
Supporting Virtual Software Projects on the Web

Kari Alho, Reijo Sulonen
Helsinki University of Technology

TAI Research Centre
PL 9555

FIN-02015 TKK, Finland
Email : Kari.Alho@hut.fi, Reijo.Sulonen@hut.fi

Abstract

A growing share of all software development project
work is being done by geographicall y distributed teams.
To satisfy shorter product design cycles, expert team
members for a development project may need to be re-
cruited globally. Yet to avoid extensive travelli ng or re-
placement costs, distributed project work is preferred.
Current-generation software engineering tools and asso-
ciated systems, processes, and methods were for the most
part developed to be used within a single enterprise.
Major innovations have lately been introduced to enable
groupware applications on the Internet to support global
collaboration. However, their deployment for distributed
software projects requires further research. In particu-
lar, groupware methods must seamlessly be integrated
with project and product management systems to make
them attractive for industry.
In this position paper we outline the major challenges
concerning distributed (virtual) software projects. Based
on our experiences with software process modeling and
enactment environments, we then propose approaches to
solve those challenges.

1. Introduction
For a number of reasons, a growing share of all soft-

ware development work is being performed by geo-
graphicall y distributed organizations, teams, or individu-
als. The production of competiti ve software products
today requires one to skill full y put together talented
work of a large number of professionals from various
fields. In many cases, it is not reasonable to assume that
all project team members can be found from the local
off ice. Many strategies exist to save costs and shorten
development cycles, such as utili zing off- the-self com-
ponents, subcontracting, or distributed and joint projects.
To make these new strategies effective, new manage-
ment and information technology approaches are needed.

Current distributed projects often incur substantial
overhead in time and cost due to increased communica-

tions and management effort, misunderstandings, rework,
or lack of standards. Often this even results in lower
qualit y in the results. In order to reall y save costs, (e.g.,
through decreased travel or increased paralleli sm in the
development process), better methods and tools to man-
age distributed development projects are needed. We
will call such projects virtual projects, since they utili ze
resources in many organizations, thus forming one kind
of a virtual enterprise.

We do acknowledge that many of the problems and
challenges associated with virtual software projects are
not primaril y of technical nature, but instead deal with
human behavior. For instance, the organizational proc-
esses enabling team formation and the management of a
distributed process during its li fetime have significant
impact to the project results. In this paper, however, our
treatment is technical, and process issues are only dis-
cussed in the context of modeling and enactment tech-
niques.

The software development and project management
tools used today in companies were designed to operate
well within a single organization. Development and
management processes are also typicall y modeled to
occur within one enterprise; perhaps excluding customer
processes and simple subcontracting.

Innovative collaborative applications for the Internet
are emerging increasingly, so that supporting global col-
laboration is now enabled in simple application areas.
However, the deployment of groupware collaboration for
software engineering requires further research. In par-
ticular, collaboration must seamlessly be integrated with
project and product management systems to make them
attractive for industry.

Workflow systems have made it possible to tie to-
gether simple applications to accomplish more compli-
cated tasks [1]. However, most current workflow suffer
from a number of deficiencies, which have hindered their
widespread adoption in the product and software devel-
opment domain. First, the workflow model, once speci-
fied and started for execution, cannot typicall y be modi-
fied on the fly. This makes it impossible to model and
execute ad-hoc processes, a necessity in many dynamic
businesses. We firmly believe that a process model



should be allowed to be modified and speciali zed even
after it has started execution.

Second, current workflow environments typicall y in-
clude a built -in process modeling tool with it’s own for-
malism, often the only means to specify the process. It is
unrealistic to expect that one tool or formalism could
offer all the features needed to model all processes of
say, a large multi -national or virtual enterprise. In prac-
tice, there already exists a large number of process mod-
els in the organization, and it would be a waste of effort
to re-model most of these.

