
Abstract

Although work pr ocesses, like software pr ocesses,
include a number of process aspects such as defined phases
and deadlines, they are not plannable in detail. Howe ver,
the advantages of today’ s process management, such as
effective document routing and timeliness, can only be
achieved with detailed models of work processes.

This paper suggests a concept that uses detailed process
models in conjunction with the possibility of defining the
way a process model determines the work of individuals.
Based on the WAM approach1, which allows work ers to
choose methods for their tasks according to the situation,
we describe features to carry out planned parts of a
process with workers always being able to start e xcep-
tional mechanisms. These mechanisms are based on the
modelling paradigm of link ed abstr action workflows
(LAWs) that describe workflows at dif ferent le vels of
abstraction and classify r efinements of tasks by the way
lower tasks can be used.

1. Introduction

Process management or w orkflow systems gi ve the
opportunity to support document-based work processes
with the help of a pre-planned model of the process.
Workers are informed about current tasks and the
documents and tools the y need are made a vailable. By
strictly mapping the model onto the real w orld, certain
quality requirements of a real w orld process can be
obtained. In this way, the performing of all specified activ-
ities can be guaranteed, the time for routing documents and
information between workers can be minimized and one

1. This paper partly describes r esults from the pr oject
WAM - Wide Area Multimedia Group Interaction. WAM

is funded by the Telekom subsidiary DeTeBerkom.

can keep a general overview of the whole workflow. These
advantages are based on the assumption that a real w orld
process can be modeled in detail in advance.

Research in CSCW , w orkflow management and
software process management has sho wn that real w orld
processes are composed both of well structured parts and
parts that cannot be foreseen ([18],[13],[4]). An additional
view of w ork routines is gi ven here which we call
processual penetration. The processual penetration of a
workflow describes which parts of the w orkflow can be
assigned specific methods and which granularity the
descriptions of these methods ha ve. W e distinguish
between global and local methods and between high and
low granularity of these methods.

While most administrative w ork is plannable in great
detail, software projects in particular can be planned only
to a limited de gree. Assistance work stands for a detailed
method that perfoms a small part of a lar ger task. An
example of assistance w ork is the preparation and
assessment of meetings with time scheduling plus the
taking and distibution of minutes ([16]). Rules of w ork
only appear at a certain place within a w orkflow and are
often only of low granularity. Quality management aspects
of a process are one example of this.

As a result, when planning processes in detail, the
workflow paradigm of controlling real w orld processes
with process models has to be e xtended by additional
features. One approach is giving workers the possibility to
use exceptional functions and breaking out of the model-

Methods

global local

G
ra

nu
la

rit
y

hi
gh Administra-

tional work
Assistance

work

lo
w Project

Planning
Rules of

work

Flexible Handling of Work Processes
by Situation-dependent Support Strategies

Gert Faustmann
Fraunhofer Institut Software- und Systemtechnik ISST

Kurstr. 33, D-10117 Berlin, Germany
Gert.Faustmann@isst.fhg.de

based control cycle ([3], [10], [12]). Another approach is to
leave parts of a workflow open and specify these open parts
when the process arrives at these places ([11]). This paper
describes an approach that uses v ery detailed process
models as the basis for process support. With the help of a
flexible enactment strategy which is realized in the WAM

approach plus additional features to strengthen model
correspondence and cope with e xceptional situations,
workflows of different process penetration degrees can be
supported.

Fig. 1: Logical architecture

The following chapter describes the core WAM

approach. The third chapter then introduces the modelling
paradigm of LAWs, while the fourth chapter shows how to
use LAWs to support processes with dif ferent structures.
The closing chapters give a short insight into comparable
approaches and an outlook to future work.

2. WAM Approach

The main objecti ve of the approach is to combine
workflow technology with general groupware approaches.
The concept allo ws the construction of processes by
workers during process enactment and gi ves the oppor-
tunity to integrate groupware tools. Particular attention is
paid to inte gration of processes with communicational
work ([7], [16]).

