
Coordinating Open-Source Software Development
Submission for 7th Workshop on Coordinating Distributed Software Projects

Davor Čubranić
Department of Computer Science
University of British Columbia
cubranic@cs.ubc.ca

1 Introduction

In the recent years a form of software development that
was previously dismissed as too ad-hoc and chaotic for seri-
ous projects has suddenly taken the front stage. With prod-
ucts such as Apache, Linux, Perl, and others, open-source
software has emerged as a viable alternative to traditional
approaches to software development. With its globally dis-
tributed developer force and extremely rapid code evolu-
tion, open source is arguably the extreme in “virtual soft-
ware projects” [1], and exemplifies many of the advantages
and challenges of distributed software development.

According to its (trademarked) definition, open-source
software (OSS) is software for which the source code is dis-
tributed or accessible via the Internet without charge or limi-
tations on modifications and future distribution by third par-
ties [10]. While much of the early ARPANet and Unix soft-
ware was distributed in this manner, during the 1980’s more
ambitious open-source projects such as Free Software Foun-
dation’s GNU were started and gained support of developers
across the Internet. However, it wasn’t until the 1990’s that
open-source software development truly gained momentum
and become synonymous with highly distributed develop-
ment characterized by frequent iterations, thanks to the wide
availability of the source code and openess to contributions
from the community.

Today, open-source software dominates the Internet in-
frastructure — for example, in February 1999, over 54% of
Web servers ran Apache server software [17], while it is es-
timated that Sendmail now handles about 80% of Internet
e-mail [4] — and established computer companies such as
IBM and Apple are starting to include OSS into their prod-
ucts [9, 2].

The main reason for this success is the growth of the In-
ternet, which made collaboration between programmers fea-
sible on a scale much larger than was possible before. With
the global computer network in place, a huge pool of po-
tential developers and testers willing to put their time into
projects they found interesting or useful became available.

Not surprisingly, this openess and fluidity also put unique
demads on the development process. To cope with those is-
sues, open-source software projects evolved their own meth-
ods and organization. This methodology has the potential to
alter the whole approach to making software — resulting, its
proponents would say, in more reliable products and faster
and leaner development. However, it also faces some signif-
icant obstacles if it is to continue successfully growing. In
my opinion, these obstacles cannot be surmounted by simply
attempting to transplant ideas from the more traditional de-
velopment models, even those that are also Internet-based.
What is needed instead is research that will examine open-
source software and development process, in light of their
current accomplishments and respecting their specificities,
and find what works, what doesn’t, and how it can be fur-
ther improved.

In this position paper, I will look at the ways some of
the major and most successfull open-source projects deal
with the issue of coordination among their many contribu-
tors. Although each of the projects examined here devel-
oped some unique practices, there are also significant com-
monalities. I will then indicate some of the problems caused
by the existing practices, and put forward some possible ap-
proaches to OSS coordination that could make open-source
software development more efficient.

2 Current Practices

There are hundreds, if not thousands, of open-source
projects that are currently under development. The ones I
include in this section are just some that are notable for their
influence, size, and success, and which are consequently
representative of many open-source development practices.

����� ���	��
��
���	�������������������	�������� �
�!
�#"$
��
%��
!
�&�

Linux is arguably the most well-know open-source
project today. It is a Unix-type operating system kernel

1



which aims for a complete implementation of the POSIX
specification, with System V and BSD extensions. What
started off in 1991 as a hobby project of Linus Torvalds,
then a student at University of Helsinki, has evolved into a
full-featured modern OS (consisting of more than 1.5 mil-
lion lines of code) that accounted for 17.2% of server oper-
ating systems in 1998, an increase of 212% over the previous
year [23], and has a user community that numbered over 7
million in early 1998 [25, 16]. Today, Torvalds continues to
lead the project, which has become the open-source’s poster
child.

The Apache Web server originated in the early 1995 as a
set of patches to the then-popular HTTP server from NCSA
(hence the name, “A PAtCHy server”). These patches were
collected by a group of volunteers from contributions from
Webmasters frustrated by NCSA’s lack of further develop-
ment and then released back to the Web community. The
patches were a big success, and soon the group moved on
to a complete overhaul and redesign of the server: Apache
1.0 was released to the general public on 1 December 1995
and went on its march to the Web server market domina-
tion — according to Netcraft’s February 1999 survey, 54%
of Web servers run Apache [17]. The initial volunteers have
then formed the Apache Group, which continues the devel-
opment of the project.

