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Abstract
This paper provides a comprehensive study on how to use

Profibus networks to support real-time communications,
that is, ensuring the transmission of the real-time messages
before their deadlines.

Profibus is based on a simplified Timed Token (TT)
protocol, which is a well-proved solution for real-time
communication systems. However, Profibus differences to
the TT protocol prevent the application of the usual TT
analysis. The main reason is that, conversely to the TT
protocol, in the worst case, only one high-priority message
is processed per token visit. The major contribution of this
paper is to prove that, despite this shortcoming, it is
possible to guarantee communication real-time behaviour
with the Profibus protocol.

1. INTRODUCTION

A recent trend in distributed process control systems is to
interconnect the distributed elements by means of a multi-
point broadcast network, instead of using the traditional
point-to-point links. As the network bus is shared between a
number of network nodes, there is an access contention,
which must be solved by the Medium Access Control
(MAC) protocol.

Usually, distributed process control systems impose real-
time requirements. In essence, by real-time requirements we
mean that traffic must be sent and received within a
bounded interval, otherwise a timing fault is said to occur.
This motivates the use of communication networks within
which the MAC protocol is able to schedule messages
streams according to its real-time requirements.

A reasonable number of commercial solutions, usually
called field bus networks, have been proposed during the
past decade. Some distinguished examples are
WorldFIP [Cen96], Profibus [Cen96], CAN [Sae92] and

P-Net [Cen96]. Concurrently, several international
standardisation efforts have been and are still being
carried out. One of the most relevant resulted into the
European Standard EN 50170 [Cen96], which basically
encompasses three well-proven field bus national
standards: Profibus, WorldFIP and P-NET.

In this paper we address the Profibus MAC ability to
schedule message streams according to its real-time
requirements, in order to support real-time distributed
applications.

The Profibus MAC is based both on a token passing
procedure, which is used by the master stations to
communicate with each other, and on a master-slave
procedure, which is used by master stations to
communicate with the slave stations.

The Profibus token passing procedure uses a
simplified timed token protocol [Gro82]. One important
parameter to consider in this kind of protocols is the
Target Token Rotation Time (TTR), which is set at the
network initialisation time and stands for all network
nodes. Whenever a station receives the token, it may
transmit its high priority messages, for a time period no
more than its allocated synchronous capacity (Hi). The
low priority messages can then be transmitted, but only
if the previous token rotation time was lower than TTR.
Therefore, the amount of time that a station may hold the
token is dynamically adjusted to the speed of token
rotation.

Comparing to the timed token protocol, the main
difference of the Profibus token passing consists in the
absence of synchronous bandwidth allocation. If a
station receives a late token (the token rotation time was
greater than the target token rotation time) only one high
priority message will be transmitted. As a consequence,
in Profibus, low priority traffic may drastically affect the
high priority traffic capabilities. In fact, if a station
receives an early token (the token rotation time was
lower than the target token rotation time), and the low



priority traffic is not constrained in that station, the
subsequent stations may be limited to one high priority
message transmission when holding the token.

In this paper we propose a basis for setting the Profibus
TTR parameter, such as high priority (real-time) message’s
deadlines are met, even when low priority (non-real-time)
traffic is unconstrained at the application level.

2. INTRODUCING PROFIBUS NETWORKS

2.1. General Characteristics

As previously said, the Profibus MAC includes a token
passing procedure, which is used by the master stations to
communicate with each other, and a master-slave procedure,
which is used by master stations to communicate with the
slave stations. Figure 1 illustrates this hybrid-operating
mode.
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The MAC protocol is implemented at the layer 2 of the
OSI reference model, which, in Profibus, is called Field bus
Data Link (FDL). In addition to controlling the bus access
and the token cycle time, the FDL is also responsible for the
provision of data transmission services for the FDL user (e.
g. the application layer).

Profibus supports four basic data transmission services:
Send Data with No acknowledge (SDN); Send Data with
Acknowledge (SDA); Request Data with Reply (RDR) and
Send and Request Data (SRD).

The SDN is an unacknowledged service mainly used for
broadcasts from an active station to all the other stations on
the bus. Conversely, all the other services are based on a real
dual relationship between the initiator (master station
holding the token) and the responder (passive or active
station not holding the token). Another important
characteristic of these services is that they must be
immediately answered, with either a response or an
acknowledge.

