
Evaluation of a Publish/Subscribe System for Collaborative and Mobile Working

Pascal Fenkam, Engin Kirda, Schahram Dustdar, Harald Gall and Gerald Reif

Technical University of Vienna, Distributed Systems Group
Argentinierstrasse 8/184-1, A-1040 Vienna, Austria

fP.Fenkam, E.Kirda, S.Dustdar, H.Gall, G.Reif g@infosys.tuwien.ac.at

Abstract

The MObile Teamwork Infrastructure for Organizations
Networking (MOTION) 1 service platform that we have de-
signed and implemented addresses an emerging require-
ment in the daily business of large, distributed enterprises:
support for mobile teamwork. Employees are often on the
move and use a wide range of computing devices such
as WAP phones, PDAs, notebooks and desktop computers.
The service architecture that we have developed supports
mobile teamwork by providing multi-device service access,
XML meta data for information sharing and locating, and
the XML Query Language (XQL) for distributed searches
and publish/subscribe. We present the solution that we
adopted in our prototype, analyze the shortcomings of this
approach and based on our evaluation experiences, list the
requirements for a publish-subscribe middleware for col-
laborative mobile working.

Keywords: MOTION, Mobile Teamworking, Evalua-
tion, XML meta-data and XQL, Publish/Subscribe, Mobile
and distributed collaboration

1 Introduction

Large, global organizations are usually distributed across
sites that are located in different countries. Employees are
often on the move and need to collaborate on documents.
Advanced mechanisms are needed to enable employees to
work together by exchanging, locating and sharing infor-
mation and communicating with their co-workers. Hence,
many organizations are increasingly faced with the problem
of supporting nomadic workers [12, 15].

1This project is supported by the European Commission in the Frame-
work of the IST Program, Key Action II on New Methods of Work and
eCommerce. Project number: IST-1999-11400 MOTION (MObile Team-
work Infrastructure for Organizations Networking)

The MObile Teamwork Infrastructure for Organizations
Networking (MOTION) system that we have designed and
implemented addresses the mobile teamwork requirements
of organizations in their daily business. It provides mobile
teamwork support by covering requirements such as locat-
ing distributed business documents and expertise through
peer to peer searches, advanced subscription and notifica-
tion, community building, and mobile information sharing
and access.

In this paper, we present an evaluation of the subscrip-
tion/notification facility of our MOTION system. The pur-
pose of this evaluation is to investigate how well our design
decisions fulfill the functional and non-functional require-
ments of context awareness (i.e., information on what other
people are doing, the current state of business documents,
resources, etc.).

Two types of evaluation of awareness in collaborative
systems are advocated in the literature [5]: evaluation of a
system from user’s perspective and evaluation of technical
performance. The evaluation case study presented in this
paper is classifiable in the second category.

We present the solution for awareness that we adopted
in our prototype, analyze the shortcomings of this approach
and based on our experiences with the system prototype,
list the requirements for an effective publish-subscribe mid-
dleware for collaborative mobile working. The difficulties
encountered during the design and implementation of the
MOTION Teamwork Services are our principal motivation
for early evaluation.

The remainder of the paper is structured as follows.
The next section gives a brief introduction to the indus-
trial case studies of the MOTION project. Section 3 gives
an overview of the architecture of the MOTION platform.
Section 4 presents the architecture of our subscription and
notification components in MOTION. Section 5 discusses
the important decisions that guided our design. Section
6 presents the requirements for publish/subscribe systems
for collaborative and mobile working. Section 7 presents

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

a possible candidate middleware solution for solving the
problems we encountered in the implementation of the MO-
TION subscription and notification facility. Section 8 con-
cludes the paper.

2 Case study companies

In this section, we give a brief overview of the case study
global companies and discuss the main problems that the
MOTION system attacks.

2.1 Case study: Mobile phone design

The first case study is a global company involved in the
market of telecommunication equipment and systems. The
company is well-known in the market of mobile phones and
is globally distributed across sites in several countries.

The company would like its employees to communicate
and collaborate on mobile-phone related artifacts (i.e., doc-
uments) and to locate “experts” whenever they face techni-
cal or organizational questions. Experts are employees that
are highly specialized in a specific mobile-phone related do-
main.

An information infrastructure, hence, is needed that
helps to arrange virtual and face-to-face meetings and pro-
vides subscription and notification mechanisms. For exam-
ple, when an expert is available who is knowledgeable about
the software of the phone version 3218A, all subscribed em-
ployees are notified.

2.2 Case study: Household appliances

The second industry case study is a global, well-known
producer of white goods.