2.1. Workflow-Metamodel

Work in WAM is organized according to tasks. Workers
get tasks, they work on these tasks and the y end work on
certain tasks. Tasks are parts of w orkflows. A w orker
decides to initiate a w orkflow if an e vent occurs to which
the organization must react and in whose context no action
has been tak en so f ar. When a w orkflow is started, the
initiator can assign initial tasks to the new workflow. Tasks
consist of a task description and a folder is assigned to
every task. With this information, a person is able to w ork
on an assigned task. There are now three options for work
on a task (see also Fig. 2):

1. Direct work
The task is performed immediately by doing things

according to the task description. This can be done by
using tools that are a vailable in the system (e.g. te xt
system, database system, communication system) or the
task can be performed without using an y computer tools,
for example by making a telephone call to an applicant.
The system does not control what the w orker is doing in
this phase. It just kno ws that the task is set to the w orker
and that s/he is working at this moment.

2. Delegation
The w orker can di vide the task into sub-tasks and

delegate these tasks to other w orkers within the or gani-
zation. The sub-tasks can be dele gated separately. This
makes it possible to delegate just part of the work while the
rest is done by the w orker him/herself. Delegation is
realized using a communication tool.

3. Starting sub-processes
The worker can start a process model which defines a

plan for the processing of the task. A process model defines
which tasks, which resources for these tasks and which
capabilities to do the tasks are needed and also in which
order the tasks are processed. The structure of the (causal)
sequence is defined by a process net model.

There is no need to choose e xclusively between these
three possibilities, a combination of the methods is
allowed. F or e xample, it is possible to start a process
model, delegate two sub-tasks and also do work on the task
oneself. Note that a process model started by a particular
worker can also set tasks to the initiator him/herself.

Fig. 2: WAM Workflow-Metamodel

Because WAM of fers different methods of processing
tasks, it is possible to combine predetermined work with
self-defined, spontaneous work. This approach aims at
using workflow models only in conte xts which clearly
involve processual w ork. It is independent of the
processual penetration of work.

Linked Abstraction Workflows (LAWs)

WAM

WAM ExtensionExceptional
Functions

Extended
Enactment
Strategy

Different
Levels of Detail

Incorporation of
Support Strategies

workflow

task

process modeldialogue

folder

sub-task

consists of

worked on

n1

n

1

n

1

n

1

n
1

1

1

according to

produces

delegated by

1

1

2.2. Enactment in WAM

To demonstrate the WAM approach, we describe an
extract from a w ork process showing the enactment of a
small process model. Fig. 3 gi ves an o verview of the
example in which processes, communcational parts and
basic activities are connected.

Fig. 3: Task distribution in WAM

First, a w ork process is initiated by starting a process
model (1). The first task is set to a worker (2) who immedi-
ately performs this task. The follo wing task in volves a
decision (3) and is carried out via the communication tool
(4). The contacted colleague starts a process on his own (5)

which sets a first task to the w orker himself (6) and a
second task to another w orker (7). The latter asks the
initiator for further information (8)(9). When the process
ends, it provides a result which is returned via the dialogue
(10). The final task of the main process (11) is also
performed via a dialogue (12). A solution is sent back
immediately (13). The results of the main process are
delivered, as in the case of the sub-process, to the initiator.

2.3. Drawbacks of the WAM approach

Although the WAM approach of fers a fle xible way of
supporting processual work, there are some missing
features of support:

• WAM uses abstract models of processes that are refined
by the workers while doing a process. It is not clear at
the beginning of a process precisely which acti vities
will take place. At best, there may be recommendations
for how to refine a given task.

• Having chosen a process model as a method for a task it
is dif ficult to change this decision or parts of the
process model when enactment has started. In core
WAM, a w orker may use an e xtra task to contact the
initiator or w orkers within the process to influence
further work activities.

• After some time of supporting w ork with WAM a
situation-dependent hierarchy of processes and tasks
appears. WAM of fers no other features to coordinate
group work than the a vailability of contacts to other
workers within the whole process. Internally , WAM

provides a data structure called causality trees for
storing the (causal) relations between activities of all
abstraction levels. This could be used as the basis for
further coordination mechansims ([5]).

3. Linked Abstraction Workflows (LAWs)

LAWs provide aspects which could form the basis for
overcoming the drawbacks of the WAM approach. The y
introduce different levels of a process model that represent
different abstractions of w ork. On the lo west level they
provide very detailed work descriptions. The refinements
(the connections between two neighbouring abstraction
levels) are classified by refinement de grees that influence
the w ay a w orker can use the methods of a deeper
abstraction level. In e xceptional situations, the different
levels of abstraction allow smooth changes of method ([8]).