In addition to these services, industrial applications often
require the use of cyclical transmission methods. A centrally
controlled polling method (cyclical polling) is a suitable

transmission method, to scan simple field devices, such
as sensors or actuators. Profibus enables a polling list to
be created in the FDL layer, and can thus carry out a
cyclical polling based on the RDR and SDR services.

An important Profibus concept is the message cycle.
A message cycle consists on a master station’s action
frame (request or send/request frame) and the associated
acknowledgement or response frame. User data may be
transmitted in the action frame (send) as well as in the
response frame (response).

All the stations, except the token holder (initiator)
shall in general monitor all requests. The
acknowledgement or response must arrive within a
predefined time, the slot time, otherwise the initiator
repeats the request. The initiator shall not issue a retry or
a new request before the expiration of a waiting period
(Idle Time).

All the real-time properties of the Profibus network
presented in this paper are based on the knowledge of the
message cycle time lengths. This time includes the time
needed to issue the action frame and receive the response
and also should include possible message retries.

2.2. Behaviour of the Access Control

After receiving the token, the measurement of the
token rotation time begins. This measurement expires at
the next token receipt and results in the real token
rotation time (TRR). TRR is of significance for carrying out
non-high priority message cycles. In order to keep the
system reaction time, the target rotation time (TTR) of the
token must be defined in a Profibus network.

Independently of the real token rotation time, each
master station may always execute one high priority
message cycle per token receipt. In order to perform
non-high priority message cycles, TRR must be lower
than TTR at the instant of execution, otherwise the station
shall retain the non-high priority message cycles and
transmit them at the following token receipts. Once a
message cycle is started it is always completed,
including any required retries, even if TRR reaches or
exceeds the value of TTR during the execution.

When holding the token will successively handle:

• high priority non-cyclical message cycles;

• poll list message cycles;

• low priority non-cyclic message cycles;

• GAP list management (logical ring maintenance).

The standard specifies that low priority, cyclic and
GAP management message cycles underlain with
specific rules. In our analysis, we only provide a real-
time service for high priority messages, and thus all
other messages will be considered as low priority traffic.

The following represents the considered Profibus
token passing algorithm:



/* initialisation procedure */
At each station k, DO:

TTH ← 0 ;
TRR ← 0 ;
release TRR ;

/* run-time procedure */
At each station k, at the Token arrival, DO:

TTH ← TTR - TRR ;
TRR ← 0 ;
Release TRR ; /* count-up timer */
IF TTH > 0 THEN

Release TTH /* count-down timer */
ENDIF;
IF waiting High priority messages THEN:

Execute one High priority message cycle
ENDIF;
WHILE TTH > 0 AND pending High priority

   message cycles DO
Execute High priority message cycles

ENDWHILE;
WHILE TTH > 0 AND pending Low priority

   message cycles DO
Execute Low priority message cycles

/* this includes poll list and */
/* GAP list message cycles */

ENDWHILE;
Pass the token to station (k + 1) (modulo k);

3. BASIC CONCEPTS OF THE PROFIBUS MAC
TIMING ANALYSIS

3.1. Previous Relevant Work

The basic idea of the Timed Token protocol was
presented by Grow [Gro82]. In this protocol, messages are
distinguished in two types. One concerns the synchronous
messages, which are periodic messages that come to the
system at regular intervals and have delivery time
constraints. The other concerns asynchronous messages,
which are non-periodic messages that have no time
constraint measured at least in units that are large relative to
the token rotation time, as explained in [Sev87].

When a network is initialised, all the stations negotiate a
common value for the Target Token Rotation Time (TTR).
This is an important protocol parameter, which gives the
expected token rotation time. The TTR should be chosen
small enough to meet responsiveness requirements of all
stations, i.e., fast enough to satisfy the most stringent timing
requirements. Each station is assigned a fraction of TTR,
known as its synchronous capacity, which is the maximum
time each station is allowed to transmit its synchronous
messages, if any, every time it receives the token. The
asynchronous messages can be transmitted, but only if the
token has rotated fast enough, that it is “ahead of schedule”
with respect to the target rotation time.

In the Timed Token Protocol, the time between two
consecutive token arrivals at a specific station is bounded by
2 x TTR and the average token rotation time is no more than
TTR. An intuitive explanation of these two timing properties
can be found in [Gro82] and a formal proof in [Sev87].

