
NASA-CR-197768

NASA/WVU Software IV & V Facility

Software Research Laboratory

Technical Report Series

NASA-IVV-94-O0 !

WVU-SRL-94-001

WVU-SCS-TR-95-2

CERC-TR-TM-94-012

/_./5-

A Decentralized Software Bus based on IP Multicasting

by John R. Callahan and Todd Montgomery

(NASA-CR-l_.97768) A OEC£NTRALXIEO

. SOFTNAR_ _US BASEO ON [P NULTICAS

' _ > _r:._ TING (Nest Virqinia Univ.) 15 p

N95-26695

Uncl as

G3/61 0048516

National Aeronautics and Space Administration

West Virginia University

According to the terms of Cooperative Agreement #NCCW-0040,

the following approval is granted for distribution of this technical

report outside the NASA/WVU Software Research Laboratory

_,/o__ _-------- . _.-_ f _ -,/_-

G_e(:_ J/_abolish" Date JohnxR. Callahan Date

M a_, Software Engineering WVU Principal Investigator

A Decentralized Software Bus based on IP Multicasting

John R. Callahan l

Todd Montgomery

Department of Statisn'cs & Computer Science

Concurrent Engineering Research Center

West Virginia University

Abstract

We describe a decentralized reconfigurable implementation of a conference management

system based on the low-level Intemet Protocol (IP) multicaslin8 protocol. IP

multicasting allows low-cost, world-wide, two-way transmission of data between large

numbers of conferencin 8 participants through the Multicasfin 8 Backbone (MBoue).

Each conference is structured as a software bus --- a messaging system that provides a

run-time inte,rcounecfon model that acts as a separate agent (i.e.. the bus) for muting.

queuing, and delivering messages between distributed programs. Unlike the client-
server interconnection model, the software bus model provides a level of indirection that

enhances the flexibility and reconf_urability of a distribuled system. Current software

implementations like POLYLrFH [1], however, rely on a omtralized bus process and

point-to-point protocols (i.e.. TCP/IP) to mum. queue, and deliver messages. We
implement a software bus called the MULTmUS that relies on a separate process only for

routingand uses a reliableIPmulticastin 8 protocol for deliveryofmessages. The use of

multicasdng means thatimew,ounectionsare independentof IP machine addresses.

This approach allows recomqguration of bus participants during system execution

without notifying other participants of new IP addresses. The use of IP multicasfin 8 also
permits an economy of scale in the number of participants. We describe the MULTmUS

protocol elements and show how our implementation performs better than centralized
bus implementatiom.

1 Introduction

Most distributed systems are comprised of programs that must identify and locate one another in order to

exchanse messages and carry out a computation. So_e of these programs run continuously for loag

periods of time (e.g.. servers) while others are more transient (e.g., clients). In addition, most of these

programs are under auUmomous control of separate users and other programs. Often. we canm_ be

certain if or where a program is executin 8 in a dislributed system. The uncertainty of locatingother

programs in a distributed system makes distributed programming complex and prone to faults.

The client-serv_model [2]atteanpts to make disu'ibuted programming less complex by associating logical
names with remote services. Given the losical name of a sezvice, a client relies on a name servex to locate

the IP address of the requLmd service. This approach has proved sdequate in practice but suffers from

several problems. First. tim name servea is another program that needs to be located usually at some weal-

known address. Second, if any program chanses its location, it must notify the name server. Third, any
client program must rely on the name sexvice for each remote invocation because past remote addresses

may not be up-to-date. Finally, if each dient-se,'ver connection is implemented via a point-to-point

lmXocol (e.g., TCP/IP) then it is not po_ble to scale the system to large numbers of clients. "I'nese

IThis work is supported by DARPA Grant MDA 972-91-J-102 under the DARPA Initiative for

Concurrent Ensmg (DICE) program, the National Library ¢£ Medicine (NLM), and NASA Grant

NAG 5-2129 under the Independemt Software Verification and Validation (IV&V) progmn.

problemsandlimitations are the result of the primary weakness of client-server model that requires each

program to be responsible for routing and delivering messages directly to the intended recipients.