The company has manufacturing experts who travel
around the world and need ubiquitous access to informa-
tion. The main problem the company would like to solve is
to support these experts in querying distributed knowledge
repositories. Similarly, the company would like to enable
its employees to locate the experts they need based on the
contents of documents users read or edit.

2.3 Publish/subscribe context awareness

As can be seen in the case study descriptions, both
case study organizations need advanced distributed query-
ing as well as subscription and notification mechanisms. In
both of the case studies, we identified the publish/subscribe
paradigm (enforced with appropriate messaging and meta
data mechanisms) as a suitable solution to increase the
availability and awareness of documents and users.

An employee might issue a query, for example, to locate
experts on “valve design.” If she does not find any, she can

subscribe to such experts and is notified whenever the sys-
tem discovers an expert in this area. An employee, hence,
must be able to receive notifications on the availability of
any information she is able to search for.

3 Brief overview of the MOTION architec-
ture

We refer to every computing device that is connected to
the MOTION system as a peer. The MOTION system typi-
cally consists of desktop computers, notebooks and PDAs.

Usually, every peer has a local repository that the user
can use to store business documents (i.e., artifacts in MO-
TION) that she can share in virtual communities with
other connected users. XML Meta-data (i.e., profiles in
MOTION) is stored about each artifact, hence, enabling
searches by other users. Some clients such as WAP-enabled
mobile phones and Web browsers are thin clients that do not
host a repository or any services, but only access resources
remotely.

The MOTION system has a three layer architecture. The
bottom layer, the communication middleware, offers basic
communication services such as publish/subscribe mecha-
nisms, peer to peer file sharing and distributed searches. We
use the PeerWare [10] system as the communication mid-
dleware infrastructure in the current prototype. PeerWare
provides publish/subscribe and distributed search propaga-
tion functionality.

The middle layer in the architecture, the Teamwork Ser-
vices (TWS) layer, is built on top of the communication
middleware. This layer is responsible for the integration
of the main components of the system (e.g., access control,
user and community management, repository).

The TWS layer provides an Application Programming
Interface (API) to generic services such as storing and re-
trieving artifacts in the local repository and from remote
repositories on other peers, creating and managing virtual
communities, sending and receiving messages from other
users and distributed search specification and invocation.

The presentation layer, as the top layer in the architec-
ture, provides the user interface to the MOTION services
and is built using the TWS API.

4 Publish/subscribe in MOTION

The publish/subscribe paradigm has been identified as an
architectural style that fosters mobility and high decoupling
of components (e.g., [4, 16]).

The publish/subscribe component in the Teamwork Ser-
vices Layer of the MOTION system wraps the underlying
middleware and gives a uniform and consistent view of the
event concept to the application layer.

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

Publish/Subscribe

Messaging System

Repository

User Specialized Callback.

Subscription Front End

Subscription Gateway

Presentation Layer + Business Specific Services

 (Middleware)

Figure 1. The TWS Layer Publish/Subscribe Architecture

Typically, publish/subscribe systems enable components
to subscribe and react to events by specifying user written
callback methods that are invoked by the system whenever
an event occurs that matches a subscription. A system-
specific query language is often used to create subscription
criteria.

Having only a publish/subscribe middleware, however,
is not enough to easily construct collaborative distributed
applications. This is because there is no direct mapping
between component-level (system) subscriptions and user-
level (application) subscriptions. The repository compo-
nent, for example, may use the publish/subscribe middle-
ware to subscribe to all component-level events generated
by the access control component. Enabling a user Tom to
subscribe to artifacts created by Joe, in contrast, is a higher-
level event and needs a mapping of component-events to
user-level events in the system.

We use so called subscription gateways in our system
and utilize user specialized callbacks (see Figure 1). A
user specialized callback is a component that handles sub-
scriptions of a specific user. Whenever the user wishes to
perform a subscription, she informs her specialized callback
with subscription criteria. This callback mediates between
the underlying publish/subscribe system and the user and
subscribes on her behalf. Hence, when an event occurs that
satisfies one of the user’s subscription criteria, the user spe-
cialized callback is invoked and it transforms the received
event into a message. The message is sent to the user and
contains the details about the event (e.g., URLs pointing to
documents, notification details, etc.).

The subscription gateway denotes the set of callback
components running on a particular peer. A subscription
gateway has to be configured for each user. Note that choos-
ing a subscription gateway is a configuration issue because
every peer can be used as a subscription gateway. It is im-
portant, of course, that the peer stays connected to the sys-
tem (e.g., a PDA peer would not be a suitable gateway be-
cause the user is not always connected to the network).

