
Working Group Report on Coordinating Distributed Software Development Projects

Harald Holz* , Sigrid Goldmann* and Frank Maurer#

*University of Kaiserslautern, AG Expert Systems, P.O. Box 3049, 67653 Kaiserslautern, Germany
e-mail: {holz, sigig}@informatik.uni-kl.de

#University of Calgary, Department of Computer Science, Calgary, Alberta, T2N 1N4, Canada
e-mail: maurer@cpsc.ucalgary.ca

Abstract

This paper summarizes the work presented at the WET
ICE ‘98 workshop on “Coordinating Distributed Software
Development Projects” as well as the ensuing discussions
that arose in the course of the workshop.

1 Introduction

Compared to other engineering disciplines, software en-
gineering (SE) still is a relatively young field. Although in
recent years progress has been made in software develop-
ment methods, techniques, and tools, software development
is still more an art than an engineering discipline and basic
problems remain:
• software development is expensive and time consuming
• software projects often run out of time and over budget.

The success of software projects still relies heavily on the
competence of the individual developers involved and not
on the maturity of the organization.

Another problem stems from the fact that in software en-
gineering special emphasize lies on design tasks whose re-
sults are highly volatile even in established engineering
disciplines. In practice, even the implementation or coding
phase in software development resembles more a design ac-
tivity than a typical production phase in other engineering
disciplines: Code can be changed easily whereas e.g.
changing a house that has been built is quite an effort. As a
consequence, the design and code of a software product al-
most always is subject to changes, whereas other engineer-
ing disciplines have a design phase followed by a lengthy
production phase.

In effect, the efficient management of changes in require-
ment, design, and code documents appears to be one of the
main problems of software development. Questions that
arise are
• how can one handle the effects of changes to software

artifacts

• how can we constrain the effect one change has to other
parts of the software system

• how can we ensure proper flow of change information.
Techniques for change management have to be provided

in order to ensure the timely conclusion of a project with
high-quality products.

Another problem that arises in software engineering is the
fact that there exist a large number of software development
tools and data formats, that need to be integrated into a more
defined software development process as projects grow.
Middleware tools are needed to facilitate this integration,
allowing legacy tools to communicate with each other so
that existing tools can continue to be used, and existing data
need not be discarded as software engineering technology
changes.

The above points emphasize the necessity for software
project coordination and communication support even in
ordinary, local software development projects.Lately, addi-
tional difficulties have arisen with the need to globally dis-
tribute software development projects. For economical or
technological reasons, projects cannot always be restricted
to one company or a single location:
• Time to market needs to be reduced in the Internet-age:

Business success is often strongly determined by being
the first selling a new technology.

• Some software projects grow too large to be handled in a
single location.

• Knowledge and skills needed in a project may not be
available locally but may be distributed all over the
world.

• Outsourcing development activities to emerging market
countries may provide the competitive edge to get a con-
tract.
Such global distribution of software projects drastically

increases the need for coordination and communication
support. Additionally, it adds another dimension to the
problem of coordinating such a project: Not only does the

project’s complexity make it hard for people to figure out
whom to contact when a questions comes up. In a distribut-
ed project they cannot just walk over to the person in ques-
tion. Even picking up the phone and calling the other person
might not be feasible if the project is distributed over differ-
ent time zones. Discussions in the style that people are used
to, i.e. official group meetings, or informal discussions over
some idea on a piece of paper, become impossible. Instead,
the necessity arises to support asynchronous as well as syn-
chronous collaboration with computer tools.

To summarize, three main research topics form the field
of computer-supported cooperative work were frequently
referred to in the workshop: communication, collaboration,
and coordination. Techniques developed in those areas need
to be adapted, extended and integrated with state-of-the-art
SE tools to support distributed software development activ-
ities. All twelve workshop presentations dealt with one or
more of these topics.

In section 2 of this paper, we further discuss these three
research areas and briefly summarize the papers presented
on each topic. Section 3 sums up the workshop’s discus-
sions on the applicability of existing technologies and their
shortcomings. Section 4 concludes this report.

