A Distributed Heterogeneous Database System
based on Mobile Agents

A. Di Stefano, L. Lo Bello, C. Santoro

Universita’ di Catania - Facolta’ di Ingegneria
Istituto di Informatica e Telecomunicazioni
Viale A.Doria, 6 - 95125 Catania (ITALY)

tel: +39 95 339449, fax: +39 95 338280
email: {ad, llobello, csanto}@iit.unict.it

Abstract

This paper investigates the suitability of the mobile agents approach
to the problem of integrating a collection of local DBMS into a single het-
erogeneous large-scale distributed DBMS. The paper proposes a model of
distributed transactions as a set of mobile agents and presents the rele-
vant execution semantics. In addition, the mechanisms which are needed
to guarantee the ACID properties in the considered environment are dis-
cussed.

1 Introduction

The aim of this paper is to study a transactional model based on mobile agents
for the development of a heterogeneous, large-scale distributed database. The
distributed environment we will refer to is made up of a set of sites connected by
a network, each of which has a local DBMS. The well-known advantages of the
mobile agent paradigm (autonomy, local interactions, fault-tolerance improve-
ment [1, 2, 8, 5, 6, 15]), as compared with the traditional client/server model
used in the actual implementations of distributed DBMSs, led us to consider
the possibility of constructing an interface to integrate the collection of local
DBMSs into a single distributed DBMS in which the transactions are mobile
agents. More specifically, we will show how it is possible to model a distributed
transaction as a set of mobile agents which execute interactions with remote
databases by visiting the relative sites. In dealing with this topic we will use
an object—oriented approach, deriving all the entities our model comprises from
a library of object classes which will implement the necessary basic functions.
We will then analyse some of the mechanisms used to guarantee the ACID
properties in a distributed environment, assessing their functions in relation to
the specific properties of mobile agents [1, 4, 5]. The paper is structured as
follows. Section 2 illustrates the distributed mobile agent transaction model
proposed; Section 3 presents a model of the transactional environment, illus-
trating the entities involved in a distributed transaction and their behaviour;
Section 4 analyses the impact on a mobile agent environment of some of the

existing protocols to guarantee the ACID properties, and Section 5 gives our
conclusions.

2 Model of a Distributed Mobile Agent Trans-
action

A distributed mobile agent transaction is defined here as a portion of code which
has to be executed respecting ACID properties [11, 3] and can migrate from one
site to another, performing the appropriate computations and/or interactions
at each site. Wishing to make reference to an object—oriented environment, we
defined the transaction by encapsulating it in an object which has the functions
of a mobile agent and, at the same time, features a precise execution and in-
teraction semantics to guarantee ACID properties. In the model proposed, a
distributed mobile agent transaction, which we will call a transactional agent,
starts execution on one site in the network, called the home-site, and can then
migrate to other sites, called wisited-sites, to which the objects with which the
transaction has to interact belong. As we shall discuss below, a transactional
agent has to possess adequate lock mechanisms and implement appropriate pro-
tocols for the control of concurrency and commitment, in order to ensure the
ACID properties.

To fulfil the potential of a transactional scheme, an agent has to be able
to create other transactional agents, thus allowing the transaction to be split
up into smaller computation portions called subtransactions [11] which can op-
erate in parallel in such a way as to increase the execution throughput of the
transaction. Therefore, a distributed transaction T' can be split into a set of
subtransactions Si,..., Sy, and so is indicated as T' = (Si,...,S,), where the
subtransaction is defined as a portion of a distributed transaction which con-
tains a sequence of commands or operations closely related to interaction with
one or more objects belonging to the same site in a network. Our transactional
agent model is based on this concept of subtransaction, which is incorporated
in a mobile agent; the latter, created on the site to which the global transaction
belongs (home-site), migrates to its own site and performs its operations there,
interacting locally with the objects taking part in the transaction. In executing
a distributed transaction according to this model, it may not be possible to
activate all the various subtransactions it comprises simultaneously: according
to how the transaction is designed, some may be linked to others by a cause
and effect relationship. This means that, to be executed, some of them may
need the results of the computation performed by another subtransaction. In
executing a distributed transaction, therefore, some subtransactions (a subset
of S1,...,S,) will be launched when the transaction itself begins, while the
others will be activated by the subtransactions on whose results they depend.
The result of this is the creation of a tree of subtransactions (Figure 1) which
we will call the Mobile Transaction Family. The transaction 7" which originates
the first-level subtransactions is called a top-level subtransaction.