Different middleware implementations provide different
subscription languages. To create a flexible system that is
not dependent on a specific publish/subscribe system, it is

necessary to hide the differences.
We chose to use an XML query language (XQL) [14]. In

general, XML query languages give the business-specific
services the capability to query complex XML events and
data. In particular, we chose XQL because it was one of the
currently available languages at the time the project started.
The different XML query languages have now been merged
into XQuery [2] which is still a moving target.

A user, for example, that wishes to be notified whenever
an expert in “valve design” goes online could formulate the
following XQL query with a client:
/UserProfile[(User/Expertise/* $contains$
’valve design’) and System/Access/Status
$equals$ ’online’]/ID
(e.g., see Figure 2). Note that the XQL query defines
criteria based on the contents of XML profiles in the system
(e.g., The tag Expertise defines a string description of the
expertise of each user in this case).

Suppose a user Joe is registered in the MOTION system.
Whenever he goes online, his profile is included in an event
that is published. All subscribed users are notified. The
XML description of such an event may look as shown in
Figure ??

Two classes of subscriptions exist in the MOTION sys-
tem: system subscriptions and user subscriptions. User
subscriptions are subscriptions initiated by users. Result-
ing messages are sent using different communication means
(e.g., SMS, specific MOTION Messages, e-mail, etc.).

System subscriptions generate events that inform com-
ponents of system-specific activity. When, for example, a
new MOTION user is created, an event is published for two
reasons: First, interested users (i.e., those that have sub-
scribed to the new user details) are notified. Second, the
repositories of other peers are updated (events are queued
for disconnected peers).

5 Related approaches and design decisions

In this section, we give an overview of existing aware-
ness solutions in collaborative systems and discuss design

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

Figure 2. Creating a subscription with the native Java MOTION client

<UserProfile ID="smith">
 <System>
 <TimeZone>GMT</TimeZone>
 <Location>Vienna</Location>
 <Access Status="online">
 <Source>

amd16.infosys.tuwien.ac.at
</Source>

 </Access>
 <LastProfileUpdate>

23.05.2001
</LastProfileUpdate>

 </System>
 <User>
 <Name>
 <FirstName>Joe</FirstName>
 <LastName>Smith</LastName>
 </Name>
 <Expertise>
 <Role>Research Assistant</Role>
 <Skill>Walve design, java,
 mobile computing</Skill>
 <Group>DSG</Group>
 <Language>English</Language>
 <Language>German</Language>
 </Expertise>
 <Address>
 <Smail>
 <Street>Argentinierstraße
 8/184-1</Street>
 <ZIP>A-1040</ZIP>
 <City>Vienna</City>
 <State>Austria</State>
 </Smail>
 <Email>smith@gmx.net</Email>
 <Phone>555 123 123</Phone>
 <Mobile>555 123 123</Mobile>
 </Address>
 </User>
</UserProfile>

Figure 3. XML description of an event

decisions that differentiate our platform from existing sys-
tems.

User awareness has been recognized as an important
value for collaborative environments. Khronika [6], Inter-
locus [9], Awareness@work [13], Nessie [11] are examples
of collaborative systems that enable various levels of aware-
ness. Important features provided by each of these systems
range from security and access control to persistency. The
majority of these systems are not concerned with device,
and user mobility and do not provide support for distributed
searching. Further, most systems are client-server based
and fail to scale for widely distributed organizations.

One of the motivations for choosing PeerWare, a Peer-to-
Peer (P2P) system, as middleware in MOTION was because
the P2P architectural style has been increasingly gaining at-
tention. The P2P style provides high flexibility and sys-
tem configurability. Considering that our system has to be
scalable for widely distributed organizations with more than
60.000 employees, we could not rely on the client-server
paradigm proposed by most collaborative systems.

One other reason was because PeerWare provides both
distributed searching/P2P file sharing and publish/subscribe
support. There are middleware solutions that provide either
publish/subscribe (e.g., [16, 1, 7]), or P2P file sharing (e.g.,
[8]), but an integrated solution such as PeerWare is uncom-
mon.

We also had access to PeerWare’s source code and could
make modifications and extensions as necessary.

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

6 Requirements for an effective pub-
lish/subscribe middleware

In this section, we analyze our system and based on our
experiences with the system prototype, list the requirements
we identified for an effective publish-subscribe middleware
for collaborative mobile working.

Requirement 1: An efficient filtering mechanism

This requirement seems to be the problem of most pub-
lish/subscribe systems. In user-oriented publish/subscribe
systems, the number of subscriptions can easily grow.