In order to guarantee high priority message deadlines,
the bounded token rotation time is a necessary but not
sufficient condition. A node with inadequate
synchronous capacity may be unable to guarantee
message deadlines, and, on the other hand, allocating
excess amount of synchronous capacities to the nodes
increases TTR, which may also cause message deadlines
to be missed. Therefore, synchronous capacities must be
properly allocated to individual nodes. As a
consequence, synchronous capacities allocated to the
nodes must satisfy two constraints [Agr92, Che92,
Mal93]: a protocol constraint and a deadline constraint.

The protocol constraint states that the total sum of the
allocated synchronous capacities should not be greater
that the available portion of TTR, i.e.,

∑
=

−≤
n

i
i TTRTH

1

τ (3.1)

Theoretically, the total available time to transmit real-
time traffic, during a complete token rotation, can be as
much as TTR. However, factors such as ring latency and
other protocol or network overheads reduce the total
available time to transmit real-time traffic. We denote
the portion of TTR unavailable for transmitting
synchronous messages by τ.

The deadline constraint states that the allocation of
the synchronous capacities to the nodes should be such
that the synchronous messages are always guaranteed to
be transmitted before their deadlines.

A message set can be guaranteed by an allocation
scheme once the protocol and the deadline constraints
are satisfied. Several allocation schemes have been
proposed in [Agr92, Che92, Mal93].

In [Vas94] we can find a first analysis on the message
schedulability in Profibus networks. Based on the Timed
Token Protocol, these results were later improved and
presented in [Vas96]. The work here by described is a
step forward in the analysis of message schedulability in
Profibus networks.

3.2. Network Model and Message Model

We consider a bus topology containing n master
stations. A special frame (the token) circulates around
the logical ring formed by the masters (from node k to
nodes k + 1, … until node n, then to nodes 1, 2, …). We
denote the logical ring latency (token walk time,
including node latency delay, media propagation delay,
etc) as τ.

Message cycles generated in the system at run-time
may be classified as either high priority or low priority
messages. To each k master node we assume that there
are nh(k) high priority message streams and nl(k) low
priority message streams. A message stream corresponds
to a message cycles sequence related with, for instance,
the reading of the value of a process variable.



We denote the ith (i = 1, 2, … nh(k)) high priority stream
associated to a master node k as Shi

(k). Similarly low priority
streams will be denoted as Slj

(k) (j = 1, 2, …, nl(k)).

A message stream Si is characterised as Si = (Ci, Di). Ci is
the maximum amount of time required to transmit a message
in a stream. In Profibus this time should also include
possible message retries. Di is the messages relative
deadline, which is the maximum amount of time that may
elapse between a message arrival and completion of its
transmission. We consider that, in the worst case, the
deadline can be seen as the minimum inter-arrival time
between two consecutive messages in the same stream.

The following notation will then be used:
( ) ( ) ( )( )k

i
k

i
k

i DhChSh ,= (3.2)

( ) ( )( )k
i

k
i ClSl = (3.3)

3.3. Approach Used in the Timing Analysis

Comparing to the timed token protocol, the main
difference to Profibus protocol
consists of the absence of
synchronous bandwidth allocation.
The synchronous bandwidth
allocation consists of a minimum
amount of time that a station holding
the token has to transmit high
priority messages. This time is set in
each station according to their
particular high priority messages
requirements.

As a consequence, in Profibus,
low priority traffic may drastically
affect the high priority traffic
capabilities. In fact, if a station
receives an early token (TTR – TRR

(k)

> 0) and the low priority traffic is
not constrained in that station,
subsequent stations may have an
initial value for TTH < 0. Figure 2
illustrates this situation.

We will base our analysis in the following assumption:
when a master station receives the token, TRR

(k) is always
greater than TTR thus only one high priority message will be
transmitted.

4. A MAXIMUM BOUND FOR TTR

4.1. Deadline Constraint:
case of outgoing priority queues

Considering that we have only one high priority stream in
a k master station, we must guarantee that after being
produced, a message can be transmitted before the end of its

deadline. To guarantee this, the token inter-arrival time
to the station must be lower than the deadline.

