
Using Agents for Distributed Software Project Management

Rory O’Connor John Jenkins
School of Computer Applications School of Computing Science

Dublin City University Middlesex University
Ireland UK

roconnor@compapp.dcu.ie

Abstract

The paper explores the role of artificial intelligence
techniques in the development of an enhanced software
project management tool, which takes account of the
emerging requirement for support systems to address the
increasing trend towards distributed multi-platform
software development projects. In addressing these aims
this research devised a novel architecture and framework
for use as the basis of an intelligent assistance system for
use by software project managers, in the planning and
managing of a software project. This paper also describes
the construction of a prototype system to implement this
architecture and the results of a series of user trials on this
prototype system.

1. Software Project Management

The key issue in project management is decision making.
Software project managers make many decisions every
day, ranging from the relatively inconsequential to the
significant. Ceteris paribus, good outcomes from those
decisions are more desirable than bad outcomes. Project
managers make decisions based on a combination of
judgement and information from staff, clients, research
literature and current market forces, as well as knowledge
gained from previous projects. Ideally, all relevant
information should be brought together before judgement
is exercised. The quality of a decision depends on the
adequacy of the available information, the quality of the
information, the number of options available at the time of
the decision and the ability of the people involved to
interpret this information.

Software-intensive projects often fail because the project
managers lack knowledge of good practices and effective
processes which can reduce risk and increase the likelihood
of success. Managers of projects need to know how to
establish a set of processes which are tailored to a project’s
requirements in terms of functionality, time, cost, quality
and their associated risks.

Constructing, maintaining and extending large complex
software systems pose many problems of managing all the

people, systems and agencies involved. Although many
project management systems are currently available, the
enormous scope and complexity of current software
systems means moving beyond the current state of practice
(for example, PERT charts or Microsoft Project).
Managing large-scale projects requires facilities for
coordinating independent activities and managing the
project plans themselves.

To support project managers, organisations have sought to
develop tools to assist with various aspects of the
management of their software processes. Many tools exist
in the market today that assist a project manager in
addressing some of these objectives. These tools fall into
three main categories:

• Project planning - tools which are concerned with the
scheduling aspects of planning a project, and pay less
attention to organisation and methodological aspects
of management.

• Process management - which support the framework
and rules of management of the project’s process.

• Risk analysis - tools used at specific stages during a
project to assess risk.

However, most of these systems fall short of supporting the
project manager in their decision making processes and do
not offer assistance in representing knowledge about plans
and designs, or provide mechanisms for reasoning about
plans and designs in flexible ways. Further aspects to
supporting the software project manager which are not
addressed by today’s support systems are the distributed
and cross-platform nature of systems development.

This research is motivated by the assertion that users of
existing software project management systems could
benefit greatly from the inclusion of intelligent assistance
techniques in such tools. In addition, such new support
systems should provide for the distributed cross-platform
nature of modern client-server development.

Therefore the objective of this research was to address this
shortfall and provide a support tool which will increase the
likelihood of success by helping the project manager who

has to make decisions on these issues. Such a tool will
encapsulate expert knowledge and make it available to all
users. Some of the potential benefits of this approach as
applied to the to decision-making process in the domain of
software project management are:

• Suggestions are made which help the user balance
cost, quality and time in making decisions about the
use of project resources.

• Knowledge is shared about different lifecycle models
and why one or another may be most suitable for the
users projects.

• Measurements are suggested which will enable the
user to see how well the project is reaching greater
organisational goals and re-plan the ways to reach
these goals, if necessary.

Even the most experienced project manager may have
difficulty knowing the best planning options, even if the
critical input parameters of resources, constraints and
requirements are known.

2. The Role of an Intelligent Assistant

The notion of an intelligent assistant is not new. Indeed, as
far back as 399 BC Socrates claimed to have an intelligent
assistant, although not in the strictest sense of course. But
Socrates did claim to have a non-human companion, which
he called a Daemon. Intelligent and always ready to offer
good advice, Socrates daemon could be trusted to act
without prompting. Real, hard-coded, linguistic and
symbolic links abound between Socrates daemon and
today’s notion of an intelligent assistant.

