
Supporting Digital Signatures in Mobile Environments
Scott Campbell

Department of Computer Science and Systems Analysis, Miami University
scott@cc-campbell.com

Abstract

Digital signatures, like physical signatures, can verify

that a specific user affixed their signature to a document
and they can also verify that the document is the same as

when the user affixed the digital signature. Digital

signature systems (DSS) use public key cryptography
methods to create digital signatures. The integrity of the

digital signature is tied to the security of the user’s

private key. As long as the user’s private key is secure,
then only the user can affix their digital signature to a

document. In this paper we examine methods and risks

involved in creating digital signatures on workstations
other than the user’s primary workstation. The challenge

is to allow the user to create a digital signature, which

requires their private key, at workstations where we can
not guarantee the key’s security.

1. Introduction

A user creates a digital signature to act much as a
physical signature does on a written document. A
signature indicates the user’s agreement with the
document. With written documents, we can verify a
signature and show that the user in question actually
signed the document. This characteristic, non-repudiation
of origin means that a user can not deny sending the
message as defined by Zhou [1]. For signing documents
we have it mean a person can not later claim they did not
sign the document. It is also important to verify the
document is currently the same as when the signature was
affixed to the document. With physical documents this is
done by examining the document and copies looking for
changes such as the use of whiteout or other visual
changes. This ensures that the terms and conditions
agreed to by the user have not changed. Digital signatures
and digital documents need to offer similar properties so
they can be as legally binding as written signatures [2].

Physical documents run the risk of having forged
signatures or of having unauthorized changes. Scanners
and other tools can place realistic copies of signatures on
physical documents that are difficult to detect. Copiers,
printers and computers can modify documents so
precisely that it is difficult to detect the changes.
Typically people sign and keep multiple copies of a
document so all parties to an agreement have their own

physical copy. Still, it is difficult to resolve conflicts
between copies if there are differences using physical
documents. These problems become even more acute
when the actual documents and signatures are digital files.

Current digital signature systems (DSS) can create
digital signatures that allow verification of a digital
signature’s authenticity and at the same time allow
verification of the document’s integrity. Using a DSS, a
person can create a digital signature for a document. Their
also must be a mechanism to validate the document’s
digital signature and integrity. To provide these
properties, the digital signature is unique to a specific
instance of a document. The digital signature is also
unique for each user. Several systems exist that support
digital signatures, see for example Gradkell [3] or Adobe
[4].

Digital signature systems use public key cryptography.
A digital signature is simply a numeric string or value that
is unique to the document and has the property that only
the signatory can create the appropriate signature. Every
user has two special and related values, the public key and
the private key, that the DSS uses for creating and
verifying a digital signature. The DSS creates the digital
signature with the user’s private key and with methods
such that it is unique to a given document. The signing
process, shown in figure 1, begins by taking a hash of the
document. This simply reduces the size of the signature
and protects the document’s privacy. The DSS then
encrypts this hash using the user’s private key. This
encrypted hash, appropriately structured, is the digital
signature. The user can append the signature to the
document or store the signature separately from the
document. The DSS also validates a signature. Validation
can be done by anyone as it uses the signer’s public key
which is by definition available to anyone. The DSS
validates a signature by first creating a hash of the
document. The DSS next decrypts the signature using the
user’s public key. The signature is valid if the document’s
hash matches the decrypted signature’s hash. This can
only occur when the document is the same as when the
user created the digital signature and when the user is the
one who created the digital signature. Only the user could
create a valid signature since only the user has access to
their private key [5].

The security and integrity of a user’s digital signature
depends upon the keeping their private key secure.
Compromising a private key allows anyone to create that

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

user’s digital signature. The DSS needs the private key to
create the signature and at the same time must keep the
key secure. Typical protection mechanisms protect this
key with encryption, file security and/or storing the key
on specialized devices. It is possible to use encryption to
encrypt the key. The user then supplies this second key
which allows the DSS to create a signature. Typically the
DSS uses a smaller key for this encryption, one the user is
able to remember and enter at the workstation. File
security protects the private key with access control
mechanisms or by storing the key on a separate floppy
disk. An improvement upon storing the private key on a
floppy is to use a hardware device. The hardware device
securely stores the key and the DSS then retrieves the
private key from the hardware device after appropriate
user authorization [6].