It should be pointed out that there is not always a one-to-one correspondence
between a subtransaction and the relative mobile agent; if the transaction com-
prises several subtransactions which have to be executed sequentially, they can
all be included in the same mobile agent. The mobile agent will migrate to the

Top-level

subtransaction [TE e Subtransactions

>

Network sites

Figure 1: Mobile Transaction Family

site each subtransaction belongs to, execute the relative subtransaction, and
then migrate towards to the next subtransaction and so on, until the list of
subtransactions ends.

3 Distributed Mobile Agent Transactional En-
vironment

The distributed environment we will refer to comprises a set of heterogeneous
sites, connected in a network, each of which hosts and local Database by means
of a DBMS. To devise a model for a Distributed DBMS based on mobile agents,
we introduce the following entities at each site in the network (Figure 2):

e an interface layer, called MADI - Mobile Agent Database Interface, which
integrates the collection of heterogeneous local Databases into a single
distributed Database, presenting it as such to the user;

e an execution engine for the distributed mobile agent transactions, called
MAEF - Mobile Agent Ezecution Framework.

The Mobile Agent Database Interface is made up of a set of modules and a
library of classes that the transactional agent can use, the aim of which is to
regulate access to the local DBMS by the distributed mobile agent transactions.
The functions of the MADI can be summarised as follows:

e mapping the subtransactions of the distributed transaction onto the trans-
actions of the local DBMS;

e presenting the transactional agents with a common interface for access to
the site’s Database, irrespective of the site and the DBMS used;

e implementing protocols to provide the distributed mobile agent transac-
tions with concurrency control and atomicity;

e implementing mechanisms for the recovery of distributed transactions.

) Mobile
Mobile Agent
Agent

Mobile Agent Execution Framework

Mobile Agent Database Interface

Local Local DBMS
Database

Figure 2: Modular Composition of the Environment

These functions have to be implemented taking into account that a dis-
tributed transaction is not based on client/server semantics but on mobile agents
and therefore possesses all the latter’s characteristics [1, 2, 5, 4]. As we will see
in Section 4, these features can affect the protocols for concurrency control,
commitment, fault-detection and fault-recovery, thus requiring accurate analy-
sis and re-elaboration as compared with the client/server model.

The Mobile Agent Execution Framework is the environment which regulates
the execution of each mobile agent making up the distributed transaction. Its
functions include:

e management of the agent migration algorithm (context saving, dispatch-
ing, context restoring, execution) [15];

e access to the services supplied by the MADI;
e management, together with the MADI, of the database location services;
e management, together with the MADI, of the fault-recovery protocols.

In this context, in order to comply with the subtransaction model illustrated
in Section 2, we have modelled a distributed mobile agent transaction as com-
prising (Figure 3) an object of the MTransaction type, which implements the
top-level subtransaction, and a set of MSubTransaction objects, each of which
incorporates one of the subtransactions making up the distributed transaction.
The MTransaction and MSubTransaction classes are therefore the basic classes
of objects which in our model represent the actors in a generic distributed mo-
bile agent transaction and which, by the inheritance mechanism, can be used
by the programmer to create his own distributed transactions.

3.1 Execution of a mobile agent distributed transaction

In our environment, a transaction is created by instancing an MTransaction
object at the home-site. The latter is a static agent that can be considered as
comprising two parts:

/ Home Site \ Visited Site A

MSubTransaction

MTransaction

MSubTransaction

Migration

ransaction creation
MSubTransaction
newsubtrans

message

\\\¥ migrate

Visited Site B

MSubTransaction

L

Figure 3: Objects involved in a distributed transaction

e a transaction-dependent part, composed of the method MTransaction: :run(),

which the programmer has to re-define and in which the code of the
top-level subtransaction of the transaction has to be implemented. This
implementation is also responsible for activating, by using the method
MTransaction: :createSubTransaction(),the first-level subtransactions
of the Mobile Transaction Family.

e a mobile transaction management part, present in the method MTrans-
action::coordinate(), which is independent of the specific transaction
implemented and deals with managing, controlling and co-ordinating the
execution of the distributed transaction. These functions, as we will see
later on, include storing information about the location and status of each
subtransaction, and co-ordination of the termination of the transaction
(which occurs by means of a two-phase commitment protocol [11, 3, 9]).