To eliminate the need for direct message routing and defivery in the client-server model, the software bus

model [1] in_oduces a separate agent reslxmsible for routing, queuing, and delivery of messages.

lnterconnections between programs are specified separately. Every software bus consists of one or mine

bus slots and a bus process that delivers messages between slots. Individual programs register in each slot

of the bus and interact only via the slot interface. The bus process acts as a message delivery service

between programs in slots. When a slot produces a message, it will be delivered _ to the current

intetconnection topology. If a message is destined for an unoccupied slot, the message may be dropped or

queued until the slot is occupied at some point in the future. The interconnection map maintained by the
bus process may be changed durin8 execution in order to reconfignre the system. While this is done more

easily in a software bus implementation than a client-server implementation like remote procedure call

(RPC) [3], it is still a complex operation especially ff there are queued messages.

While the software bus provides a level of indirection needed in many distributed programs, the overhead

of a separate bus process to implement this abstraction is costly. The bus process becomes a bottleneck

because all messages must be routed through it. In current implementations usin8 a ceatralized bus

process, messages must be routed through the bus process and then to each recipient individually via

point-to-point protocols.

We have implemented a software bus called the MULTmUS that provides the flexibility of the software bus

abstract model, but provides increased fault tolerance, recc_figurabillty, and performance because we
eliminate the bottleneck of a centralized bus process. The MULTmUS uses a separate process, called a

router process to dL'ect messages to their destinations, but relies on a IP multicastin8 to deliver messages

simultaneously between multiple recipients. Each bus participant needs only the group multicast address
to send and receive from other bus participants. This approach increases flexibility and performance over

centralized bus implementations and can be reconfigmed more easily than either the centralized bus or
orient-server models because each bus participant need not know the exact IP address of any other

participant.

1.1 Software Bus

The software bus model allows programs that are part of a larger system to be independent of the

communications topology of that system. The model assumes that each slot in the bus is occupied by a
software module that acts as a "black-box" with multiple ports. Ftgure 1 illustrates a simple software bus

c_t_tgurafion. Me_ages produced on p(gts are delivered to ports of other slots in the bus. If a slot is
unocczpied or otherwise busy, the message is queued for delivery until the recipient requests the next

message in the queue.

The bus interc_nnecfion topology is specified separately in a module inte,w,muecfion language (MIL) [4].

The specification serves as the initial topology or a stati: topology dependin8 ca the needs of the

application. A MIL spec_ determines the module in--on graph for a distributed

application. This graph determines the routin 8 of messages between ports of different modules and the
characteristics of the interconnections themselves.

The modular structure of the bus is centered around a backplane across which components exchange

messages. This design promotes an open systems architecture making it easier for third party vendors to

"Ping'in" their tools. The bus model makes future enhancements simpler than in more monofithic

designs. It improves over the client-server model by addin8 a level of indirection between programs in a
distributed system. Client and server programs need not know about the run-time details of each other in

order to interact.

2

components

A B C

I,,. ,,v w x
dl IbdlIb, dk

bus/

W

x y

Figure I: A software bus and its associated module interconnection graph.

Evm with its flexible message passing scheme, the software bus abstraction is inadequate far dis_ted
systems ccmprised of indeterminate numbers of transient programs. We have extended the abstract

software bus model to accon3modate transient clients and indeterminate numbers of slot participants.
enhancements include slot types, occupancy limits, connector and port types as descn'bed below.

Such enhancement were necessary to accommodate the types of transactions between lon8-tenn and short-
term applications that occupy different bus slots at different times durin8 system execution.

Slot Type. A slot may be required, transient, or invoked. A required slot must be occupied at all times
during the execution of the distributed system. The router process, for instance, occupies a required slot.
A transient slot may be unoccupied at some time. An invoked slot implies that only when a messase is
delivered to the slot is a program invoked. The last type of slot is particularly useful in applications where
messages delivered to a bus slot are simply _ to a log file by an invoked script.

Slot Occupancy. Two occupancy numbers are associated with each slot that determine the minimum and
maximum number of enrolled programs per slot. A slot with minimum occupancy of one is a required
slot while a minimum of zero implies that the slot is transient or invoked.

Connector Types. The behavior of a messase sent between ports is determined by the characteristics of
the connection between them. Current bus implementations queue delivery of messages on all ports, but
we enhance the definition of a _c,:mn,__.tlonas havin 8 a finite capacity and message time-to-live (TIT,)
value. If a messase is queued in a connection for more than its time-to-live, then it is dropped.

Port Types. Messages from one port to another may need to retain information about their origin as in the
case of request-_ transactions particularly for slot with multiple occupants. For instance, the
response to a request from a single client in a multiple occupancy slot must be returned to that client. A
port type in the message will ensure the response delivery to the sender. Other port types may define
asynchronous messages that do not need information about the originator.