Third, many workflow systems are implemented so
that the resulting workflow can only be executed in a
closed homogeneous computing environment, typicall y a
local area network. This makes it diff icult to successfull y
apply workflow technology in large organizations, where
heterogeneous environments do exist. With current
workflow tools it would be quite diff icult to define and
execute processes spanning several organizations, li ke in
virtual enterprises. However, recent advances in net-
working and computing technologies (e.g., Java and
agent technologies) have enabled new approaches for
extending the capabiliti es of workflow execution.

This paper introduces our approach for finding solu-
tions to these challenges. Our research group has already
implemented some software components enabling the
definition and execution of dynamic workflows (ones
that can change during their execution) [2]. We have also
ported the process engine to Java, so that it is now able
to support distributed process execution in the Internet
through a central server and client applet architecture.

Now, our aim is to extend these components so that
process models from different sources (e.g. commercial
project planning tools) can be utili zed in the process
support environment through model converters. To fur-
ther support the definition and execution of workflows
on autonomous computing environments (li ke in virtual
enterprises) is another major goal of our work.

The rest of this paper is organized as follows: in Sec-
tion 2 we position our work among other efforts to man-
age virtual software development process. We also pro-
pose our project integration model. Section 3 outlines the
conceptual framework we use for process modeling and
enactment. Section 4 gives an overview of a system ar-
chitecture in which such a framework has been imple-
mented. Section 5 discusses related work, and finall y
Section 6 gives conclusions and outlines our future work.

2. Background
Managing and performing distributed projects re-

quires various skill s from the personnel, including com-
munications, management, teamwork, and technical
skill s. Likewise, an effective technical solution consists

of many individual technologies, tools and methods
woven together. Background for these individual solu-
tions may well come from different scientific fields, so
virtual software projects are a good candidate for cross-
disciplinary research. At least the following fields could
be involved:

• Software Engineering (process modeling),

• Artificial Intelli gence (agent technologies),

• Product Data Management, and

• Data Communications (Internet).

The parties taking part in a virtual project can be
autonomous and geographicall y distributed. They can
utili ze different hardware platforms, operating systems,
communication protocols, and software tools. This im-
plies that tightly integrated, technology-specific IT solu-
tions are not acceptable.

We propose a technology model for collaboration in
virtual projects which is based on loose integration of
process, product and the collaboration platform. Integra-
tion is needed to support collaborative work and enable
the transfer of product data and project information. Yet
the individual organizations taking part in the collabora-
tion are autonomous, and we cannot assume that they
would drasticall y change their internal working methods
to support virtual projects.

2.1. Process integration

Process models and their execution (or enactment)
continues to be an active research area worldwide. A
great deal of the work has been invested on devising im-
proved process model formalisms for expressing various
aspects of a business or engineering process. However,
since process models have so many different uses (e.g.,
to understand a process, simulate, analyze, or execute it
with a computer system), we feel that even today no sin-
gle model formalism is good enough for all purposes.

Our approach is to develop a “common denominator
representation” (CDR) of many process modeling for-
malisms and use it as a platform for joining different
modeling formalisms, such as Petri Nets, statecharts, or
Gantt charts. To integrate specific models, one has to
map the specific formalisms to the CDR (and vice versa
in some applications). The CDR model—which we dis-
cuss more in Chapter 3—includes abstractions of activi-
ties, artifacts, and agents with associated behavior and
relationships.

Some specific problems will arise when we try to map
process formalisms not intended for execution (such as
an IDEF0 chart) into the CDR, which does include exe-
cution semantics. Typicall y, we must use heuristics to



include a predefined execution model (a statechart) into
the converted process model.

On a higher level, it is important that all parties un-
derstand and interpret a process in a similar manner. A
useful method to improve the understanding is to de-
velop a shared ontology of the needed concepts.

2.2. Product integration

A shared understanding of the structure and properties
of the developed product (i.e., software) is vital to the
success of a virtual development project. However, as
stated earlier, we cannot assume tight integration, li ke a
common file system. In the presented Software Work-
mate architecture we propose that the process engine
only knows about URL-kind references of the artifacts,
and specific artifact servers would handle the specifics
of data access [3]. In a virtual project environment it
would be natural to assume that the artifacts would
mostly be accessed from the WWW (through a WWW
artifact server).

