
A Logical Model for Coordination Rule Classes in Collaborative Sessions

José Martín Molina Espinosa, Jean Fanchon, Khalil Drira
LAAS-CNRS

7, Avenue du Colonel Roche
31077 Toulouse CEDEX 4 France

Email: jmmolina@laas.fr, fanchon@laas.fr, khalil@laas.fr

Abstract

This paper presents a coordination model allowing
managers to define coordination policies in collaborative
sessions. Our model allows different collaboration sites to
be managed by maintaining consistency of the distributed
management actions at the user and collaborative tool
levels. The model manages multi-tools and multi-users
collaboration sessions. It is based on a partial order
representation of interdependencies in collaborative
sessions and a logical specification of the required
properties. We define three rule classes of coordination
sufficient to specify the properties of interest. Our model
is used to implement a software component for
collaborative session management. We proceed by
control of user-level management actions and by
automated execution of tool-level management actions.

1. Introduction

Session management is a key issue in collaborative
applications[3][6]. This topic constitutes a key element in
the success of the collaboration, since it is in charge of
defining the dynamical behaviour of collaborative
sessions, including crucial functions such as enabling and
controlling interaction among participants. In
collaborative applications, the session management is a
service, specifically developed for each new application.
This service is very tied to the application’s and the
environment’s functionalities. The opening and flexibility
in this kind of services is very limited.

Session management is constituted of two stages: the
session management scheduling and the session
management execution[12]. Session management
scheduling refers to actions necessary to configure
sessions and to invite participants. The configuration
consists in the determination of the list of participants, the
list of applications to be employed, the network
parameters, etc. The process of invitation makes possible
to participants to be notified of the existence of a session.
This process allows participants to accept or to reject
session invitation. In the case of implicit meetings
according to Edwards[6], this first stage is not executed,

because actions made during this stage are replaced by
other mechanisms that allow finding a session.

Session management execution refers to actions
fulfilled during the session. These actions describe the
behaviour of the participants and of the applications
during the session. Actions in line are divided in actions
related to session (to open, to close, etc.), to participant
management (to join, to leave, etc.) and to application
management (to start, to stop, etc.). The in line
management actions set determines the behaviour of the
session. For example, we can suppose that participant
connection order determines the priority to access critical
data objects.

Current session managers give very few possibilities of
coordination rules definition. In current session
management literature, we can find several works that
center their approach in the definition of the relations
among participants, applications and information, [6, 16,
14, 15]. Edwards [6] and Texier et al. [16] refer
essentially to the definition of the access rights of
participants and applications on data. Rodriguez et al. [14]
describes the application architecture to determine data
flows between producer-consumer components. Tata [15]
defines coordination policies based on data access and
synchronization contracts established between members of
a virtual team. His model is centered in role managing and
activity synchronization. It also supports the inference of
access rules across a set of basic rules. We have centered
our model on the use of participant and application events
without depending on the data aspect. We consider that
participant and applications atomic events are sufficient to
manage distributed sessions. The coordination rules allow
defining the behaviour of the session, such as the
authorization or not of late comers participant connection.
These rules allow to define the interdependencies between
participants and applications. By example, by using
coordination rules we can define the following
collaborative session policies:
�� Participants connection order: the allowed order is

first the chairman, later the secretary and finally the
rest of participants.

�� Session opening: the session will be opened when
80% of participants are connected.

�� Session connection: participants cannot be connected
to a session that has been closed.

�� Session disconnection: a participant can not be
disconnected if he is in charge of one or more
application servers.

This type of policies definition depends on session
purposes and can change for every session instance. In
this paper, we present a model for coordination
dependencies between participants and applications in
collaborative sessions. The aim is the supervision of
participant and applications behaviour during a session.

The model includes two aspects, on the one hand the
definition of collaborative sessions by means of labelled
partial orders and on the other hand the use of first order
formulas to specify properties corresponding to
coordination rules for collaborative sessions.

1. The labelled partial orders turn out to be well
adapted for the definition of collaborative sessions.
Labeled partial orders (LPO) as models for the behaviours
of concurrent systems [13] express exactly the causality
relations between the events of a behaviour and define an
order among the actions of participants and applications
during a session. Communication diagrams or Message
Sequence Charts [8] are examples of such LPO. The
advantage of LPO w.r.t. the sequential (or interleaving)
behaviours, is that some properties can only be verified on
the partial order, as the immediate precedence (see
enabling sentence in section 3) and cannot in general be
verified on the interleavings.