As soon as an agent of the MTransaction class is activated, the MAEF gen-
erates two threads: on the first the run() method of the agent instanced is
executed, and on the second the coordinate() method is activated, the code
of which - already contained in the basic MTransaction class - implements the
mobile transaction management functions. The run() method generally ter-
minates execution after generating the first-level subtransactions of the Mobile
Transaction Family, while the coordinate () method continues execution until
all the subtransactions have completed their tasks.

Each subtransaction has to be encapsulated in an agent belonging to the
MSubTransaction class, re-defining its run() method, in which it is necessary
to insert the real operating code of the subtransaction. After it is created
and before it is executed, an MSubTransaction agent has to notify the relative
MTransaction agent of its presence by sending a newsubtrans message (Fig-
ure 3). This message is necessary as the MTransaction agent always has to be
aware of the complete composition of the Mobile Transaction Family so that it
can reach all the subtransactions during execution of the commitment phase.
It should be pointed out that although the newsubtrans message is useless for
first-level subtransactions (since the MTransaction agent itself creates them),

it is fundamental for the subtransactions of the subsequent levels which the
MTransaction agent does not see directly.

The programmer is unaware of the notification of the creation of a sub-
transaction as it is done automatically by the MAEF before activating the
MSubTransaction: :run() method. To this end, each MSubTransaction agent
has to possess an object reference or a prozy to the relative MTransaction agent,
so that the latter can be reached by management messages; this object refer-
ence is passed by the MTransaction agent to the first-level subtransactions while
they are being created and then propagated by them following the creation of
subtransactions belonging to the subsequent levels.

Once the creation operations are concluded, the run() method of the sub-
transaction created is activated. The first instructions of the code of this method
generally refer (1) to the localization of the Database with which interaction is
to occur, using the services provided by MADI and MAEF, and (2) to migra-
tion to the relative site, by calling the MSubTransaction: :dispatch() method.
When a subtransaction reaches its destination site after a migration, a migrate
message sent by the MAEF' to the relative MTransaction agent (Figure 3) in-
forms the latter of the subtransaction’s new location. This message is needed as
each MSubTransaction agent will then have to be contacted individually during
execution of the final commitment protocol.

When a subtransaction has concluded its interaction with the site’s DBMS,
it can: (1) conclude its execution, (2) migrate to another site and continue
execution there, or (3) generate new subtransactions. In the first case, a done
message is sent to the MTransaction agent and the subtransaction waits for the
commitment protocol to be activated. In the second case, the MSubTransaction
agent can locate the new site and reach it, again by invoking the dispatch()
method. This situation is not, however, the same as a simple migration. As
the global transaction has not been concluded, in fact, it is necessary to leave
an object referring to the transaction in the site the subtransaction is about to
leave, so that it can then take part in the two-phase commitment protocol. Also,
in view of the fact that an aborted transaction will have to be re-executed, it
may be convenient to clone the MSubTransaction agent and leave a copy at the
original site: if the transaction needs to be re-executed it will not be necessary
to re-create and transfer the MSubTransaction agents and the execution can be
co-ordinated by simple message passing between the agents already present at
the various sites. For these reasons, when an MSubTransaction agent invokes
the dispatch() method in order to continue executing on another site, the
MAEF clones the agent, makes the original wait for commitment and transfers
the copy to the destination site, where it will continue execution'. From the
point of view of the MTransaction agent, this operation corresponds to the
creation of a new subtransaction and so it has to be notified of the event by
sending a newsubtrans message followed by a migrate message.

In the third case, a subtransaction can conclude its execution by creating fur-
ther subtransactions using the MSubTransaction: :createSubTransaction()
method. In this case, the code of the new MSubTransaction agent classes to
be instanced is often not present on the site on which the new subtransactions

!This operation is performed automatically by the MAEF only when the dispatch()
method is invoked for the second time, as during the first migration the agent abandons
the home-site where it was created and so cloning is not necessary as it has not executed any
operations at this site.