2 Presentations

2.1 Coordination

Project coordination can be interpreted as the attempt to
get theright information to theright people at theright
time. In other words, this research area is concerned with
the trade-off between minimizing information overload ver-
sus avoiding a lack of information: sending information to
people who are not interested in it (thereby making it hard
for them to filter out the facts that are important to their
work) is as bad as having people not being informed of facts
that are important to them.

In order to address these issues, process modeling and en-
actment support has been proposed: process modeling pro-
vides a descriptive representation of the process to be
carried out. Process models contain implicit and explicit de-
pendencies which then allow for automatic notification sup-
port when changes occur during process execution. Several
presentations at the workshop dealt with process modeling
and enactment:

K. Alho [1] introduced a common dominator representa-
tion (CDR) for process modeling and enactment. The CDR
allows loose integration of different process, product and
collaboration platforms. This avoids the cost of re-modeling
when different organizations that take part in a virtual soft-
ware corporation use different modeling languages and
technologies.

P. Benjamin [3] described the architecture of a framework

that supports the whole project life cycle, consisting of
project definition, process design, analysis, enactment,
monitoring and redesign. Process design is supported by re-
using templates from a library while redesign is triggered by
proactive and reactive sentinels that monitor process execu-
tion.

G. Faustmann [4] presented a petri net-based process
modeling and enactment approach that allows the refine-
ment of workflows during enactment. Refinements are cho-
sen from a set of predefined alternatives and can be marked
to specify various forms of enforcement. In combination
with an exception handling mechanism, situation-depend-
ent coordination can be accomplished.

S. Goldmann [2] andF. Maurer [11] introduced a flexible
process modeling and enactment environment that focuses
on managing the consequences of changes during enact-
ment. Coordination activities are explicitly represented and
triggered at appropriate times. Their system integrates an
industrial tool for project planning and scheduling. The
process engine is able to react to plan changes.

R. Foley[6] presented a formalism to support the devel-
opment process within a virtual software corporation
(VSC). The formalism allows the representation of the more
complex nature of the communicational aspects between in-
dividual process actors of geographically dispersed teams
and organizations. The approach provides a solution for
representing a network of commitments (instead of a man-
agement hierarchy) to be found in VSCs. He illustrated his
work with a real-world example of a VSC that was distrib-
uted over three locations: Management, design teams as
well as core functionality implementation were located in
London and Edinburgh, whereas user-interface implemen-
tation was outsourced to a company in Singapore.

J. Grundy’s presentation [5] dealt with the integration of
process modeling/enactment environments and tools for
collaborative editing. This allows changes to artifacts to be
categorized according to the process steps in which they oc-
curred. A collaboration component can be “plugged in” into
third-party tools to provide both synchronous and asynchro-
nous editing capabilities. Their system provides a change
notification mechanism that can be configured by develop-
ers via a visual language.

In the ensuing discussions on process modeling and coor-
dination support, a number of requirements for a process
support tool were identified: Since VSCs are becoming
more common in software development projects, process
models should not only be definable for single-site develop-
ment, but also for a distributed project. In a VSC, each indi-
vidual company should be able to model and enact their
own process, using their modeling language of choice as
well as their own enactment environment (leading to the re-
quirement that different enactment engines need to be able
to exchange information). Process modeling tools should al-

low for bottom-up process definition (and support later in-
tegration of the sub-processes), as well as provide a top-
down way of defining processes. The resulting process
model should reflect a network of commitments, i.e. the di-
rect responsibilities and dependencies between tasks.

Since the process, as well as the product, in software de-
velopment is subject to frequent changes, process engines
need to support changes “on the fly”, i.e. remodelling must
be allowed during enactment, and the process engine must
be able to react to such changes in two ways: First, it needs
to be able to update its internal state to reflect the current
state of the software development process. Second, it needs
to be able to notify people involved in the process of the
changes that concern them. In other words, a process model
should realistically capture who should be informed of what
change, in order to avoid information overload of team
members.