2. The use of First Order Logic (FOL) formulae on
these labelled partial orders to define the properties of
interest ensures the embedding in a well defined
theoretical framework. FOL is sufficient to express the
three basic modalities which we define to specify
collaborative sessions. These three modalities are
expressed by: the precedence sentence, the inhibiting
sentence and the enabling sentence. Coordination rules are
result of the combination of these sentences with logical
operators. FOL in partial orders is strongly related to
linear temporal logic (LTL) [4][7], and should be
sufficient in the future work to specify some properties at
a particular point or configuration of a behaviour.
Temporal logic on partial orders [1][2][4][7] are the
cutting edge of Model Checking issues, and we can
benefit of the ongoing work on the whole field.

Another advantage of the specification of a system by
logic formulae on the behaviours is the induced
independency w.r.t. a particular system model during this
phase of the development. The only requirement for the
model is to have a concurrent semantics (like
Communication Diagrams or message sequence charts).
Future work should target the verification of system
models like Communicating Finite Automata or Petri
Nets.

The session management tool set developed has
allowed us to cover most of the aspects in session
management, going from session preparation up to session
execution and control, including tools and
participants[11].

The model has a double interest: on the one hand, the
definition of a formal model of dependencies for the
execution and control of management actions, and on the
other hand, the exploitation of the model in order to
ensure the correct control and execution of management
actions avoiding incoherent scenarios.

The rest of the paper is divided as follows: Section 2
presents our model of dependencies management in
collaborative sessions. First we present the formalization
of collaborative sessions by LPO, next we present the
syntax and semantics of FOL. Section 3 presents the three
sentences which form the base of the model. Section 4
presents an application: the basic coordination rules
developed for a session manager developed within the
European project DSE. In section 5, we develop the
conclusions and the perspectives of our work.

2. Multi-tool and multi-user session
coordination model

Our model is centered on the description of
interdependencies controlling the whole actions made by
actors during a collaborative session. We have identified
four kinds of action interdependencies:
�� Inter-application dependencies. This type of conflict

relates to interdependencies among applications of
different types. For example, consider a session
involving three different applications: a
videoconference, a sharing application tool and a
floor control manager. An order is necessary to
launch these applications. Indeed, the floor control
manager must be launched at last because it manages
the two others.

�� Intra-application dependencies. This type of conflicts
appears when there are interdependencies among the
components which compose an application. For
example, we can consider a sharing application tool
which is composed by three types of components: one
or more server components, a proxy component and
one or more client components. Each type of
component is defined and executed according to the
participant’s role during the session. There exist
dependency relations among these three types of
components and they cannot be started at the same
time. The server components must be started first
because they represent the basic suppliers of the
application. Then the proxy component must be

started, it carries out connections towards the already
started servers. Finally, it is the turn of client
components to be started, those carry out connections
towards the proxy.

�� Inter-participant dependencies. The actions carried
out by participants during a session can be also
interdependent. By example, according to the role
associated to each participant, they must arrive at the
session in a specific order. The chairman must be
connected before any participant, because he is
responsible of accepting the participant connections.

�� Participant-tool dependencies. There exist
interdependencies among actions carried out by
participants and by applications. For example, if a
session does not accept latecomers, then the
connection action of participants is related to open
action made by the session manager tool.

Definition 2.0 (Session actors) We define N = PT � as
a finite set denoting collaborative actors, we employ the
term actor as defined by [9]. These actors can be software
tools (elements of T) or human participants (elements of
P). We also define A as a finite set denoting management
actions. These actions may concern either user or tool
level. Such actions may be: join or leave a collaborative
session for users or start/stop actions for a collaborative
tool.

2.1 Collaborative sessions definition

Definition 2.1 (Collaborative Session) A collaborative
session that involves the set of actors N and the set of
actions A is a labeled partial order p = (Ep, ≤p, lp)
where :
Ep is a finite set of events,
≤p is a binary reflexive, antisymmetric and transitive
relation over Ep
lp : Ep → N � A is a labeling function over the events set.
An event e of Ep is called an occurrence of the pair (actor,
action) lp (e).

The immediate precedence relation between events,
denoted x�y , is defined by:
x�y if and only if x< p y ��z(x≤ p z≤ p y � z=x � z=y)

Where < p denote the strict relation naturally deduced
from ≤ p.