In our case, it was not possible to optimize the filtering
mechanism of PeerWare based on the semantics of filters
and events. The filtering process is performed by Peerware
while the semantics of this operation is the responsibility of
application developers. If m is the number of subscriptions
on a peer and n is the number of events to be matched, the
filtering is performed with θ(mn) time complexity. With
10 millions of subscriptions, if processing one subscription
requires t seconds, the system will need 5t billion seconds
to match them to 500 incoming events. This is an alarming
situation that often reflects reality.

Two existing technologies that could help solve this
problem at the middleware level are parallel search trees
(used in Gryphon [1]), and BDDs (used in SPEAR [3]).

Requirement 2: The capability to automatically de-
stroy a subscription after a given delay

We are not aware of any publish/subscribe middle-
ware that provides the simple functionality of automatically
deleting subscriptions after a specified timeout. Proxy Elvin
[16] and Khronika [6] provide a time-to-live for subscrip-
tions. However, this time-to-live does not determine how
long the subscription must live, but how long notifications
matching a subscription must be stored.

This capability can easily be built by constructing a layer
on top of any publish/subscribe system. Integrating this
functionality into the middleware, however, is better be-
cause it saves development effort of the application devel-
oper.

This requirement is important because of organizational
reasons. If users are able to create subscriptions at will,
they may create and forget many subscriptions. These sub-
scriptions will affect the performance and the scalability of
the system. Hence, having a default policy of clearing sub-
scriptions after some time can help solve problems. The
mechanism we describe is similar to that applied by Web-
based e-mail providers who delete unread emails after about
two-three weeks.

Based on empirical results, Khronika’s [6] evaluators
also state the capability to destroy subscriptions as an im-
portant requirement. Unfortunately, the requirement is not
yet fulfilled by their system.

Requirements 3: Authorization mechanisms for
subscriptions

In collaborative applications, access restrictions and en-
cryption mechanisms are needed when sharing information.
It may not be desirable, for example, to allow every em-
ployee to subscribe to a specific document or be informed
that a new mobile phone is being designed.

Most of the existing publish/subscribe middleware solu-
tions do not have any integrated security and authorization
mechanisms. There have been some attempts to integrate
security considerations into publish/subscribe systems (e.g.,
Gryphon [1] and KERYX [7]), but there is no general con-
sensus on what the best way of doing this.

More work needs to be done in identifying what the secu-
rity threats in publish/subscribe systems are, and how they
can be avoided without creating the publish/subscribe bot-
tleneck.

Requirement 4: An expressive query language for
defining subscriptions

The subscription language that is provided by most pub-
lish/subscribe middleware solutions is often too simple for
user and application-level subscriptions. In Section 4, we
discussed how we used XQL to create user and application-
level subscriptions on top of a publish/subscribe middle-
ware.

The disadvantages of this approach are that there was
an increased implementation overhead and our system be-
came less flexible because it was more difficult to switch
to another publish/subscribe system. Subscription language
standards for publish/subscribe systems, hence, need to be
defined that enable application developers to build more
flexible and complex applications.

XML seems to be a good candidates for such a language.
Subset of XML query languages can be used for subscrip-
tions. Although we used a subset of XQL for this pur-
pose, any other XML query language such as XQuery can
be used. An empirical evaluation of the Khronika system
also identifies the lack of an event/subscription description
language as a handicap.

7 A promising direction: SPEAR

SPEAR[3] (Scalable Publish subscribe Architectures for
Efficiency and Robustness) is a publish/subscribe system
designed with the goal of efficiency. Its filtering mechanism

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

is based upon BDDs (Binary Decision Diagrams). In Spear,
events are described using a subset of XML. Correspond-
ingly, the subscription language is a subset of XQL. Experi-
mental results show that Spear is capable of matching 1000
events against 500,000 subscriptions in 15.57 seconds. A
detailed comparison of SPEAR to other publish/subscribe
systems (e.g., Gryphon, SIENA, ELVIN, KERYX, JMS)
can be found in [3].

According to the description in [3], SPEAR solves two
requirements we listed for building publish/subscribe-based
collaborative applications: the support for an expressive
enough query language (e.g., XML/XQL) and an efficient
filtering mechanism.

We are planning to deploy other publish/subscribe sys-
tems in our prototype to identify the most suitable middle-
ware approach for collaborative working applications.

8 Conclusion

The MOTION mobile teamwork service platform that
we have designed and implemented addresses the emerg-
ing requirement of mobile teamwork support in distributed
enterprises.