A software system designed to act as an intelligent team
member (or Daemon) could help in the planning and
execution of a project. Such an intelligent project assistant
could help to preserve knowledge about tasks, to record the
reasons for decisions and retrieve information relevant to
new problems. They could function as co-workers,
assisting and collaborating with the design or operations
teams for complex systems. They could also supply
institutional memory. They could recall the rationale of
previous decisions and, in times of crisis, explain the
methods and reasoning previously used to handle that
situation.

Significant design projects are typically accomplished by
teams. An intelligent project assistant could act as design
associate [15]. Designs are almost always redesigned;
effective redesign requires an understanding of why
previous design choices were made and of how these
choices achieved or compromised the desired goals; all are

vulnerable to loss of important information from changes
in design-team membership.

In software development projects in particular, an
intelligent project assistant can keep track of specifications,
design proposals, and implementations for a software
project throughout its life cycle. It can record the design
decisions of a constantly changing team and also be a
repository of solutions and components for new projects.
Reasoning techniques can be used to track the (mis)match
between specifications and implementations, while analogy
techniques can be used to look for existing specifications,
components or implementations that match some new
requirement.

An intelligent project assistant can additionally be of
benefit when training new personnel. For many tasks, on-
the-job training is extremely effective, providing the
trainee with the chance to make real, on-the-spot decisions
and see the consequences. On-the-job training is
impossible, however, when a bad decision can be
disastrous - as in the management of a large complex
software development project. Simulations of the project
management process, would enable the development of
training systems for such situations [5]. These same
simulation capabilities are also important when the cost of
assembling large groups of people for training is
prohibitive.

As part of this research a survey of software project
management tool users was conducted to obtain an
appreciation of the actual state-of-practice by project
managers in relation to tool usage, i.e. what do they
actually use these tools for and is this consistent with the
tool vendors intended usage [13]. In addition, participants
were also asked to consider the aspects of intelligent
assistance previously discussed and comment on the
possible benefits of incorporating this into a project
management support system. All of the project managers
considered the notion of an intelligent project assistant as a
useful addition to the existing range of features in project
management tools. In particular, they supported the notion
of a tool which could intelligently manage project
knowledge, and capture knowledge and lessons learned
about projects into a project knowledge base. Apart from
the intelligent assistance aspects of this research, the
problems associated with organisations having distributed
project teams, coupled with multiple hardware platforms
was identified by the project managers surveyed, thus
highlighting the need tools to operate in a distributed multi-
platform environment.

3. Implementing Intelligent Assistance

Many solutions have been proposed to the notion of
intelligent assistance over the years. These fall under four
major categories, Decision Support Systems, Expert
Systems, Expert Critiquing Systems and Blackboard
systems. In addition, the concept of Intelligent Agents [16]
has recently emerged as a potential fifth category. It is
proposed that in the complex domain of software project
management, a useful tool to support the project manager
in the decision making process is likely to be a hybrid of a
number of techniques, including DSS, ES, ECS and the
blackboard model. It has therefore been proposed to
incorporate the information gathering and analysis
techniques of DSS, with the ability of ES to propose
possible solutions using expert knowledge and best
practices and the power of ECS to critique the possible
solutions, thus providing the project manager with every
facility to make an informed and quality decision [11] [12].

It is considered that an agent based system will provide for
an approach which enables the inter-working of a variety of
well understood techniques within a single underlying
framework - that of agent-orientated system. We therefore
propose a system composed of a library of intelligent
software agents - where each agent would play the role of a
‘mini-expert system’ or ‘mini-critiquing system’, each with
an associated knowledge base. These agents would utilise
the blackboard model of problem solving to converge on
possible solution states and examine those states to assess
their suitability given current conditions. This agent-
orientated system would operate within the overall
framework of a decision support system, which would
provide for the gathering and analysis of data regarding a
project and the development of models of the project with
the aid and critique of the agents.

The major benefits perceived of this approach are
facilitating and improving the quality of decision making
by a software project manager by reducing information
overload and augmenting the cognitive limitations and
bounds of the decision maker. This hybrid method of
assistance coupled with the architectural properties of
intelligent agents (dynamic and distributed objects) present
an ideal strategy to implement intelligent assistance
systems in the domain of software project management.