The problems of protecting the key expand when we
wish to sign documents away from our primary
workstation. Adding mobility requires that we protect the
key in environments that we do not entirely control or
trust. It is not possible to know what software or hardware
methods are on these other computers that can
compromise the privacy of our private key. We define
mobile signing as signing a document at a workstation
other than our primary workstation. This typically
requires transferring our private key to this workstation. It
is possible to transfer the key using an encrypted channel
or via a secure device like a smart card [47]. Asokan, et.
all propose a method for using servers to support
signature signing [8]. Their system sends uses a hash-
chain for creating unique signatures that minimize the
key’s exposure. However their solution does not take into
account malicious hosts. Malicious hosts can send the
wrong document to the server for signing and their server
will then sign this bogus document. Sanders [9] discusses
some methods of overcoming malicious host attacks
including using undetachable signatures. These
signatures do not appear to be directly compatible with
existing DSS systems. Our goal is to provide a

mechanism for using signatures servers that avoid or
minimize risks from malicious hosts.

2. Compromising Private Keys

The problem is that we can not guarantee protection of
the private key if it is copied to the remote workstation.
Creating a digital signature means the DSS must have
access to the private key. However that workstation might
have software or hardware designed to steal or copy the
private key. Once the private key is copied, then anyone
can create a digital signature in the user’s name. Hence
we need methods to absolutely protect the integrity of the
key but in such a fashion that we can still sign documents
while at remote workstations.

To protect the private key, some DSS use specialized
hardware devices to perform the signing process. The
document is sent to the hardware device and the signature
created on that device. The private key is stored on this
hardware device and never transferred to the workstation.
As long as the private key can not be transferred from the
hardware device, then the key remains secure. This
approach is mobile as the hardware device can be used on
any workstation. These devices utilize a USB interface so
the hardware interface is no longer a significant problem.
However the user must still install and use software on the
workstation to communicate with the signing device. The
user invokes the signing software and the signing
software actually transfers the authentication and
document to the signing device.

There are several methods to compromise such a
system. The first is to simply steal the device. Using
strong authentication methods can minimize this problem.
However it is still possible to compromise the
authentication as the limitation of passwords for
authentication is well known. It is possible to retrieve the
private key from the device by hacking the hardware.
Attacks on these devices are well beyond our current
scope of investigation but they do exist. Another attack is

Creating a digital
signature

Validating a digital
signature

OK
Signature Valid

Digital
Signature

Digital
Document hash hash'd

Doc

Decrypt

user's
Public Key

hash'd
Doc

Compare

Fail
Signature Invalid

Digital
Document hash hash'd

Doc
Encrypt Digital

Signature

user's
Private Key

Figure 1. Creating and Validating a Digital Signature

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

to use timing to trick the device into signing a “hack”
document instead of the user’s document. We assume
that the signer has little to no control over the remote
machine they are using. The attacking software gets the
user to authenticate and request the signing of their
document but instead sends the “hack” document to the
device. Thus the device will create a digital signature for
the “hack” document.

3. Personal Signature Server

To keep the private key secure and at the same time
allow the user to sign documents we create a server, the
Personal Signature Server (PSS) that will sign documents.
The server runs on the user’s primary workstation and
never sends the private key to any other workstation. The
PSS holds both the user’s public and private key and
performs the actual encryption of the document hash to
create the digital signature. The process begins with the
user contacting the PSS using a standard browser over a
SSL encrypted TCP connection. The server validates the
user and then sends a java applet to the remote
workstation. Using the applet, the user selects the
document to be signed. The applet then computes the
document’s hash and sends this hash to the PSS. The PSS
then computes the digital signature using the user’s
private key, stores a copy of the signature in its archive
and finally returns the signature to the user at the remote
workstation. This approach maintains the private key’s
integrity since the PSS uses but does not transfer the

private key. At no time is the key purposefully sent from
the signature server.

Verification is done by a separate applet and does not
require involvement of the PSS. The PSS will return the
user’s public key but if the verifier already has the public
key the PSS does not need to be involved. Since
verification uses only the public portion of the key there
are not security issues involved with key management.
The verifier interacts with the verification applet and
selects both the document and the digital signature for
validation. The applet then performs the verification
process. Alternatively, the PSS provides a browser based
interface to verify documents but this requires sending the
entire document to the PSS. It is necessary to ensure that
the verification messages sent to the user actually
originate from the applet or the PSS. We do not want
malicious programs to intercept a verification failed
message and display a bogus success message.

Key security is the major benefit of using the PSS but
use of the PSS also simplifies key management issues.
Management is a major issue in dealing with keys and
security in general. Revoking a key, keeping track of what
documents have been signed, and keeping older keys
available for verifying signatures are all important issues.
Using the PSS simplifies these tasks. Revoking an
existing key and creating a new key is done at the PSS’s
console and changes take effect immediately. The
signature server will continue to store older public keys to
verify previously signed documents.