2.2 Coordination rules definition

Definition 2.2 (Logic syntax and semantics) We denote
by FO(≤ , N � A) the first order formulas built on ≤ and

the alphabet N � A, these formulas are defined by the
grammar :

� � � � ������ xxyxxP an ������ ,:

We shall note φ(x1,…,xn) when(x1,…,xn) are free

variables that may occur in a formula φ � FO. Let p= (
Ep, ≤p, lp) be a collaborative session and e1,…,en � Ep we
note (p,e1,…,en) ╞ φ(x1,…,xn), to mean that φ is true in p
if xi is given the value ei for all of i = 1,…,n.

The satisfiability relation ╞ is defined by:

�� (p, e) ╞ P(n,a)(x) iff lp(e)=(n,a)
�� (p, e1, e2) ╞ x1 ≤ x2 iff e1 ≤p e2
�� (p,e1,…,en, en+1,…,en+p)╞ φ(x1,…,xn) � �(y1,…,yp) iff

(p,e1,…,en)╞ φ(x1,…,xn and (p,en+1,…,en+p)╞�
(y1,…,yp)

�� (p ,e1,…,en) ╞ 	φ (x1,…,xn) iff (p ,e1,…,en) |≠ φ
(x1,…,xn)

�� (p,e1,…,en) ╞
x φ(x,x1,…,xn) iff there exists e� Ep
such that (p,e,e1,…,en) ╞ φ(x, x1,…,xn)

�� (p,e1,…,en) ╞ �x φ(x,x1,…,xn) iff for every e� Ep,
(p,e,e1,…,en) ╞ φ(x, x1,…,xn)

Particularly, if φ is a sentence (φ does not contain free

variables) then it describes a property of p and we note
p ╞ φ.

The derived operator on formulae � is defined as

usual as : (φ � �) � (φ � �).

3. Basic coordination dependencies

We have identified and formalized three types of
relations expressing dependencies involving tool-to-tool,
user-to-user, user-to-tool and tool-to-user management
actions. These relations are formalized by three
coordination rule classes which are presented below.

Definition 3.1 (Precedence sentence) For any pair of
actions (n,a), (n’,a’) � N�A, the precedence sentence,
denoted by Pred((n,a),(n’,a’)), is defined as :

� �

� � � �� �)(,,)(',',

)','(),,(

yanPxyyxanPx

ananPred

�����

�

We also define the following derived sentences :

� � � �)',(),,(', ananPred
def

aanPred �

� � � �),'(),,(', ananPrednnPred
def

a �

The precedence sentence is defined in order to specify
the causal dependency among the occurrences of
management actions. This sentence is interpreted as: actor
n’ cannot execute management action a’ before
management action a is executed by actor n.

Definition 3.2 (Inhibiting sentence) For any pair of
actions (n,a), (n’,a’) � N�A, the inhibiting sentence,
denoted by Inhib((n,a),(n’,a’)), is defined as :

� �

� � � �� �)(,,)(',',

)','(),,(

yanPxyyxanPx

ananInhib
������

�

We define also the following derived sentences :

� � � �)',(),,(', ananInhib
def

aanInhib �

� � � �),'(),,(', ananInhib
def

nnaInhib �

The inhibiting sentence is defined to inhibit the
execution of a given management action after a previous
one is executed. This sentence is interpreted as: once
management action a is executed by actor n then
management action a’ cannot be executed by actor n’.

Definition 3.3 (Enabling sentence) For any pair of
actions (n,a), (n’,a’) � N�A, the enabling sentence,
denoted by ImPred((n,a),(n’,a’)), is defined as:

� �

� � � �� �)(,,)(',',

)','(),,(

yanPxyyxanPx

ananImPred

�����

�

We define also the following derived sentences :

� � � �)',(),,(', ananImPred
def

aanImPred �

� � � �),'(),,(', ananImPred
def

nnaImPred �
The enabling sentence is defined to ensure enabling a

management action by another one. This sentence is
interpreted as: management action a’ must be executed by
actor n’ after the execution of management action a by
actor n.

4. Coordination rules for DSE application

In this section, we present an application of our model
to a real application. By using the three classes presented
above we have modeled the coordination rules for the

session manager developed within the frame of the
Distributed System Engineering European project
(DSE)[5][10].

