to look at the monotonicity
in the last E * �C�QSUT 1"V $ elements of the argument, i.e.� %(��1 & 2;%(,�1 &+/ S T 1\V �B% ��1 & $ 2NS T 1"V �B% ,�1 & $�� -0/-0/ � %(� 1 & 2 G %(, 1 &F/ S T 1"V �
%(� 1 & $m24S T 1\V �B%(, 1 & $ �

for any E ? �C��SOT 1\V $�

Proof. If E * 3 then % ��1 & 2 G %(,�1 &	� %(��1 & 2 %(,�1 & and the

theorem is trivial. Thus the case 3�]6E ? �C��S:T 1"V $ remains
to be proved:- As %(��1 & 2 %(,�1 &�/ %(��1 & 2 G % ,�1 & and %(��1 & 2 G %(,�1 & /S+T 1\V �B% ��1 & $ 2 S+T 1\V �B% ,�1 & $ we have %(��1 & 2 % ,�1 & /S+T 1\V �B% ��1 & $y28SUT 1"V �
%(,�1 & $./ Let %(��1 & 2 G %(,�1 & where %(��1 & *��� � �
�

B����1�^ G ��� 1�^ T G ^ � V �
�

�����1�^ � ����1�$ and %(,�1 & *��, � �
�

���,�1�^ G ��, 1�^ T G ^ � V ��
�

���,�1�^ � ��,�1�$. We now con-

struct a %(,�
1 &F* ��� � ��
�

�����1�^ G ��, 1�^ T G ^ � V �
�
�
���,�1�^ � ��,�1�$.
Obviously we have %(��1 & 2 G %(,�
1 & and as the first3 � E elements of %(��1 & and % ,
1 & are the same
also %(��1 & 2 %(,�
1 & . By definition of �C�QSUT 1\V $ we
know that SUT 1"V �
%(,�1 & $ * SUT 1"V �
%(,�
1 & $. All together
we now have %(��1 & 2 G %(,�1 &>/ % ��1 & 2 %(,�
1 & ,%(��1 & 2 %(,�
1 & / S+T 1"V �
%(��1 & $ 2 SUT 1"V �
%(,�
1 & $ as
well as SUT 1"V �
%(,�
1 & $ * SUT 1"V �
%(,�1 & $ and therefore%(� 1 & 2 G %(, 1 &F/ SUT 1"V �
%(� 1 & $y24S+T 1\V �B% , 1 & $.

Definition 4.6 (Complete, Partial and Bounded History)
Depending on �C��vK$ various forms of MSDL can be distin-
guished. If �C�)v $ * � (e.g. Example 3 - Factorial Numbers)
we have a (plain, single staged) discrete loop. This case as
been studied extensively in [1], and will not be treated in
this paper. If � 9 ����vK$ 9 � (e.g. Example 2 - Fibonacci
Numbers) we call v a MSDL with bounded history.

Otherwise �C�)v $ *�� . If �C��S T 1"V $ * 3 for all 3 (e.g.
Example 1 - Catalan Numbers) than we say v uses the com-
plete history. Otherwise (e.g. Example 4) we speak of partial
histories.

5. Iteration Bounds for MSDL

Definition 5.1 (Min./Max. Successor and Path) Letv be a monotonic MSDL and z��
%(��1 & $ be defined byS T 1\V` T�
 n o�� V �
%(��1 & $ * �u�"����� ` �F� S T 1"V` �
%(��1 & $. Then S T 1"V` T�
 n o�� V �
%(��1 & $is called the maximum successor and S T 1"V` T�
 n�o � V one of the

maximum successor functions of %(��1 & . This leads to the
definition of a maximum path

~
along % ��1 &��� * }� 1\[� * S T 1\V` T�
 n�o � V �
% � 1 & $�

Also select z �
%(� 1 & $ such that S T 1\V` T�
 n�o � V �B% � 1 & $ *����� ��� ` �+�cS T 1"V` �
%(� 1 & $. Then S T 1\V` T�
 n�o � V �
%(� 1 & $ is called the

minimum successor and S T 1\V` T�
 n�o � V a minimum successor
function of %(��1 & . The minimum path

~
along %(��1 & is defined

by ��� * }� 1\[� * S T 1\V` T�
 n�o � V �
%(� 1 & $�

Lemma 5.1 Let v be a monotonic multi-stage discrete
loop, then we know for any path

~ w � that~ 2 ~ 2 ~
or equivalently %(��1 & 2;%(��1 & 2;% ��1 &

Proof. We only show
~ 2 ~

. The other half of the proof
is analogous.

� 3 * � : Obviously we have %(� �B&F* ��� � $ * ��}�$ 2;� } $ *� � � $ * % � �d&
� 3] � : By induction we know that %(��1�^ �d& 2 % ��1�^ �Q& .