3.1. Different levels of abstraction

Here, in contrast to WAM, a hierarch y of tasks is
modelled before process enactment. The main objective of
the process forms the root of this hierarchy (Fig. 4).

Fig. 4: Hierarchy of objectives

On the lowest abstraction level there are v ery concrete
objectives that can be reached by certain acti vities. Within
this hierarchy, leaves may appear at dif ferent abstraction

C
om

m

C
om

m
START

START
Comm

1

2

3

4

7

6

5

8 9

10

1213

11

AL1

AL3

AL2

AL4

areas of
responsibility

le
ve

ls
 o

f
ab

st
ra

ct
io

n

objectives/
tasks

levels. A leaf is symply an objecti ve which is not refined
any further. This is independent of the level of abstraction a
leaf is located at. A LAW can thus contain objectives which
represent very abstract tasks without being assigned to a
concrete method.

The objectives of one abstraction le vel that ha ve the
same “parent” objective are denoted as an area of responsi-
bility, since when enacting a LAW, a worker is responsible
for all sub-objectives of a task that was set to him.

In the initial state of a LAW, all objecti ves of one
abstraction level that belong to the same parent objecti ve
can be ordered to process descriptions. A process
description may contain the following aspects:

• A set of tasks (ob viously, because children objectives
are always identified as tasks),

• a set of documents or information pieces produced by
the process

• an ordering relation that combines tasks with
documents and/or pieces of information and relates
tasks to one another.

In order to describe a process, at least the set of tasks or
the set of documents are required. If an objecti ve is not
subdivided (refined) into other objecti ves, it may ne ver-
theless be refined to give a process that is only described by
the documents to be produced. The ordering relation can
only be applied when a process is described by tasks.

Additionally, a process description must also contain an
interface definition for input and output of the process.
This can be done by specifiying which documents are
needed for starting the process and which documents are
produced by the process. This gives the opportunity to link
all processes of an abstraction level together, resulting in a
single overall process at each abstraction level (Fig. 5).

Fig. 5: Linked Abstraction Workflow (LAW)

3.2. Modelling support strategies

As stated above, an objective can generally be refined
by a process description. If this process description
contains tasks, these tasks can be interpreted as objectives
and be further refined in the LAW. So the LAW models tasks

and assigned methods. The w ay tasks and assigned
methods are set to a w orker depends on the support
strategy that is realized in the process management system.
Many systems set tasks to w orkers and strictly assign a
method by presenting documents and corresponding
tools. Some even set tasks of only the lo west abstraction
level to w orkers. The WAM approach just recommends a
method for a gi ven task and lea ves the final decision on
how to refine (and thus how to do) work to the worker.

LAWs contain refinement de grees for all refinement
relations between an objective and all parts of its corre-
sponding process description. At the moment a refinement
degree can be one of the following marks:

• CAN is the def ault mark and is lik e a recommendation
to use the proposed method.

• MUST forces the worker to use the gi ven method. S/he
may use further methods, but is not allowed to leave out
the specified method.

• STRICT is like MUST without the possibility to use other
methods.

4. Work support with LAWs

Work support with LAWs is based on the managment of
tasks in the WAM approach. If a LAW is to be enacted it can
be initiated on any abstraction level. Every level contains
one process model (of that certain abstraction le vel) that
can be interpreted.

If a task is to be done, the task is set to a w orker (there
may be mechanisms using roles and organizational models
that are not discussed here). Just lik e in WAM, the worker
now has v arious options for proceeding with w ork. But
here, these possibilities are restricted by the specific
refinement degree of that task in the LAW. Consider, for
example, a process that is specified by some tasks,
documents and an ordering relation between tasks and
documents. If the refinement to this underlying process is
marked with CAN, the worker may use the process as well
as any other method. S/he can work as s/he wants to. If the
refinement is marked with MUST, the child process has to
be used by the w orker although s/he may also use
additional methods. In the case of a STRICT, the w orker
must use the process and may not use an y additional
method.

Because process descriptions consist of different parts,
refinement degrees can dif fer between these parts. It is
therefore possible to refine an objective to give a process
that is described by tasks and an ordering relation on these
tasks, but with a STRICT tag on sub-tasks and a CAN tag on
the ordering relation. This w ould mean that all specified
tasks have to be done, b ut that the specified ordering of

these tasks is just a recommendation. Note that the o verall
use of STRICT tags produces process models in the
common sense of workflow management where no flexible
process adaptation is possible.