These enhammncats to the original software bus model are necessary to accommodate the reconfiguration
needs of distributed programs that interact via a bus model but are under autonomous comrol o£ individual

users and other programs. Such programs include group confetencing tools, and database servers. These
tools may run ccmtinuously as in required bus slots, while transient clients commit via transient slots with

multiple occupancies. The bus defines the types _" transactions permitted between tools engaged in these
ro]e.s.

1,2 IP Muiticasting

Many software bus implementafons support message passing through a centralized mechanism. This

added level of indirection, however, is cosily in terms of pedormance. The cmt is high because a separate

process must route, queue, and deliver all messages creating a bottleneck in the distributed system. We

inmxtuce a technique based on a IP mulficasting that does not require a cenlzalized defivery mechanism.

We have implemented a software bus using a modified version of the VMTP protocol [5] for reliable
multicasling in distributed environments.

IP multicastin8 is a transport level protocol similar to point-to-point IP. Unlike point-to-point packets that

are delivered between two distinct Intemet hosts, multicast nmssases are selectively broadcast on local

subnets and received by any host that claims to be a member of a mulficast address group. Like point-to-

point IP. applications uransmit and listen on bound BSD sockets for messages. The only difference is that
messages are deliveredto groups of logicalhosts ratherthana specifichost.

Software buses based on broadcast IP have beea implemented, but multicasting is not broadcasting. A

multicasth38 IP message is received ¢mly by those hosts claiming to be a member of a virtual host group on

a given port. A single machine may be part of several host groups and cn different ports. IP multicast

messages are not forwarded by standard touters, but they can be propagated world-wide over the existin 8
Internet network via a network c£ multicast routers that constitute the Multicast Backbone (blBone). The

multicast touters use IP tunnels to forward multicast message between sub-networks. Today, the_ are

several hundred of these touters operational. In the future, commercial routes will support forwarding of

multicasting traffic.

Multicastix_ is highly useful in distributed systems that consist of transient compccents that need to be
fxequenfly. There is no need to keep Ixack of host addresses when an application moves

between host machines. The newly configured application can reconnect with the system by joinin8 the IP

multicast group. This flexibility makes multicastin 8 useful in local and wide area distributed
environments where the number c(bus participants may be unknown as well as their geographical
distribution.

A software bus model based on multicaslin8 as in the MuI.Tmus offers a high degree o£ flexibility as well
as structure to distributed systems. Many existing multicast applications such as audio and video

teleconferencin 8 [6] use unreliable datasram messases that permit eave_in 8 and unstructured
transactions between applications. Our approach places some structure on the types of transactions

between bus applications but allows for flexibility in reconfisurin 8 the system in the face of changes or
faults.

Many existin8 distributed systems that rely on remote prccedme call [7] [8] or special point-to-point

me_ an: not easily rec_able because the failure of a single element may cause the system to

enter an undefined state. For example, CoNic [9] relies on operatin8 system level primitives while others

like PVM [10] use messaging servers on each host to route and deliver messages. Conic executes on a

sinslehost where failures of sinsle elements imply system failures. In PVM, the absence of a pvmd (a

message daemon process) will cause the application to fail. The original POLYIXm system relies on a

sinsk bus process at a well-known host address and port to act as a message clearinghouse on a local cr

) ..consumerl I

_ i,_..l_ consumer2producer _ ,,1]

'q,ee, _ consumer3]

2: Module interconnecticm graph for producer-comumers example

reel in •

prod=iio,..0,o ,umer,
bus _ '"1"_ consumer3

.1
(C) SEND_DATA

F_qn,e 3: Messages needed to send data in a centralized bus implemmtaticm

wide-area network. While failure d the POLYLITHbus process means failure of the system, its true
problem is that it creates a bottleneck in message delivery. The MtrtTmUS is an improvemmt over these
solutions became its reliance on IP multicastin8 allows resiliency in the face of transient failures and
simple dymumc relocation of computing resources.