InterNetNews (INN) is a complete Usenet news system,
providing a set of servers for both news relaying and serving
client newsreaders. It was written by Rich Salz [21] in the
early 1990s, but as other obligations drew his attention away
from further development, users took it upon themselves to
share patches and generate unofficial releases. Eventually,
Salz turned INN over to the Internet Software Consortium,
a nonprofit corporation dedicated to production-quality ref-
erence implementations of the key Internet standards, which
merged in the various unofficial releases and, prompted by
the user community, placed the development under an open-
source model.

Mozilla Web browser is probably one of the most inter-
esting experiments in open-source software development,
and could potentially determine the future attitude of com-
mercial developers toward the open-source model. When
in March 1998, Netscape released the source code for the
next version of its Communicator Web browser under an
open-source style license [18], it formed “the Mozilla Or-
ganization” to coordinate the developers’ effort and act as
a central point of contact for those interested in participat-
ing in the project. The Mozilla Organization (also known as
mozilla.org) provides support for the developers (such as a
Web site and mailing lists) and publishes Mozilla browser as
its integrated version of the project’s effort, although there is
nothing to prevent others from creating and distributing their
own versions. Netscape remains actively involved in the
project: it provides funding and personnel for mozilla.org,

and its employees have contributed some of the major sub-
systems. Also, code written by Netscape (and all its sub-
sequent modifications) is covered by a slightly different li-
cense that gives Netscape additional rights, for example to
reuse it in non-open-source projects like its Web servers.
Undoubtedly, the success of this project would prompt other
commercial developers to follow in Netscape’s footsteps; its
failure, on the other hand, could seriously undermine open-
source’s credibility in the software industry.

Perl is a general-purpose programming language, in-
vented in 1987 by Larry Wall as a quick hack to simplify
generating reports from systems logs [24]. It has since be-
come the language of choice for small-to-medium projects,
especially in the areas of World Wide Web development,
system administration, text processing, etc. Today, the in-
frastructure for communication and coordination in support
of the Perl community is provided by the Perl Institute, a
non-profit organization “dedicated to keeping Perl available,
usable, and free for all” [11].

���'� (���)*)+ �����!	�,�������+�-��.+(�����
/.������,�������

One of the most important characteristics of distributed
software development is that developers cannot any more
rely on face-to-face meetings, but have to make use of tech-
nology to allow them to communicate over distance. Re-
searchers suggest that for effective distributed collaboration,
developers of such projects need a rich array of tools offer-
ing both synchronous (collaborative editors, chat, and on-
line meetings) and asynchronous capabilities [14]. How-
ever, open-source projects still, and almost without excep-
tion, primarily rely on mailing lists, sometimes gatewayed to
newsgroups, for almost all communication activities. Fur-
thermore, coordination among the participating developers
in the form of discussions about the direction of the project,
code review — for many projects even bug reporting and
code contributions — is all conducted through such lists.

There are several reasons for choosing such a relatively
low-tech approach. Firstly, email is essentially the lowest
common denominator for Internet communication, which
significantly lowers the bar for would-be contributors to
start participating, or even just listening, in a project’s de-
velopment discussions. Secondly, the extremely distributed
nature of even a core group of developers of OSS projects
— for example, Apache’s 20 core developers are located
in five different countries across three continents — pretty
much precludes the usage of synchronous communication.
Thirdly, open-source development is extremely fluid, where
structure is minimal and developers’ contributionsvary with
time depending on their interest and other commitments. In
such circumstances, it would be very difficult to impose a
prescriptive coordination technology, such as for example
workflow systems. Thus, most projects prefer to continue

2



using email even after they have grown beyond the initial
small group of developers, because it lets humans resolve
any unexpected situations that may arise.

McGrath has noted that developing “social contracts”
among participants in computer-mediated communication is
often more effective than looking for a technological solu-
tion [15]. Given such a general-purpose medium such as
email, it is not surprising that some projects have devel-
oped conventions specifically for coordination. For exam-
ple, the Apache Project’s active code repositories contain
a file called “STATUS” which is used to keep track of the
agenda and plans for work within that repository. The STA-
TUS file includes information about release plans, a sum-
mary of code changes committed since the last release,a list
of proposed changes that are under discussion, brief notes
about items that individual developers are working on or
want discussion about, and anything else that might be use-
ful to help the group track progress. The active STATUS
files are automatically posted to the developers’ mailing list
three times each week.