4.1 Definition of actors

basicbasicbasic TPN ��
The chairman is a special participant who is allowed to

execute more management actions than other (general)
participants. The chairman role can be played by different
participants owning the chair attribute. But there exists in
the participants set a unique participant who is the current
chairman of the session, formally:

� ��� niipchairmanbasicP ���� 1
The set of commonly used collaboration tools is

composed of four tools:
smt: Session Management Tool,
gct: Group Conferencing Tool,
tms: Tool Management Service,
evs: Event Notification Service.
Formally:

�� evstmsgctsmtbasicT ,,,�
Where Aparticipant and Atool design respectively the
participant-related and the tool-related management
actions. Formally:

�� messageacceptleavejointparticipanA ,,,� and

�� tparticipanAgrantchairmanA ��

�� evsAtmsAgctAsmtAtoolA ���� with:

�� invitecloseopendeletecreateAsmt ,,,,�
�� disableenablegctA ,�

�� stopstarttmsA ,�
� �pullpushevsA ,�

The management of the basic coordination rules

regarding session-related management actions has been
implemented using GUI-level control (buttons and menus
disabling). For execution of enabled actions we have
implemented server-side remote invocations.

4.1 The core coordination rules

We identify in this section the basic coordination
dependencies necessary for the coherence management in
a multi-tools and multi-users collaboration session
according to the set of roles and tools defined above.
Three families of rules are defined: the session-state
related coordination rules, the membership-related

coordination rules and the group and tool coordination
rules.

4.1.1 Session state rules. The state sequencing
dependencies for a collaborative session is presented in
the rule δ1. A collaborative session begins its life cycle
after execution of creation event which sets session’s state
to initialized. After its creation, a session can pass to
announced or to deleted states according to events carried
out. Announced state means that the participants were
invited to the session. While deleted state means the
termination of the session. In addition, an announced
session is either opened, and in this case it passes to
opened, or it is cancelled, and in this case the session
passes to deleted. The open event marks the beginning of
collaborative work, this one must be enclosed by the close
event. Collaborative work can be stopped while passing
from opened to deleted. Once session has been closed, it
is finished while passing to deleted.

� �

� � � �

� � � �

� � � � ��
�

�
��
�

�

�

��

�

�

��

deleteclosesmtPreddeleteopensmtPred

deleteinvitesmtPreddeletecreatesmtPred

closeopensmtPredopeninvitesmtPred

invitecreatesmtPred

,,

,,

,,

,1�

4.1.2 Membership rules. The following four
coordination rules define the membership policies. These
policies specify actions which can or cannot be made by
participants according to the session’s and participant’s
states. Figure 1. shows the transition-state machine
defined conforming participants behaviour.

Figure 1. Participant’s state machine

Participants join the session once they have been
invited (rule δ2):

� � � �� �joinpinvitesmtPred
Pp

,,,2
�

���

Participants cannot join a deleted session. This rule
avoids inconsistent request of connection to a session
which does not exist any more (rule δ3):

� � � �� �joinpdeletesmtInhib
Pp

,,,3
�

� ��

Participants may not leave a session before joining
(rule δ4):

� �leavejoinPred
Pp

p ,4
�

� ��

Only session members can communicate by sending
and receiving messages (rule δ5):

� �messagejoinPred
Pp

p ,5
�

� ��

4.1.3 Group and tools coordination rules. The
following rules define the group behaviour and the
applications coordination policies.

The chairman role can be granted only to the
participant selected by the chairman (rule δ6):

� � � �� �acceptpgrantchairmanPred
Pp

,,,6
�

� ��

The new chairman must be connected(rule δ7):

� �acceptjoinPred p

basic
Pp

,7
�

���

The rule δ8 defines a safety property, which consists in
ensuring that an application can be stopped only if it has
been really started. In consequence, the session manager
must have in memory the list of the started applications.