Now� 1 * S T 1�^ � V� �
%(� 1�^ � & $ for some � W ��2 � 24{2 S T 1�^ � V� �
% ��1�^ �d& $2 �u�"���� ` �F� S T 1�^ � V` �
% ��1�^ �d& $ * ��1�

Theorem 5.1 Let v be a monotonic MSDL and letS T 1\V` �B% ��1 & $y]8��1 for all �M24z 24{���3 w

N then

1. the multi-staged discrete loop completes,

2.
� W * len � ~ $ *������������ len � ~ $��

3.
� W * len � ~ $ *��u�"� ����� len � ~ $�

Proof. We will elaborate only the proof of the first two
properties, and just hint the idea to the proof of (3), which is
quite similar to that of (2).

1. By requirement we have ��1\[� * S T 1"V` %(��1 &]���1 for
all 3 w

N. As the ��1 are elements of N there are only
a finite number of elements (exactly:

�
) in the range%b�m

�
 � & the loop must complete after at most

�
itera-

tions.

2. By definition of
� W * len � ~ $ (cf. Def. 4.5) it is ob-

vious that � � ^ � 2 � 9 � � . In Lemma 5.1 we have
shown

~ 2 ~
for all

~ w � . Thus � � ^ �K2 � � ^ ��2 �

and hence len � ~ $8] � � � , i.e., len � ~ $? �
for all~ w � . Thus ����� � � � len � ~ $? �

. As
~ w � we

also know that ����������� len � ~ $52 len � ~ $ * �
. Thus� ?������ ����� len � ~ $? �

or
� *������������ len � ~ $.

3. Similar the the above case we have
� 9 � � 2 � � and

thus len � ~ $ 2 �
.

Theorem 5.1 requires that SOT 1"V �
%(� 1 & $�] � 1 . Sometimes
an alternative condition is easier to prove.

Theorem 5.2 If ��X�$ is strictly d-monotonic for some E ? �
and SUT 1"V �B%x� & 1\$]L� for all 3 , then SUT 1"V �
%(��1 & $]N��1 .

Proof. Induction on � 1 :

� � 1 * � : % � 1 & * �����\����!"��

�
���� 1�^ ��� ��$������ ? � for all� 2 � 9 3 . Thus %(��1 &�? %x� & 1 . As ��X�$ is strictly d-
monotonic SUT 1"V �
%(��1 & $? SUT 1"V �
%b� & 1�$ and SUT 1"V �B%b� & 1\$]6�
we have SUT 1"V �B%(��1 & $y]P� * ��1 .

� ��1] � : Assume that we have already
shown SUT 1"V �
%(��
1 & $] ��
1 for all %(��
1 & *��� � ��� ! ��

�

����1�^ � ���
1 $�����2 ��
1 9 ��1 . By defini-
tion we know that %(��1 &] � %(�
1 & (/ %(��1 &] G %(��
1 &
and therefore SUT 1\V �B% ��1 & $] SUT 1"V �
%(��
1 & $ i.e.S+T 1\V �B% � 1 & $? SUT 1\V �
%(��
1 & $�J��] ��
1 J�� . Using
the special case ��
1 * � 1 ��� it is obvious thatS+T 1\V �B% � 1 & $y]8� 1 .

Remark 5.1 Note that the above condition not only
provides S T 1\V �B%(� 1 & $] � 1 but also S T 1"V �
%(� 1 & $]� 1� a 1�^ T G ^ � V �Q���K�4� $+JL� * � 1� a 1�^ T G ^ � V � �M��EKJL� .
For E * � this is equivalent to the original S:T 1\V �B% ��1 & $y]8��1
or ��1"[�@? ��1�J � . Mentioning that � � ? � it is obvious
that � 1 ? 3 .
For E * � this sum expands to SOT 1"V �
%(� 1 & $y]8� 1 J � 1�^ �:���
or � 1"[� ? � 1 J�� 1�^ � . Using the smallest possible values��� * � and ��! * � it is easy to show that � 1 ? Fib ��3�$, the3 th Fibonacci Number.
In the extreme case of E * 3 (i.e., (F) is strictly monotonic)

we have S T 1\V �B% ��1 & $? � 1� a � �Q� � � � $ J6� . Together with� �K? � this means that ��1 ? � 1�^ ! JL� .
6. Number of Iterations of a MSDL

Note that
~

is independent of any run-time parameters.
Thus it can effectively be constructed during compile-time
making it simple to obtain

�
. As discussed in Theorem 5.1�

is the upper bound for the length of any path through the
MSDL. Obviously the length of a path through a MSDL is
the same as the number of iterations it takes to complete the
loop. Thus

�
is an upper bound for the number of iterations

of the MSDL.
Using

�
, it is easy to compute maximum amounts of pro-

cessing time required to execute the loop.
An upper bound for the time required to process the loop

is simply obtained by multiplying
�

with an upper bound for
the time required to execute a single pass through the loop
body.

Obviously it is possible, that the loop body does itself
contain loops. Note that this does not create any additional
problem, because the same concepts that were used on the
outer loop can also be used on the inner loops. As there has
to be an innermost loop, this recursion is bound to end.