2.3. Platform integration

Workflow models need a strong supporting infra-
structure to enable their controlled evolution and execu-
tion and integration to other computing resources. In our
earlier effort, a preliminary version of such an infra-
structure was built based on CORBA architecture [3].
Recent advances in Java and other internet technologies
have made them viable solutions for integrating and
utili zing computing resources company-wide or even
across organizations. We do believe that in the future
these technologies will provide a good basis for distrib-
uted process management.

Based on the earlier work, we have re-implemented
the process engine (PE) component in Java. Client appli-
cations (or applets) can communicate with the PE
through Java Remote Method Invocation (RMI) protocol.
This means that it is now simpler to integrate process
support into Java applications and applets since separate
middleware is no longer needed.

3. Process Modeling and Enactment
Framework
In this section we present in more detail the common

denominator representation (CDR) model for process
modeling and enactment. The model, as introduced in
Chapter 2.1, consists of three basic entity classes:

• Activities: the basic units of work. These units
can be assigned, ordered, scheduled, etc.

• Artifacts: the things created, modified and used
by the activities.

• Agents: the “doers” , that is, who perform the ac-
tivities. These can be human beings or software
programmed to perform specific activities.

Each entity class has class-specific attributes and re-
lationships as well as methods for manipulating both the
attributes and relationships. In addition to these, the
framework implements a general attribute model allow-
ing the user to define his own attributes (per instance) as
needed.

When representing a real process with the aid of the
entities in the framework, the entity classes are instanti-
ated into objects that represent specific real-world enti-
ties.

Artifact Artifact

Agent

Activity
Input Output

Executes

Human agent Automated agent

Figure 1: Conceptual Framework

The entities and their relationships are depicted as a
UML class diagram in Figure 1. The rectangles represent
the entity classes, and the lines named relations. In the
UML notation, an arrow represents speciali zation, so in
our case, both Human agent and Automated agent are
speciali zations (i.e., subclasses) of Agent.

An entity class instance may also have named rela-
tions to other specific classes with a general relationship
mechanism. For example, this can be used to model
causal activity relationships.

To model behavior of the entities, all the three basic
entities can have an associated FSM, which describes the
li fe cycle model of the entity. In most cases these can be
freely defined, but in order to support automated enact-
ment, we do use a system-defined FSM to model a fixed
part of the activity behavior.

The basic entities can be grouped together to form
more meaningful structures for process modeling, en-
actment, and re-use. We define process as a uniquely
named set of activity, artifact, and agent instances. Proc-
esses can form hierarchies, so that one process has a set
of subprocesses. Another kind of collection of the three
basic entities is called a project. A project represents a



process, which is ready to be enacted, so it must fulfill
the following conditions:

• There must be at least one agent associated with
every activity of the project.

• Every artifact of the project must have a physical
representation.

A process can be activated to make a new project of
it. The activation method checks and, if necessary, ful-
fill s the above conditions. One basic entity can belong to
many processes or projects, so that shared activities can
be represented. Processes and projects can form hierar-
chies, so that one process has a set of subprocesses, and
one project has a set of subprojects. The activation
method preserves a defined hierarchy.

4. Architecture
The main architectural components of the system are

an (optional) Object Request Broker (ORB), the artifact
servers, the process engine, and the client applications.
The components are depicted in Figure 2. Server compo-
nents are displayed below the ORB and Java RMI level
and client components above it.

Object Request Broker

Process model
converters

Process Engine

CMRDB OOD
B

FilesWWW

Java RMI

Artifact
Servers

Artifact
Servers

Artifact
Servers
Artifact servers

To
ols
To
ols
Tools

Aut
o

Age
nts

Aut
o

Age
nts

Auto
Agents

Process
Models

Java
clients

Java
clients
Java clients

Java
clients

Java
clients

CORBA
clients

Figure 2: Components of the Architecture

An ORB is the central middleware component which
makes the locations of system servers largely invisible to
the clients within a network. It also can make the serv-
ices available on heterogeneous networks and client
computers. The Java RMI can also supply these services,
provided the affected components are implemented with
the Java language.