4.1. Exception Handling with LAWs

The advantage of the WAM approach was the possibility
to react fle xibly to changes in the e xternal situation.
Refinement degrees now return some kind of strictness to
model deployment. But the formal structure of LAWs offers
a transactional-like approach to exception handling.

If a w orker encounters a problem when w orking on a
task, s/he should be gi ven the possibility to contact the
contractor of this task. In a LAW, the contractor of a task is
the owner of the superior task in that LAW. The contractor
now has to decide ho w to solve an existing problem. S/he
may have already done some other work within the context
of her/his own task. If s/he is not able to cope with the
problem within her/his own area of responsibility, s/he also
has the possibility to gi ve a task back to the contractor .
Fig. 6 shows the skipping of abstraction levels in the case
of an exception at a deeper level.

Fig. 6: Handling exceptions over
abstraction levels

If a worker wants to break a refinement tag because the
external situation demands methods other than those
specified, s/he has to contact the contractor of the task in
question. In this way, it is e ven possible to break STRICT

tags and adapt to external changes.

4.2. Example: project management

The following example will sho w the special appli-
cation of exception handling in project management. Fig. 7
illustrates one main process that is being handled by a
supervisor, two processes of the second abstraction le vel
(worker 1 and 3) and a process of the third abstraction

level. Tasks are depicted as bars similiar to the graphical
presentation of projects in planning tools. An inner bar of a
task shows the progress of a task.

Fig. 7: Deadline propagation

When worker 1 begins work on task T22, s/he realizes
that s/he cannot finish within the deadline D specified by
the supervisor. S/he starts an e xceptional function that
leads the supervisor to change the deadline D to D´. The
system automatically propagates this deadline to all
dependent sup-processes of the next level. So worker 2 gets
the new deadline D´ and can decide if the system should
propagate the new deadline to subordinated processes too.

5. Related Work

First approaches to flexible handling of workflows were
integrated into w orkflow systems based on the strict
workflow paradigm. The MELMA C system proposed
changeable process areas that had to be specified before
process enactment ([2]). ProMInanD extends the possibil-
ities of a worker and allows the return of tasks (electronic
cirulation folder) and changes to the specified path of a
folder ([12]).

Approaches exist which use hierarchical vie ws of
processes. The OBM approach allo ws the gradual
refinement of a process with the objecti ve of supporting
different stages of process modelling ([17]). The PEA CE
system goes one step further ([1]). It integrates a hierarchy
of goals with sets of activities. Additionally, these activities
can be ordered. So one can distinguish between strate gic
(goal hierarchy), tactical (goals associated to activities) and
operational process modelling (ordering of activities). The
process management system ProcessWEAVER uses a
hierarchy of acti vity types ([9]). These acti vity types are
bound to process fragments that again can be integrated as
methods into other process fragments. But these refinement
decisions have to be made when modelling a process.
Furthermore, a strict approach of support strate gy w as
chosen.

AL1

AL3

AL2

AL4

T1

T3

T2 T4

T21 T22 T31

T32

T321

supervisor

worker 1 worker 2

worker 3

T

D D´

D´ !

D´ ?

Another view on work processes is given by the Action-
Workflow approach that models processes by sequences of
communcative actions ([19]). The fle xibility of conversa-
tions is the basis for process enactment. W ith its flexible
way of b uilding situation-dependent processes this
approach is comparable to the WAM approach. In the same
direction but with its main focus on resource management,
the COSNA approach allo ws the incorporation of sub-
processes into processes during enaction ([11]).

Finally the CoMo-Kit approach allows the alternation of
process planning and process e xecution with special
emphasis on design processes ([14], [15]). T asks can be
decomposed by workers and dele gated to other w orkers.
Exception handling is realized on the one hand by looking
at physical (input/output) relations between tasks and using
organizational models, and on the other hand by using a
truth maintenance system allowing management of
previous decisions and adaptation to changed decisions.

6. Outlook

Some extensions to the concept will be made in the near
future. Besides the storage of causal dependencies of tasks
and activities, the storage of "ph ysical" dependencies
(characterized by input/output-relations) extends the possi-
bilities for reacting to exceptional situations. A first step in
this direction was taken in [6], in correspondence with [14]
and [15].