Another aspect of coordination is ensuring data consisten-
cy, as well as configuration management of products gener-
ated during the software development process. The
participants agreed that these questions are a major aspect of
coordinating distributed software engineering projects, and
that substantial work is still needed on the topic.

2.2 Collaboration

Collaboration support addresses the problem of “joint
work” between participants that cannot be physically
present at a common location. Synchronous collaboration,
e.g. formal meetings and ad hoc discussions, need to be sup-
ported, as well as asynchronous collaboration, e.g. a “white
board” that is waiting in a virtual “room” for people to come
in and leave a note for everyone to see. Another aspect of
collaboration are virtual workspaces and collaborative edit-
ing of artifacts that result from a development process.

D. Herlea[8] reported on the use of an industrial group-
ware tool (TeamWave) for the requirements engineering
(RE) phase. The tool has been tailored to support collabora-
tive negotiation of requirements between geographically
separated agents. The RE process can be structured via cus-
tomized virtual rooms while the discussion of multiple per-
spectives is facilitated by specific TeamWave tools.

M. Penedo[12] presented an industrial experience report
on introducing collaborative infrastructure technologies
into a companies working practises. Synchronous data con-
ferencing could successfully be used for impromptu meet-
ings, accessing remote experts, collaboration in design or
training. Concepts for the integration of synchronous and
asynchronous capabilities, like virtual rooms, have been
found to be important but too immature.

The discussion on synchronous and asynchronous collab-
oration support showed that collaborative spaces, and the
management of the information flow inside and between

such spaces require further research. The question how to
integrate traditional software engineering support tools with
groupware approaches and collaborative spaces is still an
open issue. Two alternatives are
• to extend traditional software engineering support tools

by groupware technology, or
• to use existing groupware tools to support software engi-

neering activities.
Another way to deal with collaboration in distributed

projects is to try and organize the task at hand in a way that
few or no interdependencies exist between the subtasks,
which can then be worked on independently.

G. Matos [10] presented a formal approach for independ-
ent component development with the aim of avoiding com-
munication between developers of different components.
While data dependencies are defined early in the project,
control interactions are handled during system integration.
To correct faulty component interaction, the approach al-
lows the automatic synchronization of component behav-
iour, making it consistent with specified receptive safety
rules.

2.3 Communication

The topic of communication addresses the need to inte-
grate different legacy tools and data formats into a network
in which messages can be sent and data exchanged between
the tools.

S. Dossick [9] presented a middleware framework for ar-
tifact storage in groupware environments. The system refer-
ences external objects that can be accessed via appropriate
protocols written for the framework; additional protocols
can be integrated easily. Furthermore, an initial set of serv-
ices like persistency, transaction management and work-
flow functionality are provided by the framework.

M. Hao’s presentation of SmallSync is a middleware sys-
tem for the integration of different diagnostic and visualiza-
tion tools for monitoring distributed Unix processes [7].

An issue that was raised during the discussion on the topic
of communication support was the fact that middleware is
not only needed to support the integration of data and legacy
tools (like text editors, compilers, etc.) used for the genera-
tion of products in the software development process, but
we also need to support enactment of distributed processes
modeled at the different sites in a virtual software company.

Middleware is needed to loosely integrate different proc-
ess engines used to enact different sub-processes. It pro-
vides a communication mechanism for these process
engines to exchange information about the state of the dif-
ferent sub-processes.

3 Technology for Software Development
Support

In order to deal with communication, collaboration, and
coordination issues of software development, one or more
of several existing technological approaches can be used:
Groupware tools provide support for collaborative work,
workflow management approaches support the coordina-
tion of SE processes, change impact analysis and change
management techniques can be used to send notifications to
an appropriate set of users, middleware and standards exist
to integrate diverse data formats and provide interoperabil-
ity between legacy tools. Agent technology introduced re-
cently allows for active artifacts to communicate with each
other and with human users. Data stucturing approaches
like XML provide us with a standard means to exchange
products generated in the software development process.