2 Implementation

The topology d a module intear.onnectim graph is independent of how the modules and connections are
implemenled by any software bus. Figure 2 shows a module intetconneaion graph for a sinsle producer
and three constmaers. The producer's red port is connected directly to the input ports _ two consumers.
The producer's green port is connected to only oae consumer. A messase sent on the ted port is
multiplexed to the aplx_riate consumers by the software bus. The bus routes all messagesvia three
different ccmnections labeled

producer'red ¢ consumerl'in

producer'green 0 conaumer2'in

producer'red Q cons umer3'in

In a centralized software bus implementation, at least three messages (not countin8 acknowledgments) are
required to send the message to the intended recipients. Ftgure 3 depicts a centralized bus implementation

of the producer-consumer example. First, a SI_ID i_TA message is sent on the _'s ted port to the
bus process where it is copied, routed, and queued for delivery to each recipieat', input port (a). The bus

then sends the message to each consumer who receives a SZm>__T_ message after being intearupted by
the bm process or by polling the bm process for new messages (b & c). The omtralized bm requi_es at
least one mess_e for each recipient because it uses point-to-point tm3tocois hqmTCP/IP [11] for reliable
delivery.

Ftgures 4 and 5 depict mess_es in an MtrLTmUSmullicast bus implo_,_t*fion for the producer-
ccmsumers example. In Ftgure 4. a single mulficast SF.IlD DATA message is sent by the producer and
received by all bus slots includin8 the router process (a) but eech receiver must first determine or not to

5

_ed

producer i _ consumerl

SEND_DATA I (a)_-'-_ _ consumer2

router _ _nsumer3

Figure 4: A multicast data message in the Multibus

(C)ACK DATA

- consumerl

producer _._] [consumer2

r_°u:fTT_ (b)[[(e)AcK-DATA
• consumer3

(d)_Q_ROUTE

Figure 5: Acknowledgment and roufin8 messages in the Multibus

accept this message (shown as grey arrows) by referring to the router process. In this example, we assume
that consung_ 1 and 2 have already "cached" routin8 infonnati¢m, but consumer 3 has no information.
The responses to the multicast S_m3_DATA message are shown in Fzsure 5. The router process responds

to the message by returning a coowr T_'X,message with count of the number of expected receivers who
should acknowledge the producer's message based on the router's connection table (b). In this case, the
COUI__'f'gI,shouldbe equaltotwo becausethereshouldbeonlytwo8c,knowledgments.Inparallelwith

the router's acknowledgnent count response, each accepting consumer sends an _ I_T.A response to
the producer in acknowledgment of its acceptanced thedata(c).The producerreU'ansmitsthemessage

(after an aplz_riate time-out period) until all expected acknowledgmentsarereceived. The VMTP
protocol guarantees that retransmissions will be dropped by sites that have already received the multicast

In F_sure 5. cctxsumer 1 returns an ACK__DATA message immediately while consumez 3 first querks the
router process. This is because consumers 1 & 2 already known whether or not to accept the message, but
consumer 3 must query the router process for the current topology. The router's response message (not
shown)ismulticast so that all bus participants can see the roulin8 information and cache it ff necessary.

are several special issues related to the operation of the multicast bus. We must ensure that
messages are routed properly. The bus must ensure that messases are queued for asynchronous delivery.
The bus must support dynamic reconfisurafion of the in--on topology. We now discuss the
implementation of mechanisms designed to deal with these issues in the multicast bus implementation.

ZI Routing

A multicast message will be accepted by a bus slot if that slot owns the message destination port(s).
Otherwise, the message is unacceptable. Each slot determines whether of not a message is acxeptable via

local routin8 tables or by queryin8 the router process with a RF__ROUTg message (d). A router query
message is multicast because the router may dynamically change location during system execution. The

6

router process responds to route requests (e) with an _NS ROU'_ message that tells the bus slot whether

or not it is a destinadm and the destination port. After determining the correct routing for a message and

accepting it. the consumer then responds to the producer's original data message.

Each slot may cache this information in a local routing table for future use. When the routing is
dynamically recoufignred, the router process will send a multicast messase to all bus slots with the new

information. It is up to each slot to either invalidate its entries in its cache or update its local routing
table. Since each bus slot may maintain local tables, messages may be routed at their som_ or

destination. The router process is the final arbiter of routing. F_x sotu_ routms, the _ may specify

destination ports in a Sl_rD_D_, message. For destination routing, the sender leaves the destination(s)

argument of a SEND__DATA _e ondefmed. _ each slot can specify the intended destln_tlon(s)

in a SEND_DATA message, the receiver can choose to ignore this information. A receiver can rely an

m_Q_m3u'_ messages and ANS m3U'_ responses to ensure c,_¢_ct delivery.