We plan to realize a prototype implementation to
confirm the applicability of the introduced concepts. This
implementation will be based on the e xisting WAM

prototype.

7. References

[1] S. Arbaoui, F. Oquendo, Goal Oriented vs. Activity Ori-
ented Process Modelling and Enactment: Issues and Per-
spectives, in.: Brian C. Warboys (ed.): Software Process
Technology, EWSPT‘94 Proceedings, LNCS 772, Spring-
er, Berlin, Heidelberg, 1994, pp. 171-176.

[2] W. Deiters, A View Based Software Process Modeling

1992.

[3] G. De Michelis, M. A. Grasso. Routines and Conversa-
tions. In: Structured Programming 14, 1993, pp.110-118.

[4]
Enactment Mechanisms, in: Software Process Technolo-
gy, Third European Workshop, EWSPT‘94, Villard de
Lans, France, February 7-9, 1994, Proceedings, LNCS
772, Springer, Berlin, u.a., 1994, pp. 90-106.

[5] G. Faustmann, Workflow Management and Causality
Trees, COOP’96, Second international conference on the
design of cooperative systems, Juan-les-Pins, France, June
12-14, 1996.

[6] G. Faustmann, A Design Rationale based on Situative
Process Evolution, Abstract, Workshop "Coordinating
Work Processes", available through "http://wwwagr.infor-
matik.uni-kl.de/~dellen/Beitraege.html#Faustmann",
University of Kaiserslautern, August 22-23, 1996.

[7] G. Faustmann, D. Wikarski, Exception handling in Petri-
Net-based Workflow Management, International Confer-
ence on Practical Aspects of Knowledge Management,
Workshop on Adaptive Workflow, Basel, October 30-31,
1996.

[8] G. Faustmann, Cooperative Exception Handling with Hi-
erarchical Processes, COOP’98, Third international con-
ference on the design of cooperative systems, Cannes,
France, May 26-29, 1998 (to appear).

[9]
to UNIX, Proceedings of the Second International Confer-
ence on the Software Process, Berlin, February 25-26,
1993.

[10] G. Cugola, E. Di Nitto, C. Ghezzi, M. Mantione, How to
deal with deviations during process model enactment, in:
Proceedings of the 17th International Conference on Soft-
ware Engineering, Seattle, Washington, April 1995.

[11]
agement of Workflow Resources to Support Runtime
Adaptability and System Evolution, International Confer-
ence on Practical Aspects of Knowledge Management,
Workshop on Adaptive Workflow, Basel, 1996.

[12] B. H. Karbe, N. G. Ramsperger, Influence of Exception
Handling on the Support of Cooperative Office Work, in:
S. Gibbs, A.A. Verrijn-Stuart (Eds.), Multi-User Interfac-
es and Applications. Elsevier Science Publishers, North-
Holland, 1990.

[13]
and Their Application to Workflow Modeling, Forsc-

[14] F. Maurer, Project Coordination in Design Processes, Pro-
ceedings of WET ICE 96, Stanford, California, June 19-
21, 1996.

[15] F. Maurer, G. Pews, Supporting Cooperative Work in Ur-
ban Land-use Planning, COOP’96, Second international
conference on the design of cooperative systems, Juan-les-
Pins, France, June 12-14, 1996.

[16] B. Messer, G. Faustmann, Efficient Videoconferencing
with Workflow Management Systems (in german), in: K.
Hammer, D. Schmolke, F. Stuchlik (Hrsg.): Synergie du-

Magdeburg, 5.-6. Oktober 1995.

[17] J. Sa, B.C. Warboys, Modelling Processes Using a Step-
wise Refinement Technique, in.: Brian C. Warboys (ed.):
Software Process Technology, EWSPT‘94 Proceedings,
LNCS 772, Springer, Berlin, Heidelberg, 1994, pp. 40-58.

[18] K. Schmidt, Riding a Tiger, or Computer Supported Coop-
erative Work, in: L. Bannon, M. Robinson, K. Schmidt,
Proceedings of the Second European Conference on Com-
puter Supported Cooperative Work, Amsterdam, The
Netherlands, September 25-27, 1991, pp. 1-16.

[19] T. Winograd, A Language/Action Perspective on the De-
sign of Cooperative Work, Computer-Supported Cooper-
ative Work: A Book of Readings, Morgan Kaufmann, San
Mateo, 1988, pp. 623-653.