The artifact servers take care of storing the data of the
artifacts in a system-specific way and serving access
requests of the other system components through a stan-
dard protocol.

The process engine is the central service component,
which is used to store and execute process models in the
CDR format. It receives service requests through its API
(defined in CORBA IDL or Java) and stores process de-

scriptions and enactment data into its internal object da-
tabase.

Client applications include model converters from
other process formalisms and clients used to track and
monitor process enactment. In a virtual project environ-
ment client applications might also represent agents
communicating and negotiating with remote parties.

When storing into one process engine processes that
span multiple parties, we must keep in mind that the pro-
cess engine quickly comes a very criti cal component in
the virtual project. Autonomous parties typicall y also
want to administer their own systems, so ideally we
would li ke to have multiple coordinating process en-
gines. One possible model for decentrali zed process en-
actment is proposed in [4], and it seems feasible to util-
ize the proposed Summit protocol in our enactment envi-
ronment.

5. Related Work
Armitage and Kellner describe the need for a similar

Common Denominator Representation in [5]. Their con-
ceptual schema has many similarities to our model.

Our approach to the architecture of a process support
system has many similarities with the ideas presented in
[6], where he proposes that the state of software proc-
esses should be stored separately from the applications
that created that state.

Han has proposed a general architecture for integrat-
ing workflow models and resources, e.g., application
programs, agents, and documents [7]. The formalism to
describe the models is called HOON (Higher-Order Ob-
ject Nets). The central idea is to arrange Petri net models
and their surrounding environment in a client/server
manner and model the interfaces explicitl y as a set of
special places, called interface places. We are currently
investigating how the ideas of HOON and the CDR rep-
resentation can be used together.

6. Conclusions and Future Work
We have outlined ways to extend an existing software

process support system so that virtual projects spanning
several autonomous parties could be supported. These
include:

• Utili zing process models expressed in different
formalisms, coming from different parties and
integrating them into a common one.

• Using the WWW as a primary medium for infor-
mation exchange.

• Distributing the project coordination into
autonomous agents and process engines.



We expect to utili ze our experiences from the earlier
systems to gain insight into the virtual project support
problem. In addition, we will work closely with our in-
dustrial partners.

Testing these ideas will t ake place within a newly
proposed research project titled “GECOS—Global Engi-
neering COrdination Support” . The project is to be
funded by the Technology Development Centre of Fin-
land and severeal Finnish product development compa-
nies.

References

[1] Georgakopoulos, D., Hornick, M., Sheth, A.: “An
Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure”,
Distributed and Parallel Databases, (3)1995, pp.
119-152.

[2] Alho, K., Lassenius, C., Sulonen, R.: “Process En-
actment Support in a Distributed Environment” .
Computers in Industry, 29 (1996), pp. 5-13.

[3] Lassenius, C.: The Design of the Software Work-
mate Process-Centered Software Engineering Envi-
ronment. Master's Thesis, Helsinki University of
Technology, Department of Industrial Manage-
ment, October 1996.

[4] I. Z. Ben-Shaul and G. E. Kaiser. A Paradigm for
Decentrali zed Modeling and its Reali zation in the
Oz Environment. In Proceedings of the 16th
International Conference on Software Engineering,
May 1994, pp. 179-188.

[5] Armitage, J., Kellner, M. I.: “A Conceptual
Schema for Process Definiti ons and Models” . In
Proceedings of the 3rd International Conference on
the Software Process, ICSP-3, pp. 153-165, Reston,
VA, October 1994.

[6] Heimbigner, D.: “The ProcessWall: A Process
State Server Approach to Process Programming” .
In 5th ACM SIGSOFT Symposium on Software De-
velopment Environments, pp. 159-168, December
1992.

[7] Han, Y.: Software Infrastructure for Configurable
Workflow Systems—A Model-Driven Approach
Based on Higher-Order Object Nets and CORBA.
Ph.D. Thesis, Technical University of Berlin, July
1997.