There has been a growing interest in publish/subscribe
systems to engineer distributed systems. In this paper, we
presented an early evaluation of the subscription and notifi-
cation mechanism of our MOTION system.

We described the solution we adopted in our prototype
implementation and discussed the shortcomings of our ap-
proach. We listed four important requirements for an effi-
cient publish/subscribe middleware for collaborative mobile
working. We plan to complement and extend the require-
ments list with empirical evaluations of the case studies.

Enterprise-scale publish/subscribe middleware solutions
need to address scalability issues by providing more ex-
pressive subscription languages, subscriptions with time-
outs and authorization and filtering mechanisms.

Acknowledgements

We would like to thank the MOTION team and partners
for their contribution in the project.

References

[1] M. Aguilera, R. Strom, D. Sturman, M. Astley, and T. Chan-
dra. Matching events in a content-based subscription sys-
tem. In Proceedings of the ACM Symposium on Principles
of Distributed Computing (PODC 99), 1999.

[2] S. Boag, D. Chamberlin, M. Fernadez, D. Florescu, J. Ro-
bie, J. Simeon, and M. Stefanescu. XQuery 1.0: An
XML Query Language (XQL). Technical report, World

Wide Web Consortium, April 2002. Available from
http://www.w3.org/TR/xquery.

[3] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Ef-
ficient Filtering in Publish/Subscribe Systems using Binary
Decision Diagrams. In Proceedings of the 21st International
Software Engineering Conference (ICSE), Toronto, Canada,
May 2001.

[4] G. Cugola and E. D. Nitto. Using a Publish/Subscribe Mid-
dleware to Support Mobile Computing. In Proceedings
of the Workshop on Middleware for Mobile Computing, in
association with IFIP/ACM Middleware 2001 Conference,
Heidelberg, Germany, November 2001.

[5] T. Hall. Practitioner’s guide to evaluating collaborative sys-
tems. In Proceedings of the 10th IEEE International Work-
shop on Enabling Technologies (WET ICE 2001) Infrastruc-
ture for Collaborative Enterprises, Cambridge, MA, USA,
July 2001.

[6] L. Lövstrand. Being selectively aware with the khronika
system. In Proceedings of the 6th European Conference
on Computer Supported Cooperative Work-ECSCW’91,
September 1991.

[7] C. Low. Integrating communication services. IEEE Com-
munications Magazine, 35(6), 1997.

[8] K. McCrary. Jtella homepage,
http://www.kenmccrary.com/jtella/, 2002.

[9] T. Nomura, K. Hayashi, T. Hazama, and S. Gudmundson.
Interlocus: Workspace configuration mechanisms for activ-
ity awareness. In Proceedings of the 1998 ACM Conference
on Computer Supported Cooperative Work, Seattle, pages
19–28, November 1998.

[10] G. P. Picco and G. Cugola. PeerWare: Core Middleware
Support for Peer-To-Peer and Mobile Systems. Technical
report, Dipartimento di Electronica e Informazione, Politec-
nico di Milano, 2001.

[11] W. Prinz. Nessie: An awareness environment for col-
laborative settings. In Proceedings of the 6th European
Conference on Computer Supported Cooperative Work-
ECSCW’99, pages 391–410, September 1999.

[12] G. Reif, E. Kirda, H. Gall, G. P. Picco, G. Cugola, and
P. Fenkam. Web-based peer-to-peer architecture for collab-
orative nomadic working. In 10th IEEE Workshops on En-
abling Technologies: Infrastructures for Collaborative En-
terprises (WETICE), Boston, MA, USA. IEEE Computer So-
ciety Press, June 2001.

[13] K. O. Sandor and A. Schmer. Supporting social aware-
ness @ work, design and experience. In Proceedings of the
1996 ACM Conference on Computer Supported Cooperative
Work, Boston, 1996.

[14] D. Schach, J. Lapp, and J. Robie. XML Query
Language(XQL). Technical report, World Wide
Web Consortium, September 1998. Available from
http://www.w3.org/TandS/QL/QL98/pp/qxql.html.

[15] J. Schiller. Mobile Communications. Addison-Wesley,
Reading, Mass. and London, 2000.

[16] P. Sutton, R. Arkins, and B. Segall. Supporting
disconnectedness-transparent information delivery for mo-
bile and invisible computing. In Proceedings of 2001 IEEE
International symposium on Cluster Computing and the
Grid (CCGrid’01), May 2001.

Proceedings of the Eleventh IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’02)
1080-1383/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