In static configurations, however, it may be useful to use local routing. Initially. slots will use

t_Q_ROO'_ messages to determine destinations, but race the tables are initialized, then each slot need

not rely on the router. This case is analogous to the direct connection implementation scheme
by POLYLITH as an alternative to a bus process. Our scheme has comparable performance with much

simpler reccmfignration properties.

2.2 Queuing

Message queuing is done by the sender. Queuin 8 is based on finite queue capacities and message time-to-

live limits. When a bus slots sends a message and does not receive sufficient acknowledgments within a

time-out period, it will retransmit the message until all ec,,knowledgments are received or a longer time-

out is reached. The VMTP Xnvok,_ function returns after the first response is received. Subsequent

responses are received via the ¢jetreply function. We have modified the VMTP library so that ff all

acknowledgments to a message are not received by the sender, then the message is queued. The sender

w/J]/ntermpt itself periodically and retransmit or flush any queued messages. Messages are fleshed when

their time-to-five (TrL) has expired. If the process message queue is full. then the call to the modified
invoke will return an error status.

2.3 Reconfiguration

Execution of a new bus begins by startin 8 and initializing the router process with an interconnecfion map.

This map may be altered durin 8 system execution by _DD ROU'J_ and DV.r, ROU'J_ messages from
authorized bus occupants. As an option, a bus can be configt_ with an authorized shadow slot through

which mcmitorin8 and reconfiguration tools can also enroll and make changes to the interconuection map.

Another form of reccmfignration involves the exiting of a bus occupant from a slot and the initializatiou d

a new bus occupant. If a bus occupant decides to terminate and restart execution at another location, it

needs only to send a DROPOUT message to the teeter process. No other bus participants need to be

involved in the transaction. Messages will queue up at their source for the process during the

reconfiS_ation period. Once the restarted process is enrolled with the router process, it can immediately

receive the queued mulficast SESD__D&TA messages.

One ofthemajor advmtages to this approach is that any process can be re_ including the router

process,withoutdirectknowledge of the physical IP addressof any other bus participant. All bus

participants locate communicate via a logical IP multicasting address. This eliminates the need to update

ad_ and port numbers in other applications. While the POLYLrIH software bus implementation also

enablesthistypeofflexibility,itdoes so onlyforbus participants,not thebus processand assumes thatno

connections are direct between lms participants. The Mum-mus allows flexibility for all bus participants
without the ove, rhead of a cenU'al message delivery _

Request

ENROLL
DROPOUT

KEEP ALIVE

REQ_DATA

ADD ROUTE

DEL_ROUTE

Message

Descri_tien

requesttooccupybusslot
vacatebusslot

pin8messasetoslotoccupants

datamessase

requestroutin8 informatio_
addacounection

delete a connection

Possible

Responses
TICKET, NEG_ACK

DROPPED, NEG_A(_
ALIVE

COUNT TI'L, ACK DATA

ANS ROUTE
ACK_ROUTE, NEG_ACK

ACK_ROUrE NEG_ACK

Table 1: Mulfibus request messages

2.4 Protocol

This section describes the protocol messases exchansed between bus slots and the router process in a

mulficast bus implementation. All mess_es between bus slots and the router are multicast for dynamic
reconfigurafion purposes. If the router process changes location during the execution, it can reconnect to
the bus conference without reconiigurin8 any static point-to-point tables. Indeed. bus corff_ may
occur over wide area networks with bus slots moving from site to site.

2.4.1 Requests Messages

Request messases are multicast to the entire software bus, received by all bus slots, and accepted only by
intended receivers according to the current routing. We rely on the VMTP protocol to ensure reliable
multicast delivery.In_ with the VMI'P protocol, multicast requestsarefollowed typic.allyby

multiple, point-to-point responses. Table 1 lists the request protocol elements and their associated

respouse messages.

The r,tmOx,L message is issued by an application that wishes to occupy a bus slot. The _rROLI, message
is multicast so that the current router process can be found anywhere within the scope of the IP mulficast.
If successful, a ticket is returned by a point-to-point res_ message from the router process to the new
slot occupant. If the slot is already occupied up to its occupancy limit or no such slot is available, then a
negative acknowledgment is returned. The I_OI, L message is sent reliably in the sense that the router

process must return either a ticket or a negative acknowledgment.