� �stopstartPredt
Tt

,8
�

���

Participants are disconnected automatically after
deleting a session (rule δ9):

� � � �� �leavepdeletesmtImPred
Pp

,,,9
�

���

Tools are stopped automatically after deleting a session
(rule δ10):

� � � �� �stoptdeletesmtImPred
Tt

,,,10
�

���

Disconnected participants can not send messages (rule
δ11):

leave
participant

grant accept

Authorized

Invited

disconnected

Idle

Connected
Chairman

Expected

Connected
ordinary

invite
accept

join

reject

leave
chairman

� �messageleaveInhibp

basicPp
,11

�

���

5. Conclusion

We have presented a coordination model which defines

the dependency relations for management actions during a
collaborative session. We have identified and formalized
three coordination rule classes: precedence, inhibition,
and enabling. These three classes provide a powerful
language to specify the consistency constraints during the
execution of management actions between participants
and tools. The proposed formal framework appears to be
very expressive, ensures a rigorous modeling and
facilitates further developments like temporal logic
specifications and verification aspects. We have applied
the model to define the basic coordination rules of the
Distributed Systems Engineering project. We have
implemented a session management package, which is
compliant to the coordination rules we have presented in
this paper. At this step of work, we do not manage
multiple instances of the same tool. This constitutes our
perspective for future work.

6. References

[1] Alur R., McMillan K., Peled D., “Deciding global partial-
order properties”. 25th International Colloquium on Automata,
Languages, and Programming, LNCS 1443, 1998, pp. 41-52.

[2] Alur R., Peled D., Penczek W., “Model-Checking of
Causality Properties”, Proceedings of the 10th Annual IEEE
Symposium on Logic in Computer Science (LICS'95), 1995.

[3] Constantini F. and Toinard C., “Collaborative Learning with
the Distributed Building Site Metaphor”, IEEE Multimedia,
july-september 2001.

[4] Diekert V., Gastin P., "LTL is expressively complete for
Mazurkiewicz traces", Actes de l'ICALP'00, Lecture Notes in
Computer Science 1853, p. 211-222, 2000.

[5] Drira K., Martelli A., Villemur T., Cooperative
Environments for Distributed Systems Engineering, Lecture
Notes In computer Science 2236, Springer-Verlag, Berlin, 2001.

[6] Edwards, Keith W., “Session Management for Collaborative
Applications”, Proceedings of the Conference on Computer-

Supported Cooperative Work, Chappel Hill, NC, USA, Oct
1994, pp. 32^3-330.

[7] Gastin P. and Mukund M., “An Elementary Expressively
Complete Temporal Logic for Mazurkiewicz Traces”,
Proceedings of ICALP'02, Lecture Notes in Computer Science
2380, 2002, pp. 938-949.

[8] ITU-T, Message Sequence Charts (MSC 2000) ITU-T
Recommendation Z120, 2000.

[9] Malone Thomas and Crowston Kevin, “The interdisciplinary
Study of Coordination”, ACM Computing Surveys, Vol. 26,No.
1, March 1994.

[10] Martelli A., “Distributed System Engineering”. Data
Systems in Aerospace - DASIA - 2001 Symposium, 28 May - 1
June 2001, Nice France.

[11] Molina Espinosa J.M., Drira K., Nabuco O., “A UML
Model for Session Management in Collaborative Design for
Space Activities”. In 8th European Concurrent Engineering
Conference (ECEC 2001), Valencia, Spain, April 2001.

[12] Patterson, J.F., Hill, R. D., Rohall, S.L. and Meeks, W. S.
“Rendevous : An Architecture for Synchronous Multi-user
Applications”. CSCW 90: Proceedings of the Conference on
Computer-Supported Cooperative Work, Los Angeles, CA:
ACM, 1990, pp. 317-328.

[13] Pratt.W. Modeling concurrency with partial orders. Int. J.
Parallel Programming 15 (1987) 33-71.

[14] Rodriguez Peralta L.M., Villemur T., Drira K., Molina
Espinosa J.M., “Managing dependencies in dynamic
collaborations using coordination diagrams”, 6th International
Conference on Principles of DIstributed Systems (OPODIS'02),
Reims (France), 11-13 Dec 2002, pp.29-42.

[15] Tata S., “Policies for Cooperative Virtual Teams”,
Proceedings 5th International Conference, COORDINATION
2002, York, UK, LNCS 2315, April 8-11, 2002 pp. 340-347.

[16] Texier G., Plouzeau N., “Automatic Management of
Sessions in Shared Spaces”, Proceedings of the International on
Parallel and Distributed Processing Techniques and
Applications PDPTA’99; CSREA Press, Las Vegas, Nevada,
USA, June 28-July 1, 1999, pp. 67-73.

ACKNOWLEDGEMENTS

First author thanks Mexican Council of Science and
Technology CONACyT for financial support through
grant/loan 121900.