In addition to the properties outlined above, an agent-
orientated architecture is a natural choice to address the
issue of heterogeneous client-server systems development.
Recent research in Java-based agents [14] [2] and mobile
Java-based agents [9] have concluded that they are a viable
technology on which to establish a platform independent
agent-orientated architecture. To address the distributed

client-server issue, research conducted at San Jose State
University [10] successfully used CORBA (Common
Object Request Broker Architecture) as a basis for
developing platform independent client-server systems,
including agent-orientated systems. To provide the
necessary flexibility for the proposed system and to tackle
the issues above, it is considered that both Java and
CORBA provide an appropriate framework on which to
base our proposed system.

Project decision
making process

Advice and critism on project

Domain
expertise

User
goals

Agent with domain knowledge

Figure 1 Decision Making Paradigm

The decision making paradigm of this agent-orientated
approach is illustrated in Figure 1, where two entities,
agents and a user, working together to contribute what they
know about the domain to solving some problem and hence
make a quality informed decision. The users primary role is
to generate and modify solutions; the agents is to analyse
those solutions and produce a critique and advise on a
possible solution for the human to apply in the next
iteration of this process. In this scenario agents constantly
‘watch’ the actions of the user by way of monitoring
project parameters as the user developing project plans and
inputs actual project data. When an agent has all the
information it needs, it will proceed with its analysis and
produce its conclusions. These conclusions would be given
to the user in terms of advice/criticism on the
current/predicted future project situation, and also may be
used as input data to other agents. For example, there may
be a number of agents who specialise in the selection of the
most appropriate process model (lifecycle) for a particular
project. The agents could have a set of criteria based on
certain attributes of the project such as: the problem
domain, product, available resources, personnel, and
organisational attributes. These attributes would be
examined and for each process model a comparative rating
produced, indicating the most appropriate choice of
process model. The agent would then communicate these
findings to the user and other agents.

4. System Architecture

Software architecture focuses on three aspects of software
design [1];

• Partitioning - The functional partitioning of software
modules.

• Interfaces - The software interfaces between modules.
• Connections - The selection and characteristics of the

technology used to implement the interface
connections between software modules.

This ‘partitioning’ approach was taken to the development
of a suitable architecture to support the proposed
intelligent assistant system. In this sections we will
describe the system architecture from a high level and
examine some of the modules and their connections.

Decision maker

User Interface

Decision Support
System

Knowledge Base

Figure 2 System Architecture

A high-level (user level) view of the system architecture is
illustrated in Figure 2 and consists of the user interface to
the system, the decision support system itself and the
underlying knowledge base which contains the expertise
and knowledge which will be used to assist the project
manager in the planning, managing and execution of a
software development project.

The component modules of the system architecture are
illustrated in Figure 3, and are described below:

• User Interface - This component handles the

management of all the screen elements (menus, dialog
boxes, etc.), validates data entered by the user and
passes on clear functional messages to the rest of the
system.

• System Kernel - This is the core component of the
system and handles all the processing and storage of
user entered data. It manages all aspects of project
plans and channels advice from the agents to the user.

• Data Manager - This component manages all aspects
of the mapping from the logical view of data to its
physical storage and maintenance. This module is
under the control of the System Kernel and all requests
for data must be channelled through the Kernel.

• Agent Controller - This module acts as a controller
(or supervisor unit) over the agent community and
manages the scheduling and execution of agents, as
well as governing write access to the Blackboard.

• Blackboard - This represents the global problem
solving state of the system. Over time, agents produce
changes to the Blackboard which lead incrementally to
advice on the project under consideration. The
Blackboard is under the control of the Agent
Controller and all requests for data read / write must
be channelled through the Agent Controller.

• Agent Library - All agents are contained in an agent
library, but remain under the control of the Agent
Controller. The purpose of the Agent Library is to
manage the physical agents themselves and to service
requests for agent interactions from the Agent
Controller.

CORBA ORB Communications Bus

User Interface System Kernel

Data Manager
(file system)

Agent Controller

Blackboard

Agent Library

IDL interface

IDL interface IDL interface

Agent 1 Agent N...