���'0 12�	
/�������3�-��.+(�����4� �
��,�������657�-���,4-�	)8�	���

By the very definition of open-source, such projects have
to have some sort of code repository on the Internet, where
developers and other interested parties can access it for
download. In the past, this was done mainly through anony-
mous FTP access to the recent versions (often there are
at least the current “development” and “stable” versions).
Also, typically the changes from the previous version are
available as patch files, and are usually posted on the de-
velopers’ mailing list for those who want to minimize the
amount of necessary downloading while keeping current
with the ongoing development. In the recent year or so,
however, many (especially larger) projects have turned to
CVS [3] to manage the code repository and ease the burden
of version control and merging in individual submissions.
Linux is a significant holdout in this department, because the
“official” version is still put together and posted on the FTP
site exclusively by Linus Torvalds.

The organization of configuration management in open-
source projects stems from their internal developers’ “hier-
archy”. Typically, there are two tiers of developers partici-
pating in the effort: a core group that is relatively small (for
example, around 20 people in the Apache project), and a
much larger pool of contributors. The core developers are
actively involved (often on a daily basis) in the develop-
ment of the product, and some minimum amount of com-
mitment in terms of time and effort is usually implicitly ex-
pected. Contributors might submit an occasional bug fix or
feature enhancement, as they have time, interest, or ideas.
The core developers are then there to receive those contribu-
tions, review them, and integrate the accepted ones into the

code base. Over time, contributors who have distinguished
themselves by the quality and frequency of their work may
be invited to join the core group and gain more responsibility
in the project. In other words, open-source projects operate
as meritocracies [19].

There are individual project differences, however: in
Linux, the final authority and say on what goes into the ker-
nel rests with Linus Torvalds, although the responsibility
over subsytems has been delegated to the so-called “mod-
ule maintainters” (who have often also written a major por-
tion of the code they oversee). In Apache, the core develop-
ers form the Apache Group, which maintains control over
the project, without further breakdown of the hierarchy by
subsystem — essentially, all the members of the group have
equal vote if an issue turns contentious. INN’s development
is also guided by a small core group (seven members at the
time of this writing), while Mozilla’s is divided by subsys-
tems, with individual or small groups of “module owners”
coordinating the development in their area — although, in
theory, they are only the caretakes who could be replaced if
the developers’ community is dissatisfied with their work.

This sort of developer organization is reflected in the
setup of the code repositories: in general the CVS source
code repository allows read-only access to anyone on the In-
ternet, while only the core developers have the permissions
to directly modify the tree. Those programmers are respon-
sible for evaluating and approving changes submitted by the
community and integrating them into the tree.

3 Experiences and Criticisms

Perhaps because of its roots in the hackers’ culture, al-
though open-source development has been around for sev-
eral decades, it hasn’t gotten much attention from the soft-
ware engineering community. Even descriptions of the
open-source development process are still quite rare and
largely anecdotal. In this section, I will summarize ex-
periences with tools used for coordination in open-source
projects and concerns about their capability to support fur-
ther growth in complexity and features.

0���� 9:�-�-;��<����.8(=�-��
/.������,�������

In general, as Fielding and Kaiser noted in their de-
scription of the Apache project [6], the mailing list and its
archives, CVS, and bug tracking systems (like Apache’s
GNATS, Linux kernel’s Jitterbug, or Mozilla’s Bugzila)
support low-level coordination: “retaining project history,
tracking problems and revisions, providing and controlling
remote access, and preventing change collisions (the ‘lost
update problem’)” (p. 89). However, a year and a half af-
ter their article, there is still no support for higher-level co-
ordination — group decision-making, knowledge manage-

3



ment, task scheduling and progress tracking, etc. — for any
of the projects examined here. Design documents and devel-
opment plans are at best jotted down in TODO-style files,
often scattered around the source tree or the project’s Web
site, without an effective way to track progress of develop-
ment efforts or even tasks that individual developers are cur-
rently engaged in. Even in Apache’s case, with its regular
posting of project’s status and plans on the developer’s mail-
ing list, it is hard to gauge progress or sense the direction
of evolution, since older version of the status messages are
buried among hundreds of other messages in the mailing list
archive.