However, none of these technologies by themselves are
enough to solve the problems posed by distributed software
engineering. In order to provide useful support for that com-
plicated process, methods and tools must integrate coordi-
nation, collaborationand communication support, i.e. it
must integrate, to a degree, all of the above technologies, as
well as provide support for project monitoring, and config-
uration management. To which degree each of the above
technologies can be helpful in supporting distributed soft-
ware engineering, and what other technology might be
needed in order to provide a really satisfying support tool, is
still a question that requires substantial work.

4 Conclusions

Even in traditional software engineering, there are still
problems to be solved concerning the management and co-
ordination of complex development processes. Distributed
software development and virtual software companies
cause additional difficulties and challenges that need to be
addressed. One reason for this is the additional communica-
tional (both human and technical) complexity caused by
global distribution of a development project. If a project is
distributed over different companies or even countries, or-
ganizational cultures are sure to diverge, thereby causing
misunderstandings, and necessitating a process support that
allows for different process structures, as well as for differ-
ent control strategies (such as strict enforcement of activi-
ties, guidance, and free choice of the activities to work on),
all in a single distributed process. Different modes of com-
munication are necessary in a globally distributed process:
Synchronous communication (e.g. meetings and discus-
sions) needs to be supported, as well as asynchronous com-
munication (providing passive and active access to
information).

Interoperability is an issue that needs to be addressed at

several levels: different data formats need to be exchanged
between different tools, different process engines need to
communicate with each other, and, last but not least, people
from different (organizational and general) cultures need to
talk to and understand each other.

Another topic that is closely related but was only briefly
mentioned in the workshop, and should be addressed in the
future, is access control and ensuring privacy for the com-
panies involved as well as the individual developers work-
ing in a VSC. Any tool not dealing with these questions
would not be easily accepted in practice: A tool that does
not ensure the user’s privacy, may not be used by software
developers.

This workshop mainly addressed technical problems.
Other topics, such as a tool’s acceptance in terms of usabil-
ity and adaptability, were mentioned, but not dealt with in
detail. Social and cultural issues, such as organizational and
geographical differences in culture, were not discussed, al-
though the participants agreed that they are at least as im-
portant as the technical questions.

Literature
[1] K. Alho, R. Sulonen:Supporting Virtual Software Projects

on the Web, in: [13].
[2] F. Bendeck, S. Goldmann, H. Holz, B. Kötting:Coordinat-

ing Management Activities in Distributed Software Devel-
opment Projects, in: [13].

[3] P. Benjamin, M. Erraguntla, R. Mayer, M. Painter, Ch. Mar-
shall: A Framework for Adaptive Process Modeling and
Execution (FAME), in: [13].

[4] G. Faustmann: Flexible Handling of Work Processes by Sit-
uation-dependent Support Strategies, in: [13].

[5] J. Grundy, J. Hosking, R. Mugridge:Coordinating Distrib-
uted Software Development Projects with Integrated Proc-
ess Modeling and Enactment Environments, in: [13].

[6] Z. Haag, R. Foley, J. Newman: A Deontic Formalism for
Co-ordinating Software Development in Virtual Software
Corporations, in: [13].

[7] M. C. Hao, D. Glajchen, J. S. Sventek: SmallSync:A Meth-
odology for Diagnosis & Visualization of Distributed Proc-
esses on the Web, presentation only.

[8] D. Herlea, S. Greenberg: Using a Groupware Space for Dis-
tributed Requirements Engineering, in: [13].

[9] G. E. Kaiser, S. E. Dossick:Workgroup Middleware for Dis-
tributed Projects, in: [13].

[10] G. Matos, J. Purtilo, E. White:Automated Enforcement of
Receptive Safety Properties in Distributed Design, presenta-
tion only.

[11] F. Maurer, B. Dellen:An Internet Based Software Process
Management Environment, in: [13].

[12] M. H. Penedo:Experimenting with technology associated
with Mobile Desktops, in: [13].

[13] Proceedings of WET ICE 98, IEEE Press, 1998.