IDL interface

internal
interface

internal
interface

Figure 3 Component Architecture

CORBA [3] was chosen as the interface bus on which to
implement message passing between each of the modules
in the system architecture. The CORBA bus allows
transparent access to distributed objects over a

heterogeneous network of machines and operating systems.
CORBA distributes messages via its Object Request
Broker (ORB) transparently between registered objects.
The ORB receives requests from a ‘client’ to send a
message to an object. The broker locates the object
referred to by the client and delivers the message to that
object. This style of architecture combined with the
flexibility of CORBA provides a unique solution to the
requirements of independence of implementation language,
capacity for evolution and interfacing ability.

The use of CORBA allows us to maintain the tool kernel
on a typical server while porting the GUI to a client
machine, with both the agent library and the project
database located physically anywhere on the network. With
this in mind, possible alternatives would be:

• A ‘thin client’ - possibly web based or implemented in
Java, which would therefore be platform independent,
while still providing a multimedia oriented GUI.

• Classical server-side application containing the kernel,
agent supervisor and database.

• An agent library located anywhere on the LAN or an
intranet/internet, which may be implemented in any
language and accessed via CORBA.

The main advantages of this approach are:

• The ‘light-weight’ clients are platform independent,

thrifty in resources, and easily upgradable.
• The application has a powerful classical kernel, while

retaining the advantages of client-server computing.
• It provides a facility for the tool to evolve new

services, which can be added as new modules.
• The use of a CORBA bus provides interfacing

capabilities with other (future) CORBA complaint

Various research projects have investigated languages for
implementing intelligent agents in recent years [16] [17].
In the early stages, agents were local to individual projects
and their languages were mostly idiosyncratic. As a result
there are a large number of representation languages, each
with their own particular characteristics, which do not have
inter-agent communication capabilities. An obvious
solution is to have a lingua franca, where ideally all agents
that implement the same lingua franca would be mutually
intelligible [8]. However, the agent community is still a
long way from attaining this goal.

An example of a popular intelligent agent language is JESS
(Java Expert System Shell) [14] which is a clone of the
core of the CLIPS (C Language Integrated Production
System) [4] expert system shell developed. JESS contains
the main features of CLIPS and is downward compatible

with CLIPS, in that every valid JESS script is a valid
CLIPS script. The primary representation methodology in
both CLIPS and JESS is a forward chaining production
rule language based on the Rete algorithm.

Currently, only a small number of Java based products for
the development of expert system tools exist in the market
place. For example, [6] [7] reviews five commercially
available tools: Advisor/J (Neuron Data Inc.), Ilog Rules
for Java (Ilog Inc.), CruXpert (Crux Inc.), Selectica SRx
Selection Engines (Selectica Inc.) and JESS (Sandia
National Laboratories). The JESS system was chosen as
the primary knowledge representation system for a number
of reasons, with the primary motivation that (from an
architectural perspective) it is based on an open, mature
and portable knowledge representation language, i.e.
CLIPS.

5. Prototype Implementation

The development platform chosen was a standard Intel
Pentium PC running the Windows NT 4 operating system
connected via a LAN to several Intel Pentium PC servers
and Sun Microsystem servers and workstations running the
Solaris operating system. For the development of this
system, two main tools were used: a Java compiler - in this
case Sun Microsystems JDK - and a Java implementation
of a CORBA ORB - in this case Iona’s OrbixWeb.

An early prototype of the proposed system was developed
for a number of reasons: Firstly as a proof of concept - the
prototype assisted in highlighting any flaws in the proposed
architecture and investigated the feasibility of the
distributed architecture based on CORBA and Java. It also
assisted in identifying possible communication, data
storage and knowledge representation problems that may
occur.

The prototype consisted of a number of servers in the agent
architecture - Agent Controller, GUI, and the Agents
themselves. The advantage here is that each of these
servers are asynchronous from each other and from the
clients that call them, making them almost completely
independent. Thus on the majority of occasions when the
client call is made it can continue with its own process, the
call is one-way and so does not have to wait for the calls
completion.

This initial prototype system was successfully developed
and deployed in a distributed manner over a number of
networked machines. For example, the expert agent server
was run on a Windows NT server, with the client (GUI)
deployed on Windows 95, with agent communication
taking place (via CORBA) over the network using TCP/IP.