Furthermore, the use of the mailing list as a primary com-
munication channel among the developers has often resulted
in a deluge of e-mail. For example, Linux kernel mailing list
averages over 100 messages per day. As a matter of fact,
if we define project coordination as “the attempt to get the
right information to the right people at the right time” [8],
it could be argued that open-source projects lack it entirely
and leave all coordination work to humans. Although the
mailing lists are for most projects automatically archived
and available on-line for hypertext browsing, effective re-
trieval and management of that volume of information re-
quires more sophisticated tools than basic reply-threading.
This problem is even more acute for a developer who would
like to join the project, since those archives often provide the
only source of information on design choices and evolution
of the system. This entry barrier is a problem that has been
acknowledged by open-source developers [5, 7] and is all
the more troubling because of the reliance of OSS projects
on volunteer submission and “fresh blood”.

All this points out that typical large open-source projects
currently require an inordinate amount of manual and men-
tal effort from their developers, who often have to rely on
their memory and ad-hoc methods to compensate for the
lack of adequate tools and automation. That the current
OSS projects did so well under such circumstances is a
testament to the talent of their programmers [5], although
some are already questioning whether that talent will be in
short supply if the open-source methodology becomes more
widespread [13].

0��'� 57�-���,4-����4?>?
��-@A��B

Ted Lewis in his “Binary Critic” column in IEEE Com-
puter [13] voiced a rare criticism aimed at the ability of
open-source development process to cope with its own suc-
cess. A big problem that open-source projects are going to
face as they mature, Lewis claims, is that they will also grow
in features and complexity, all the more so because of the
“feature creep” brought on by ongoing user contributions.
This will eventually overwhelm the resources of their hand-
ful of core developers and the capability of their typically

ad-hoc organizational structure to cope with those stresses.
Similar objections were also raised by Microsoft in an inter-
nal memo (subsequently leaked to the press): “The biggest
roadblock for open source software projects is dealing with
exponential growth and management costs as a project is
scaled up in terms of innovation and size” [20].

While Lewis’s article has generated a barrage of criti-
cism on open-source-related mailing lists (which, because
of their turn-around time, hasn’t yet reached printed pub-
lications), and has been show to contain some serious fac-
tual errors, it also raises an important concern. True, Linux,
for example, has managed to grow to over 1,500,000 mil-
lion lines of code (comparable to other Unixes) over the last
seven and a half years without compromises in its reliabil-
ity while, at the very least, keeping pace with commercial
operating systems. But it is also true that releasing version
2.2 took longer than expected and that occasionally there is a
backlog of submitted patches awaiting Torvalds’s approval
for inclusion into the kernel. Mozilla, after a year of de-
velopment and some significant progress, still doesn’t have
even an official public beta release, much less a production-
quality version. These two are probably among the largest
open-source projects in terms of the sheer number of lines
of code, which may suggest that indeed we are reaching the
point when the current coordination infrastructure is becom-
ing insufficient and better tools are needed to assist the de-
velopers in more efficient collaboration.

4 Conclusion

As David Lawrence, one of INN’s core developers,
noted, open-source development model might not be the
right choice for every software project, but it is still suit-
able for a wide variety of systems [12]. It would certainly
be hard to argue against its effectiveness in the case of
Linux, Apache, or Perl. In any case, as the software com-
panies struggle to find a way to meet the often conflicting
requirements of developing software faster while making it
more robust, they might be forced to embrace alternative
development models. Open source offers a development
model that “creates a faster, leaner, and more reliable prod-
uct than mainstream competitors, and does so essentially for
free” [22],(p. 89). It is no wonder then that open-source
software has recently been getting so much attention from
the software industry and news media.

However, regardless of whether that attention proves to
be only a fad, and the open source doesn’t gain mainstream
acceptance, it is unlikely that it will disappear. It has been
around for over twenty years already and is only gaining
in popularity; there are now even Web sites devoted to an-
nouncements and news related to ongoing and starting open-
source projects (e.g., Freshmeat.net).

Based on published experience reports of open-source

4



developers, more effective support for knowledge manage-
ment and coordination will be needed as projects evolve and
grow with time. The road awaiting for software engineer-
ing researchers is to gain better understanding of the dynam-
ics and requirements of open-source development, which is
necessary if the tools appropriate to open-source specifici-
ties are going to be developed. For example, enacting a tra-
ditional software process in an open-source project would
not only be difficult, but could also be counter-productive
because the potential contributors would simply give up
if they perceive that they are giving away their freedom.
What is needed are tools (and techniques, including social
processes) that are flexible, complement the tools currently
in use, and support the existing open-source development
model almost transparently.