/Home Site \)

create
MTransaction message (1)

MSubTransaction

Subtransaction
creation (2)

~

Visited Site B

MSubTransaction

MSubTransaction

Migration (3)

J

Figure 4: Creation of a subtransaction belonging to a level other than the first

are being created. The programmer, in fact, generally places all the classes
relating to a transaction’s subtransactions in the home-site, so they can then
be transferred to the sites on which they are to be instanced. The creation
of subtransactions belonging to a level other than the first (Figure 4) therefore
occurs by sending a create message to the MTransaction agent, which actually
creates the subtransaction required. Then, once the latter is activated, it can
migrate to the relative site using the mechanism already described for first-level
subtransactions.

A distributed mobile agent transaction of the type described concludes when
all the subtransactions it comprises have finished executing, i.e. when all the
MSubTransaction agents have sent a done message to the MTransaction agent.
In this case the MTransaction agent co-ordinates a two—phase commitment
protocol [11, 3, 9], the participants of which are the MSubTransaction agents of
the family. It should be pointed out that whereas execution of the distributed
transaction follows a hierarchical model, as it is structured as a tree (Figure 1),
the two-phase commitment is based on a flat model, since it is the MTransaction
agent that directly contacts all the subtransactions the transaction comprises.

4 ACID Properties & Fault-tolerance

As illustrated in [1, 15, 5, 8], one of the main features of mobile agents is their
autonomy which, from the point of view of execution semantics, is equivalent
to an asynchronous operating mode. After activating an agent, a user does not
have to wait until terminates its execution but can “forget” it: the agent itself
will notify the user when it terminates. Mobile agents are therefore particularly
suitable for distributed environments in which certain sites are susceptible to
faults and cannot always count on a continuous, reliable network connection [8,
5, 15]. In this kind of environment, if a site becomes unreachable during the
execution of a distributed computation (due to a fault on the site itself or an
interruption in a network link), a retry mechanism is needed, using a time-
out on expiry of which the computation is considered to have failed. In the

client/server model, the choice of the duration of the time-out is quite critical,
as the interaction is strictly synchronous. On the other hand, a mobile agent
can wait even a long time and then it can try again later, until the fault is
repaired.

Whereas this increase in execution time causes no problems for generic mo-
bile agent computations, it is a highly significant parameter in the case of trans-
actions. The presence of blocking management protocols like two-phase lock-
ing [11, 3, 9, 13] to control concurrency may degrades performance quite quickly
if, for example an MSubTransaction agent has acquired a lock on a resource and
repeatedly tries to contact a remote site (with a view to migrating there) which
is temporarily unreachable. In this kind of situation, the solution found in the
client/server model is to abort the transaction, considering it to have failed;
in our environment, on the contrary, we have entrusted the MSubTransaction
agent with a suitable rollback, retry € restart protocol comprising the following
phases:

e (rollback) the MSubTransaction agent orders a temporary rollback of
the transaction, sending a temp-rollback message to the MTransaction
agent which consequently releases any resources blocked by the various
subtransactions. Even though a rollback occurs, the transaction is not yet
considered to have failed;

e (retry) the MSubTransaction agent sends echo messages to the site in
question until it receives an answer;

e (restart) once it has ascertained that the site is reachable, the MSubTrans-
action agent sends the MTransaction agent a restart message which
causes the distributed transaction to be restarted. As said previously
(Section 3.1), some subtransactions may already reside on that site and
so the execution can be co-ordinated by a message passing mechanism.

The protocol described, execution of which is completely transparent to the user
activating the transaction, increases the probability of successful conclusion of
a transaction in the event of temporary faults on a site or network connection,
thus avoiding a degradation in performance (the blocked resources are released).
The only cost is an increase in the execution time of the distributed transaction,
when the latter is affected by the fault.

The same applies to the commitment protocol. As is known [11, 3, 10, 7], in
all commitment protocols there is a particularly critical phase for faults or net-
work partitioning. In the two-phase commitment protocol [11, 3], for instance,
the occurrence of a permanent or long-term network partitioning during the
second phase of the protocol may cause one or more sites to remain isolated;
as their subtransactions cannot be reached by the concluding commit/rollback
message, they have to activate a recovery protocol which will allow them to trace
the decision made by the co-ordinator (in our case the MTransaction agent).
The recovery protocols proposed in literature [11, 10, 12, 14] solve the problem
partially but none of them provides a solution for the case in which there is a
single isolated subtransaction. A situation of this kind is quite likely to occur
in environments with a low degree of network connection reliability, the same
which, as said above, are suitable for mobile agents. In our model, as the com-
mitment problem cannot be solved completely, we propose a solution whereby