ThisDROPOUT message is used to terminate occupancy of a slotby an applicatiou. The DROPOUT

messagecan bedeniedby therouterprocessforsome reasonbutmusteventuallybehonored.Befon:a
DROPPZD messageisissuedinresponse,therouterprocesswillissueDZL_I_n'Z messages(seebelow)

to eliminate dependent interconnections and _ the application before allowin8 the occupancy to
terminate.

The router process periodically dwcks on the livmess of slot occupantsby "pinging" them with
_U,X'VZ. If there is no response after m appropriate number of retries, then the slot occupancy is

decren_ted and the ticket count increased. If the occupant returnswithanoldticket,it will not be able

to send data to other participants. The S_ID DA_ message is mulficast by a slot in order to send data

on a particular port. All bus slots receive the message and use either their static routing tables or rely on
the router process to determine whether or not toaccept the messa8 e. In respouse to a $1_ID 13_Y.A
message, the router process returns a COUNT _ message with the expected number of

scknowledsments and a time-to-llve ('ITL) for fi_e messase based on the lonsest TFL of my
interconnection attached to the data port on which the message was sent. Other bus participants response

with _2K D&_ messages to admowledse receipt end acceptance ¢ffthe message.

8

Reslxmse
_.ssate
ALIVE

TICKET
DROPPED

COUNT3rL

ACK_DATA
ANS_ROUTE

ACK_ROU'IE
NEG_ACK

Me_ss_e

_._cription
acknowledF slot occupancy

term'nedby enrollin_

positive dropout acknowledsmmt
acknowledgmeat count and time-to-five for data

messase
acknowledse acceptance of data message
routin8 inf(xmafion about a data messase

returned when addin8 or deletin8 a _fion
any negative acknowledgment

Table 2: Multibus respcmse messages

A IU_Q_ROUTgmessage is issued by a bus occupant ff it needs to know how to route a SF..tID_D&TzA
message to one of its ports. The request is multicast so that the router process can be found dynamically
and the response is directed specifically to the requester. The response (a aSS_aOUT_ message) helps

the bus occupant determine whether or not to accept the message and on which port.

The/kDD Rotr_ andDZL ROUTEmessages can be issued by any authoriz_ bus occupant to add or

delete an-in_o_ restively. The router process is the only intended recipient of the message.
but it is multicast in order that the bus occupant need not know where the router process is located.

2.4.2 Response Memages

Resptmses are point-to-point messages issued in reply to a request message (see above). The VMTP
protocol provides a reliable, multicastin8 request-response capability where all recipients are required to

reply with a point-to-point response. Table 2 lists the types of response messages.

An _LXVZ message is sent in response to a KEEP_ALIVE message. Each slot occupant must reply to a
gzr_.p Z.LXVg message or else its ticket will expire. A bus occupant acquires a TICKET iIitssage from

the rou--terprocess by sending an ENROLL multicast message. Any slot occupant can leave the bus by

sending a DROPOUT message and getting a DROPPED in reSpOllS¢.

A COUNT TTL message is sent by the router process in response to a SZ_n3_.D&T&message. The
COUNT T_ message contains the number of expected _.__D_TA messages the sender should receive

from a_epfin8 receivers. The COmrr_TTL message also c,_tains the time-to-live ('VrL) for the

message. The TIL is the length of time the message should spend in the queue being retransmitted before
it is flushed. The sender of a S_D_D_ message can receive _CX_D&TJ, messages immediately after
sending and my time before the COUl___ messagefrom therouterl_ocessbut the send will not

proceeduntiltheCOOler z'_ isreceived.

A _NS ROU_ message is sent by the router in response to a RF._ ROUTE message. It contains a
Boolea_and a list of destination p¢_. If the Boolean is true, the fist is used to accept the message on

specific ports.

2.4.3 Information Messages

Information message are mulficast message directed to all slot occupants of a bus. They are used to
maintain local routing tables if used by slot occupant processes. Each slot must acknowledge the messase

9

lnfccmation

Mess_e
ROUTE_ADDED

ROUTE DH,EFt_

_e

Descripdon
a connection has been added

a connection has been deleted

Table 3: Multibus information messages

but it may decide to discard the message or use it to maintain its local routia8 table. Table 3 lists the

information messages in the MULTmUS.

Both messages are sent by the router process in response to the addition or deletion of an inte.w,mua_on.