References

[1] K. Alho and R. Sulonen. Supporting virtual software projects
on the Web. In Proceedings of 7th International Workshop
on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE ’98) Workshop on Coordinating Dis-
tributed Sofware Development Projects. IEEE Press, Apr.
1998.

[2] Apple, Inc. Apple announces Mac OS X
server: New server software optimized for In-
ternet, 5 Jan. 1999. Press release available at
http://www.apple.com/pr/library/1999/jan/05osxserver.html.

[3] B. Berliner. CVS II: Parallelizing software development.
In USENIX Association, editor, Proceedings of the Winter
1990 USENIX Conference, January 22–26, 1990, Washing-
ton, DC, USA, pages 341–352, Berkeley, CA, USA, Jan.
1990. USENIX.

[4] J. Edwards. The changing face of freeware. IEEE Computer,
31(10), Oct. 1998.

[5] R. T. Fielding. The Apache Group: A case
study of Internet collaboration and virtual com-
munities, 1997. http://www.ics.uci.edu/ field-
ing/talks/ssapache/overview.htm.

[6] R. T. Fielding and G. Kaiser. The Apache HTTP server
project. IEEE Internet Computing, 1(4):88–90, July/Aug.
1997.

[7] F. Hecker. Mozilla at one: A look back and ahead, 2 Apr.
1999. http://www.mozilla.org/mozilla-at-one.html.

[8] H. Holz, S. Goldmann, and F. Maurer. Working group
report on coordinating distributed software development.
In Proceedings of 7th International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises
(WETICE ’98). IEEE Press, Apr. 1998.

[9] IBM Corp. IBM helps companies turn simple Web sites into
powerful e-business solutions, 22 June 1998. Press release
available at http://www.ibm.com/News/1998/06/223.phtml.

[10] O. S. Initiative. The Open Source definition, 1997.
http://www.opensource.org/osd.html.

[11] T. P. Institute. http://www.perl.org/.

[12] D. C. Lawrence. InterNetNews server: Inside and open-
source project. IEEE Internet Computing, pages 49–52,
Sept./Oct. 1998.

[13] T. Lewis. The open source acid test. IEEE Computer,
32(2):125–128, Feb. 1999.

[14] F. Maurer and B. Dellen. An Internet based soft-
ware process management environment. In ICSE 98
Workshop on Software Engineering over the Internet.
Available online from http://sern.cpsc.ucalgary.ca/ mau-
rer/ICSE98WS/Submissions/Maurer/ICSE.html, 1998.

[15] J. E. McGrath. Time matters in groups. In Intellectual Team-
work: Social and Technological Foundations of Cooperative
Work, pages 23–78. Lawrence Erlbaum, Hillsday, NJ, 1990.

[16] J. McHugh. For the love of hacking. Forbes, pages 94–100,
10 Aug. 1998.

[17] Netcraft, Inc. Netcraft Web server survey, Jan. 1999.
[18] Netscape, Inc. Netscape announces plans to make next-

generation Communicator source code available free on the
Net, 22 Jan. 1998.

[19] T. A. Project. Apache project guidelines, 3 May 1998.
http://dev.apache.org/guidelines.html.

[20] E. S. Raymond. Open source software — a (new?)
development methodology, 1998. Annotated ver-
sion of an internal Microsoft report available at
http://www.opensource.org/halloween1.html.

[21] R. Salz. InterNetNews: Usenet transport for Internet sites.
In USENIX Association, editor, Proceedings of the Sum-
mer 1992 USENIX Conference: June 8–12, 1992, San Anto-
nio, Texas, USA, pages 93–98, Berkeley, CA, USA, Summer
1992. USENIX.

[22] J. Sanders. Linux, open source, and software’s future. IEEE
Software, 15(5):88–91, Sept./Aug. 1998.

[23] S. Shankland. Linux shipments up 212 per-
cent. CNET News.com, 16 Dec. 1998.
http://www.news.com/News/Item/0,4,30027,00.html?st.ne.ni.rel.

[24] L. Wall and R. L. Schwartz. Programming perl. O’Reilly &
Associates, 1990.

[25] R. F. Young. Sizing the Linux market, second edi-
tion. White paper, Red Hat Software, 5 Mar. 1998.
http://www.redhat.com/redhat/linuxmarket.html.

5