If we denote the maximum time between consecutive
token visits to a station k by Tcycle

(k), this deadline
constraint can be formulated as:

( )

kk

k

Tcycle

Dh
∀≥ ,1

)(
1 (4.1)

If we now consider having nh(k) high priority streams
in the k station, Tcycle

(k) may be constrained as follows:

( )

( )

1
1

1
)(

≤∑
=

knh

i
kk

i TcycleDh
(4.2)

Expression (4.2) can be explained with a simple
example. If we have only one high priority message
stream in a k station, which deadline is 40ms, then the
token should visit that station, at least, each 40ms. If the
same station has 2 high priority message streams of
40ms deadlines then, the token should visit that station,
at least, each 20ms. We should remember that we are

supposing the worst case of only one high priority
message transmitted per token visit, which is always
guaranteed by Profibus, independently of the token
delay.

As we will see, expression (4.2) will only stand for
deadline constraint if the outgoing messages are put in a
priority queue or, which is not reasonable, all the streams
in the station k have equal deadlines.

This can also be shown with a simple example. If a
station k has two streams of 40ms deadlines, from (4.2)
Tcycle

(k) should be equal to 20ms. Lets denote this as
scenario A. If the same station has two streams, one with
a 40ms deadline and the other with a 20ms deadline,
then, from expression (4.2), we will have for Tcycle

(k) the
value of 13,3(3)ms. This will be denoted as scenario B.

Station
1

TTR

Token Arrival Message Cycle

Token Transmission Message Cycle with THT < o

Station
2

Station
3

Figure 2



We should note that messages related to each of the streams
may be produced almost simultaneously. Lets suppose that
in scenario B both messages were produced just after the
station released the token. Additionally, suppose that the one
with the 40ms deadline was put first in the FIFO outgoing
buffer. Then, on a one message per token visit basis, the
message with the 20ms deadline would miss it (13,3+13,3 =
26,6ms). This would not happen in scenario A (all streams
have equal deadlines) nor if a different queuing mechanism
was supported, for instance in a priority queue based on the
messages deadline.

4.2. An Estimation of Tcycle
(k)

Assuming expression (4.2) for the deadline constraint, we
need to estimate a value for Tcycle

(k). Consider the following
scenario (fig. 3), within which none of the three stations
transmitted any message in the previous token cycle.

When station 1 receives the token it can send messages
during a (TTR - τ) time length. In fact it can hold the token by
this amount plus the time corresponding to the transmission
of the longest message issued by that station (including the
non real-time messages). This may happens because once
Profibus starts to send a message it will proceed till the end
of the message cycle even if THT

(k) time has elapsed.

For simplification we can derive the expression for
Tcycle

(k) using the maximum length for a message in the
network (including high and low priority traffic):

kTR
k CnTTcycle ∀×+= ,max

)( (4.3)

Station 1
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Station 3

τ/3

THT
(1) = TTR - τ

Chi
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Chi
(3)

Tcycle
(1) = TTR + Ci

(1) + Chi
(2) + Chi

(3)

Ci
(1)

Figure 3

4.3. A First Approach to the Evaluation of TTR

From (4.3), and considering that Tcycle
(k) is identical for all

stations (we now denote it as Tcycle) we can derive TTR as
being:

maxCnTcycleTTR ×−≤ (4.4)

We can re-write expression (4.2) as follows:
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Thus, the station that imposes the shorter value for the
Σ term in (4.5) will bound TTR. Therefore, the value for
TTR is:
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This expression for TTR uses a pessimistic evaluation
of Tcycle

(k) (similar message lengths).

4.4. Deadline Constraint:
case of outgoing FIFOs

Considering a single outgoing FIFO in a k master
station, between two consecutive token arrivals, multiple
messages from different streams may be put in the
outgoing FIFO. In a worst case scenario, assuming that
only one message will be transmitted per token visit,
then, m messages at outgoing FIFO will be dispatched
only after m token arrivals. This is true if those messages
are immediately produced after a station has passed the
token to the subsequent one. The critical case is that of
the message with the shortest value for Dhi

(k) is the last
one in the FIFO. We will denote the Maximum Waiting
Time for the most stringent high priority (lower
deadline) message of a station k as TMW

(K).

Figure 4 illustrates this scenario. After a token
rotation time of τ, station 1 receives the token. Just after
token departure, messages from all the streams arrive to
the outgoing buffer in the following order: Mh4

(1), Mh3
(1),

Mh2
(1), Mh1

(1). Messages deadlines are reversed,
considering the arrival order, i.e.: Dh4

(1) > Dh3
(1) > Dh2

(1)

> Dh1
(1).