the transaction can at least be terminated. This solution involves the following
steps:

e the programmer who has created the MTransaction agent for the trans-
action has to provide it with a parameter, called defaultDecision, which
is propagated to all the MSubTransaction agents of the transaction;

e when a site remains isolated, its MSubTransaction agent, which cannot
receive notification of the result of the transaction from the MTransaction
agent, takes the autonomous decision indicated by the defaultDecision
parameter, on expiry of a certain time-out;

o if the MTransaction agent cannot reach a subtransaction during the sec-
ond phase of the two-phase commitment, it continues its action, notifying
the result to all the other subtransactions. If, however, the result is differ-
ent from the value of the defaultDecision parameter, the transaction is
concluded by notifying the user of a possible loss of consistency, including
information about the site/s that cannot be reached.

This protocol, which has to be activated when a failure recovery procedure [11,
10, 12, 14] has not been able to reach the decision taken by the co-ordinator,
ensures termination of the transaction and detects any problems of loss of con-
sistency that may arise.

Of course, the discussion so far has only dealt with some of the problems
mobile agents present in a transactional environment, but it is a good starting
point for tackling the problems that arise due to the inherent features of a mobile
agent environment and the different execution semantics for a distributed mobile
agent transaction as compared with the client/server model.

5 Conclusions

In this paper we have studied a transactional environment based on mobile
agents for the management of a heterogeneous, large-scale distributed Database.
We have considered a distributed environment formed by a set of network sites
each of which has a local DBMS. On each of these sites an interface layer is
constructed to integrate the heterogeneous local DBMSs into a single distributed
DBMS in which the transactions are mobile agents. To this end, a distributed
mobile agent transactional model has been developed, identifying the objects
involved and their features; these have been modelled, following an object—
oriented approach, highlighting the basic classes of objects which have been
given the features of mobile agents. Finally, after illustrating the execution
semantics of our distributed mobile agent transaction model, we have analysed
some protocols to guarantee the ACID properties, in the light of the features
of mobile agents and the distributed environments which are suitable for them.
In this sense, the paper is a contribution to research which aims at developing
the mobile agent programming paradigm, laying the bases for the introduction
of mobile agents in transactional environments.

References

[1]

[2]

[3]

[4]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

D. B. Lange D. T. Chang. Mobile agents: A new paradigm for distributed
computing on the WWW. OOPSLA ’96 Workshop, 1996.

G. Harrison et al. Mobile agents: are they a good idea ? Technical report,
IBM T. J. Watson Research Center, 1995.

K. Kinderberg G. Coulouris, J. Dollimore. Distributed Systems: Concepts
and Design. Addison-Wesley, 1995.

F. Somers L. Hurst, P. Cunningham. Mobile agents - smart messages. In
First International Workshop on Mobile Agents, 1997.

Horizon Systems Laboratory. Mobile agents computing - A White Paper.
Technical report, Mitsubishi Electric ITA, 1996.

M. Schwehm M. Strasser. A performance model for mobile agent systems.
In Intl. Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA’97), 1997.

S. J. Mullender. Distributed Systems. Addison-Wesley, 1993.

K. Heilmann D. Kihanya A. Light P. Musembwa. Intelligent agents: A
Technology and Business Application Analysis. Technical report, Univer-
sity of Nancy, 1996.

T. Johnson R. Chow. Distributed Operating Systems € Algorithms.
Addison-Wesley, 1996.

A. Schiper R. Guerraoui, M. Larrea. Non blocking atomic commitment with
an unreliable failure detector. In IEEE Symposium on Reliable Distributed
Systems, 1995.

G. Pelagatti S. Ceri. Distributed Database Systems. McGraw Hill, 1985.

Dale Skeen. A quorum-based commit protocol. Technical report, Computer
Science Department - Cornell University, 1982.

A. S. Tanenbaum. Modern Operating Systems. McGraw Hill, 1991.

Peter Triantafillou. Independent recovery in large-scale distributed systems.
IEEE Transaction on Software Engineering - Vol. 22, No. 11, 1996.

Jim White. Mobile agents white paper. Technical report, General Magic
corp., 1995.

10