Following from this initial prototype a series of four further
prototype systems were constructed over an extended
period of time, with a phased approach to the evolution of
system services being adopted. The final prototype
consisted of a set of 30 expert advisory agents in the areas
of project planning/re-planning, risk management and
metrics and a full set of basic services including the ability
to produce multiple scenarios based on the ‘current’ status
of the project. As the end of each prototype development
stage the current system was demonstrated to a
representative group of software project managers as
outlined in section 6. Currently the prototype system is
undergoing a commercialisation phase, with a view to
launching a product in the tool market place.

6. Trial Usage

There are several reasons for conducting user trials of the
prototype system; Firstly it exposes the system to ‘real
world’ project managers and obtains feedback from them.
In addition it provides a mechanism to elicit opinion from
users as to the added value of the system as compared to
traditional project management systems. The trials were
conducted using twelve project management staff from two
organisations. These staff ranged in experience from
novice to highly experienced, with the projects under their
control ranging from small scale to large, highly complex
systems. The actual user trials were conducted in four
distinct stages, one for each of the major prototype releases
(not including the first prototype, as it was an architectural
proof):

• Trial 1 - was conducted using the second prototype
and had as its purpose the aim of testing the user
interface with respect to data capture.

• Trial 2 - was conducted using the third prototype and
had the dual purpose of the testing of scenarios and
generated advice associated with them.

• Trial 3 - was mostly concerned with testing the total
functionality of the system.

• Trial 4 - was conducted using the final prototype. This
trial concentrated on advice produced by the agents.

The main output of these trials was a set of four review
documents - one for each trial - which detailed the
comments and opinions of the users involved in each trial.
The following are some of the main finding of these user
trials:

• Operation - The prototype system was successfully
operated by a number of users on a variety of
machines. This was an indication that the prototype
system was capable of being executed in a commercial
environment, although the slow speed of execution

was an important issue. However, users acknowledged
that the speed issue was not of great importance for a
research prototype, but would be for a commercial
version.

• Decision support - The general feeling of users was
that the prototype system demonstrated that the notion
of intelligent assistance for software project
management was feasible. In addition, they considered
that the prototype implementation provided a suitable
framework for supporting decision making and had the
potential to be of use in a commercial setting.

• Project descriptions - The general opinion of users
was that the mechanisms of describing projects (via
models and scenarios based on a model) was an
appropriate and useful device to capture information
about a project. In particular the notion of multiple
scenarios to examine multiple views (with
corresponding advice) of a project was useful.

• Advice - Of paramount interest in these trials was user
feedback in relation to advice produced by agents. The
overall trend was that novice users considered the
advice appropriate and useful as either a reminder of a
particular aspect of management, or as an indicator of
which direction to consider. However, more
experienced project managers expressed the desire for
more specific and quantitative advice.

• Training tool - A suggestion put forward by a number
of users was the possibility of a repositioning of the
system for use as a training tool, in which users could
develop a model of a fictitious project and thus
practice project management skills on a ‘virtual
project’.

The most difficult issue to tackle which arose during the
user trials was the request for advice which was more
quantitative in nature. This had proved difficult for two
reasons; Firstly, little suitable source material was available
which contained quantitative data / results that could be
used as the basis for agents. Secondly, it is difficult for
humans to discern the differences between quantitative
values at a fine grain level with domains such as software
project management. For example, there is no appreciable
difference between the values of 70% and 75% if they were
expressed as a measure of suitability for a given lifecycle
model. However, it is worth noting that this quantitative
issue - while an important issue in its own right - is not a
central issue to the proposed architecture of this thesis. It is
however an indicator of the nature of advice users perceive
to be useful in addition to the advice already produced.

The comments received from users were based on a series
of research prototypes and indicate the proposal of an
intelligent assistant system for software project
management is a viable notion.

7. Conclusions

This paper has set forth a proposal for an intelligent
assistant system for use by software project managers.
Such an intelligent project assistant could help to preserve
knowledge about tasks, function as co-workers, assisting
and collaborating with the design or operations teams for
complex systems.