Once more, in the worst case, the time between two
consecutive token arrivals is Tcycle as given by (4.3).
Assuming that, at each token arrival, only one high
priority message is sent, the deadline constraint must be
redefined.

The maximum waiting time for the stringent message
in the outgoing FIFO of a k station with nh(k) high
priority flows can be bounded to:

( ) TcyclenhT kk
MW ×≤)( (4.7)

Then, the new deadline constraint would be as
follows:

( )
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
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From expressions (4.7) and (4.8) we can write,
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which means that TTR is bounded as follows,

( )

( ) ( )





















×−







≤
=

max

..1 )(
min

min Cn
nh

Dh

T
k

k
i

nhi

k
TR

k

(4.10)

This expression presents a maximum bound value for the
TTR parameter.

5. A MORE ACCURATE BOUND FOR TTR

The analysis that led to (4.10) expression was very
pessimistic in two assumptions. One, and the most relevant
one was considering that TMW

(k) would correspond to nh(k)

consecutive Tcycle(k) (4.7). The other one relates to the use
of a Cmax in (4.3), instead of specifying which are the
messages accessing the bus at each station. In this section,
we analyse the impact of these two considerations.

5.1. New Expression for Tcycle
(k)

Looking back to figure 4, and considering that with a late
token only one high priority message can be transmitted,
Tcycle

(k) expression (4.3) can be re-write as follows (note that
Tcycle

(k) is now function of station k):
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In (5.1) the second term corresponds to the situation

where 0
~

)( ≥k
THT  before the beginning of a message

cycle, and thus TTR will be exceed in k station. This
message cycle may correspond to either a high or a low
priority one.

5.2. New Expression for TMW
(k)

It is possible to show that, in the worst case, the time
interval between m consecutive token arrivals is smaller

than )(kTcyclem × , because it is not possible to have m

consecutive Tcycle(k) intervals.

Consider the following scenario (fig. 5): a 3 station
bus with 4 messages arriving at the outgoing buffer in
station 1 just after token departure. Considering that in
the first and second token cycles, stations 2 and 3 use all
the available bandwidth, TMW

(K) is bounded by:
( )( ) TR
kkk

MW TnhTcycleT ×−+= 1)()( (5.2)

since TTR is always greater than the message lengths
sum. Knowing that:
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then,
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TTRTTR - τ
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Station 4

Ch3
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(1)

Maximum Waiting Time for Mh1
(1)

Figure 4
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This expression can be simplified as follows:
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Therefore, the deadline constraint can be relaxed
(comparing with (4.10)) to:
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6. A NUMERICAL EXAMPLE

Consider a scenario with 3 master stations, each one with
3 high priority message streams, such as:

Master Station 1 Master Station 2 Master Station 3

Sh1
(1) = (10, 0.1) Sh1

(2) = (14, 0.05) Sh1
(1) = (12, 0.05)

Sh2
(1) = (10, 0.1) Sh2

(2) = (20, 0.05) Sh2
(1) = (12, 0.05)

Sh3
(1) = (10, 0.1) Sh3

(2) = (30, 0.05) Sh3
(1) = (20, 0.05)

Cmax =0.2 Cmax =0.2 Cmax =0.2

From (4.10) we can compute the value of TTR:
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and so:   73.2≤TRT

Using (5.6), which gives a more accurate bound for
TTR, we have:
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( ) 27.31 ==kTTR ; ( ) 56.42 ==kTTR ; ( ) 88.33 ==kTTR

and so: 27.3≤TRT , which provides more bandwidth to

accommodate low priority traffic than in the previous
case.

7. CONCLUSION

In this paper we have provided a comprehensive study
on how to use Profibus networks to support real-time
communication. The major contribution of this paper
was to prove that, despite the limitations as regarding to
the timed token protocol, it is possible to guarantee
communication real-time behaviour with the Profibus
protocol.

Fundamentally, we have derived a deadline constraint
for both priority and FIFOs outgoing queues. This
deadline constraint guarantees that high priority
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(1)
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messages are always transmitted before their deadlines.

Afterwards, we outlined the basis for tuning the TTR

network protocol parameter, which sets the expected time
between token arrivals to master stations.
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