It must be acknowledged by all enrolled bus slots. Its contents can be ignored by bus occupants that do

not maintain their own routing tables. Multicast updates of changes to the router table can be disabled as

an option when the bus is stmed.

3 Discussion

One d our major goals in designin8 and implementing the multicasti_ software bus was to establish a

new means of interaction between distributed programs instead to the client-server model. We needed a

method of handling transient and decentralized reconfig_ations withcmt interruption of service. The

Multibes meets these goals, but we also needed a means of mmitorin8 conferences and making them

globally visible list without users knowing details of the bus infrastructure. Since a multicasfin8

c,mfeatw, e is a virtual service 2, _ conventional services where applications connect to well-known

"sockets" on designated servezs, we needed a way to list those available buses by listening to the netwmk

for periodic multicast messages. Each executing router process of a bus periodically sends an unreliable

datagram advertising its presence. These datagrams include the multicast address of the bus through

which a user can join a bus conference.

A bus coaference is a colleaion of bus slots (and their possible occupants) that are currently available to

join by starling a new application in an open bus slot. From previous experiex_ with message services

like PVM, we found that when an application is ccanprised d multiple services that are interdependent on
one another, it becomes diffaadt to ccmrdinate their execution. For example, if a server fail.¢, it is difficult

to isolate which one failed. The software bus model solved some of these probkms, but users were still

unawane of how they fit into a conference, what tools they needed, and how to join the application. To

solve the problem of global visib'dity, we created a tool called the Cotnmunications Manager (CM) that
maintains a list of buses in a system without relying on a central registry by listening for periodic bus

advertisements. F_ure 6 shows a picture of the CM window tool that lists buses currently available on the

network. It lists all currently active buses on a network and the status of their slots. A bus is removed

from the fist if the CM tool receives a cancellation mnlticast message or it does not hear a periodic
adv_t from the bus after a fixed period o_ time.

When a user clicks on the bes name, the CM tool shows the associated slots. When the user cJicks on a

dot ome, the slot properties are shown in the text window below the slot list. If the user double clicks on

a tool, this invokes the tool associated with the slot. The tool infm'mation is obtained by connectin8 to the

bus router process and qneryin8 it for information about bus slots and other properties. The

reconfiS_ation tools used in POLYLrm [12] use a similar protocol with a centralized bus wocess.

One application we found this particularly useful in was a spreadsheet _ to a bus slot that relied
on a mote database and an external stress analysis program to compute a set of values. The remote

database was _ as a requL-cd slot while the stress analysis program was configunat as an invola,'d

2Van hcobum of Lawxe, m_Berk_ley Labs calls them "virtual conferences" because they have no origin

and ate completely decentralized.

I0

Ftgure 6: The Communications Manager (CM) application

slot. A delay in registering the database in its slot meant that the spreadsheet queued its messages until
they could be processed by the database. Messages sent to the invoked slot could be processed almost
immediately. The nice feature c£ the experiment was that anyone could start up the database frownany
host ce our network and it soon found the bus, enrolled, and began accep6n8 messages without the need

for any other process to know its actual krattion.

A maj_ problem with the ce_alized bus scheme occurs when slots are unoccupied, but it is desirable to
queue messages. The cen_alized bus must have enough buffer space to queue messases ecross all
inteav.mmections. In a multicast bus, however, each bus occupant ts respoes_le for subsequent

retransmisstons d queued messages in cases where insufficient positive ecknowledgments have been
received,

Another major problem with the c,e_l_alized bus is the difficulty d implementing an interrupt scheme
when a messase is queued for delivery. Polfin8 by the bus occupant works but it is was_ul. In order to
interrupt a bus occupant, the bus process must be co-resident on the same processor or rely on elaborate
m_nhani_n_ tODOt_ a bus slot _ a me,ssase. Multicasti_. howev_, nequbes none _ this complexity.
Queued messases are continually multicast until their time-to-live expires. A bus occupant can receive •

message at any time during the retransmission period. _ore. the message can be "requeeed" by

not respondin8 with an _x I_T_.