This research reported in this paper has proposed a novel
architecture for the development of the above intelligent
assistant system. This approach is a fusion of a number of
techniques within a multi-agent framework which aims to
improve the quality of the decision making process in the
less well understood domain of software project
management. This framework incorporates the information
gathering and analysis techniques of a Decision Support
System with the ability of an Expert System to propose
possible solutions using expert knowledge and best
practices and the power of an Expert Critiquing System to
critique the possible solutions, thus providing the project
manager with every facility to make an informed and
quality decision. This novel approach enables the inter-
working of a variety of well understood techniques within a
single underlying framework. An important characteristic
of this approach is the combination of these techniques in
an open distributed environment with the potential for
continuous evolution.

To assist with validating the proposed architecture, a
prototype system was developed as part of this research
and a series of trials conducted in a commercial
environment using software project managers. The
conclusion of these trials was that the prototype system
demonstrated that the notion of an intelligent assistant
system for software project management was a viable
commercial concept. Further, the prototype system
demonstrated that the proposed architecture provided a
suitable framework for supporting decision making and
had the potential to be of use in a commercial setting.

One of the significant drawbacks in relation to the
evaluation of the system described in this paper - or indeed
any software engineering tool - is that a comprehensive
evaluation study requires an extended period of time with
access to a large group of potential users. However, in this
is a luxury not afforded to most academic research
projects. Notwithstanding the foregoing, it is considered
that the research reported in this paper provides a
significant step forward in the development of a new
generation of intelligent assistant systems for software
project management.

References

[1] W.Brown, R.Malveau, H.McCormick and T.Mowbray,
“Anti Patterns - Refactoring Software Architectures and
Projects in Crisis”, Wiley, 1999.
[2] A.Caglayan and C.Harrison, “Agent Sourcebook”,
Wiley, 1997.
[3] “CORBA: Architecture and Specification”, Object
Management Group, 1996.
[4] J.Giarratano and G.Riley, “Expert Systems - Principles
and Programming”, PWS Publishing Company, 1994.
[5] B.Grosz and R.Davis (Eds.), “A Report to APRA on
Twenty-First Century Intelligent Systems”, American
Association for Artificial Intelligence, 1994.
[6] C.Hall (Ed.), “Intelligent Software Strategies”, Cutter
Information Corp., Summer 1997.
[7] C.Hall (Ed.), “Intelligent Software Strategies”, Cutter
Information Corp., Fall 1997.
[8] M.Huhns and M.Sing, “Conversational Agents”, IEEE
Internet Computing, Vol. 1, No. 2, 1997.
[9] D.Lange and M.Oshima, “Programming Mobile Agents
in Java - with the Java Aglet API”, technical Report, IBM
Research, Japan, 1997.
[10] R.Orfali and D.Harkey, “Client/Server Programming
with Java and CORBA”, Wiley, 1997.
[11] R.O'Connor, T.Renault, C.Floch, T.Moynihan and
A.Combelles, “Prompter - A Decision Support Tool using
Distributed Intelligent Agents”, In Proceedings of
EXPERSYS-97, 1997.
[12] R.O’Connor and T.Renault, “Designing an Internet
Enabled Decision Support Tool in the Domain of Software
Project Management”, In Proceedings of EIS-99, 1999.
[13] R.O’Connor and J.O.Jenkins, “Supporting Effective
Software Project Management and Control by the use of
Intelligent Knowledge-based Guidance”, In Proceedings of
9th European Software Control and Metrics conference
(ESCOM), pp. 143 - 151, Rome, Italy, 1999
[14] M.Watson, “Intelligent Java Applications”, Morgan
Kaufmann, 1997.
[15] D.Weld (Ed.), “The Role of Intelligent Systems in the
National Information Infrastructure”, AI Magazine, Fall
1995.
[16] M.Wooldridge and N.Jennings, “Intelligent Agents:
Theory and Practice”, Knowledge Engineering Review,
Vol. 11, No. 2, 1995.
[17] M.Wooldridge, J.Muller, M.Tambe (Eds.),
“Intelligent Agents II: Agents Theories, Architectures and
Languages”, Lecture Notes in Computer Science 1137,
Springer Verlag, 1995.