The stack space required to hold the vector %(��1 & is propor-
tional to k. The requirements of other variables, e.g. tempor-
ary internal variables to store intermediate results can eas-
ily be computed at compile time. Thus the worst case stack
usage is the sum of the space needed for auxiliary variables
plus

�
times the space needed for a natural.

Frequently �C��X�$�� �
making it inefficient to store the

entire history. Major reductions of space consumptions can
be obtained by keeping only the last �C��X�$ elements (e.g. in
a cyclic list).

7. Examples of useful iteration functions

Only a very limited set of iteration functions is actually
used in actual programming practice.

Probably the most frequently used type of iteration func-
tion isS T 1\V �B%(��1 & $ * ��� T 1\V for 3 9 �C��X�$��� T
	 VQ^ �� a�� ' T 1"V� ��1�^ � JN� T 1\V otherwise

where ' T 1"V� w
N,

� T 1"V w
N,

� T 1"[� V] � T 1"V , and�7T 1"V w Z, � T 1"V] �C�QX�$�J �:� � � T
	 VQ^ �� a�� ' T 1"V� i��b�C�QX�$��0��$.
Example 2 (Fibonacci Numbers) uses this type of recursion
function.

It is not necessary that the values of ' T 1"V� be the same in
all SUT 1"V independent of 3 (even so this is the most common

situation). For instance Example 3 (Factorial Numbers) uses
a new value for ' T 1\V� on every iteration.

Positive integral polynomials offer a wide field of pos-
sible iteration functions.S T 1"V �
%(��1 & $ * � � T 1"V for 3 9 �C��X�$� �` a��:' ` � � T
	 VQ^ �� a�� � G���� �1�^ � JN� otherwise

where ��� � T 1"V w
N constant,

� T 1"[� V] � T 1\V , ' ` ��E ` � � w
N

independent of 3 .
Probably the most frequently used type of (non-linear)

polynomials are convolutions, as they are used in Example 1
(Catalan Numbers).

S T 1"V �
%(��1 & $ * 	
 � � T 1\V for 3 9 ����X�$��� T
	 VQ^ �� a�� ' � ��1�^ � � 1�^ T � T
	 Vt^ � ^ � V J �
otherwise

where
� T 1"V w

N constant,
� T 1\[� V] � T 1\V , 'd� w

N in-
dependent of 3 and � w

Z constant, �] �C��X�$KJ ���� � T
	 VQ^ �� a�� ' � i�� i��b�C�QX�$:� �A$.
All the above types of iteration functions are guaranteed

to satisfy the prerequisites of Theorem 5.1.
Of course, this brief list of function types can not cover

all possibilities, but it gives a good overview of those types
that are frequently encountered in every-day use.

It is easy to extend the syntax of any common program-
ming language to accommodate MSDLs. If only the itera-
tion functions of the above type are permitted then the com-
piler can easily check at compile time whether the code writ-
ten by the user contains valid functions. If the syntax of
the programming language ensures that the program can use
only the given iteration functions to modify the loopvariable
(i.e. side effects of non-loop-related statements that change
the loop variable are prohibited) then the upper bound for
the number of iterations can be guaranteed without incurring
any runtime overhead.

8. Conclusion

In this paper we have introduced multi-staged discrete
loops and demonstrated how they help to bridge the gap
between for-loops and general-loops. Since MSDLs are well
suited for determining bounds on the number of iterations
they form an excellent frame-work for estimating the worst-
case execution time of a real-time program.

Obviously discrete loops are a special case of MSDLs
where �C�)v $ W * � . As shown in [1] for-loops and loops with
a bound for the maximum runtime can also be expressed
in terms of discrete loops and therefore also in terms of
MSDLs, proving MSDL a very powerful, yet simple tool.

Nevertheless some work remains to be done in the future.
The following lists a few items:

� Additional types of useful iteration functions can be in-
cluded.

� We can not yet handle loops that only eventually in-
crease the loop variable, but do not do so on every pass
through the loop body (e.g. Example 4).

� The compile time computations should be done auto-
matically. Implementing the necessary tools is part of
Project WOOP currently being performed at the Tech-
nical University of Vienna.

References

[1] J. Blieberger. Discrete loops and worst case performance.
Computer Languages, 20(3):193–212, 1994.

[2] Alice E. Fischer and Frances S. Grodzinsky. The Anatomy of
Programming Languages. Pretience Hall, Englewood Cliff,
New Jersey 07632, 1993.

[3] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment. Journal of the
ACM, 20(1):46–61, 1973.

[4] A. K. Mok. The design of real-time programming systems
based on process models. In Proceedings of the IEEE Real
Time Systems Symposium, pages 5–16, Austin, Texas, 1984.
IEEE Press.

[5] C. Y. Park. Predicting program execution times by analyzing
static and dynamic program paths. The Journal of Real-Time
Systems, 5:31–62, 1993.

[6] P. Puschner and C. Koza. Calculating the maximum execution
time of real-time programs. The Journal of Real-Time Sys-
tems, 1:159–176, 1989.