Eve_ with ItCX_D_ messages flora recipients, our approach reduces the number of messases needed to
send data between bus participants. This assumes that all bus participants know the topology and do not

have to query the Ireswith m__t_j'J_ messages. In the case of the producer-consumer, for instance, the
producer must receive three ACK DATA messages and one COUNT_TTL message in response to one

SEND_DATAmessase. Thus. in th_ MULTmUSeach SEND_DATA messa8 e _luires a minimum af

N=2+R {I}

II

messages where R is the number of recipients because a single multicast message is sent and elicits R

positive acknowledgments plus the router COUNT _ message. Furthermore, there is no overhead of a

bus process involved. All R responses are low-level messages that can be sent in parallel. In this case, we

assume perfect transmission, but in the worst case, the producer retransmits the message until three

acknowledgment are received or a time-out expires. Finally, the MULTmUS uses the VMTP protocol that
has a significantly reduced message overhead than TCP/IP.

In a centralized bus, each data send operation requires a minimum of

N = 2 +2 xR (2)

mes.qtses for R recipients. First, the producer must send the message to the bus process. Then. each
recipient must be defivered and _c.knowledse the delivered message. The bus overhead of copying and

queuing the messese must also be factored into the pedormance in this case. The 2 X R messages are all

handled by the bus process that quickly becomes the bottleneck of the system.

The calculations above are crude and optimistic, but we continue to collect empirical evidence regardin8

rates of problems includin8 retr_sions, lost messages, and initialization of the client routing tables in

the MULTmUS. This latter cost can be factored out for buses with static topologies since in the limit it will

becon]e negligible. In dynamic buses, reconfiguratious may be frequent, but the MULTmUS still has the

advantage. A centralized bus or client-server scheme would require complex notifications and

negotiations between all parties. In the MULTmUS. changes to the logical topology are multicast. This
allows clients to receive updates asynchronously and maintain up-to-date routing tables.

4 Conclusions

We have described an implementation of a software bus called MULTmUS using IP multicastins. Our

approach increases the performance, reconfigurability, and fault tolerance of a distributed applicati_m by

relyin 8 on IP multicastin8 to exchange messases between logical hosts on a network. This approach

rep_ an improvement over existing point-to-point methods includin 8 remote procedure calL We
also describe some motivation for creating a globally visible set of bus conferences without relyin8 on

centralized resource services.

Our future plans call for experimentation in a multicast bus without a router process for increased fault

tolerance. The interconuecfiou graph will be replicated across a qucntm of bus occupants to decrease the

probability of failure in the case of partitioning and group failures. In addition, we are implementin8
authorization llLoc_hmnigmgtO control what users are able to see and enroll applicatiens in bus conferences

to give further slrucnn'e and control to interactions between bus participants.

References

[1] Purtilo, J., Polylith: An Environment to Support Manasement of Tool Interfaces, ACM

SIGPLAN Symposium on Language Issues in Programming Environments, Seattle, WA, June

25-28 1985, pp. 12-18.

[2] White, J. E. A High-Level Framework for Network-Based Resource Sharing, AFIPS National

Computer Couf_, 1976. pp. 561-570.

[3] Nelson, B., Remote Procedme Call, Ca_egie Mellon University Department of Computer

Science, May 1981.

[4] DeRemer, F. and H. Krm. Programming-in-the-large versus Programmins-in-the-smaU, IEEE

Transactions on Software Engineefins, June 1976, Volume 2, Number 6, pp. 80-86.

12

[5]

[6]

[71

[S]

[9]

[10]

[II]

[12]

Cl_dt_. D., Computer Science Department. VMTP: Versatiie Message Transaction Protocol,
January 1988, Stanford University.

Deerins, S. E.. Multicasting routing in intemetwtxks and extended LANs. ACM SIGCOMM '88
Symposium. August 1988.

Notkin, D. and A. Black and E. Lazowska and H. Levy and J. Sanislo and J. Zahorjan.
Interconnecting Heterogeneous Computer Systems. Communications of the ACM. March 1988,
Volume 31, Number 3, pp. 258-273.

Sun Microsystems Computer Corp.. Remote Procedure Call Protocol Specification. January 1985.
Mountain View. CA.

Masee. J. andJ. Kramer. Constructing Distributed Systems in Conic. IEEE Transactions on
Software EnsineefinS. June 1989. Volume 15. Number 6. pp, 663-675.

Geist, A.. The Portable Virtual Machine (PVM) Environment. University d Tennessee Computer
Science Department. April 1990. TR-1677.

Postel, J.. Internetwork protocol approaches. _ Transactices on Communications. April
1980.

Hofmeister, C. R.. Dynamic Reconfiguration in Software Buses. Univessity of Maryland
Computer Science Department. August 1993.

13