There are several vulnerable points with the PSS. It is
possible to trick the PSS into signing the wrong document
much like the timing attack described above. Tricking the

iMac

Basic Authentication
& request Applet

Applet

Browser

Applet

Document

Document Hash
+ Authentication

Create
signature

user's
Public Key

user's
Private Key

Digital Signature

User
Validation

Authentication messages between
server and user's PDA

Signature ServerRemote Workstation

Figure 2. Signing Process with PDA Authentication

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

PSS into signing the wrong document arises from the fact
that a malicious program on the remote workstation can
arrange to inject its own document hash into the signature
process after the proper user authentication. To combat
this problem the PSS uses additional encryption for all
traffic with the PSS. This is in addition to the SSL
encryption. The java applet encrypts all its messages to
the signature server using a shared key coded into the
applet. Another program will not be able to inject its own
messages to the signature server unless it can obtain this
key. Obtaining the private key is possible by
disassembling the java applet code but is not a
straightforward process. As a second level of protection
the PSS generates a fingerprint of the hash it is signing.
The PSS sends this fingerprint to the signing applet which
displays its version of the fingerprint and the PSS’s
version of the fingerprint for the user. The user compares
these two fingerprints and thus verifies that the PSS is
signing the correct document.

The PSS must have strong user authentication. Anyone
who passes the authentication steps can create a digital
signature for that user. Poor authentication destroys the
PSS’s integrity. We attempt to improve the strength of the
authentication by adding an out of band authentication
step to the signature server process. The PSS sends an
authentication request to the user via the user’s PDA and
the PDA’s wireless Internet connection as shown in figure
2. The PSS requires that all signatures be approved by the
user via the PDA device. The PDA periodically contacts
the signature server to let the PSS know of its
location.When the PSS receives a signature request, the
PSS sends the PDA an encrypted message asking the user
to validate the signature request. This message contains
both a unique token as well as the document fingerprint.
The user can compare the data from the PDA with the
actual document’s data and ensure the correct document is
being signed. The user validates the signature request and
the PSS completes the signature process.

We are currently investigating vulnerabilities in this
current implementation. We also are looking at other
means of providing similar authentication without having
access to a wireless internet. We are looking at how to
use cell-phones and their internet browsing capability to
validate signing requests. Additionally one could use the
Short Messaging System (SMS) available on many
phones for validating the signing request. The final
methods we are looking at is to use pagers to receive
information from the PSS. In these instances the user
could receive a validation code from the PSS and send
their validation back to the PSS via the java applet. We
have not fully explored these methods or their associated
risks.

4. Integrating the PSS and Hardware Signing

Devices

In the introduction we discussed devices that securely
store the private key and perform the signature process on
the device. We view that the major liability with these
devices is their susceptibility to theft. We are currently
implementing a system that combines the PSS and a
mobile signature device using an Ibutton hardware device.
The Dallas I-Button is a small, inexpensive device
capable of running java applets on the device and
connects to a workstation using a USB interface. The
Ibutton supports physical tamper security measures that
make it difficult to improperly access data on the Ibutton
to extract the private key. We are working on
implementing a system where the java applet on the
Ibutton performs the actual signing process. The
workstation applet computes the document hash and then
sends the hash to the Ibutton. However prior to signing
the document, the Ibutton communicates, through the
applet on the remote workstation, with the PSS to obtain
authorization for the signing. Using the PSS allows us to
revoke keys in the case of a stolen Ibutton, keep a running
log of signed documents, and to update the keys used by
the Ibutton to sign documents.

The major advantage of using the Ibutton over the PSS
is flexibility. We define a set of rules that control how
often the Ibutton must contact the server before creating a
signature. The user can tailor these rules to meet their
acceptable level of risk. Currently we support rules that
require the Ibutton to contact the PSS based upon length
of time since last authorization and number of signatures
since last authorization. We hope to increase the rules
type and flexibility. For example, if the user is working
with common types of documents, like expense
statements, then we envision rules where the Ibutton can
sign reports with totals under set limits, say $1000, and
but must obtain PSS authentication for larger totals. The
use of these rules allows the Ibutton to create signatures in
situations where connectivity is not available but still
maintain some benefits of using the PSS.

5. Conclusion
Digital Signature Systems allow users to create a

digital signature, a numeric string, that is unique to a
specific document and can only have been created by the
user. Through the use of public key cryptography, the
DSS uses the user’s private key to create the digital
signature. The resulting signature has key properties of
non-repudiation and verifying the documents integrity
since signing. In order to provide for valid digital
signatures it is imperative to keep a user’s private key
secure. Our current research looks at methods of allowing

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

users to sign documents at workstations where we can not
guarantee the security of the private key. Instead we use a
Personal Signature Server to perform the signing process.
The PSS stores the private key in the PSS and never sends
the key to the remote workstation. Authentication and
validation of the signature request becomes a major task
in implementing the PSS. We need to ensure that the
document the PSS is signing is the document the user
desires to sign and not a document substituted by rogue
software running on the remote workstation. The PSS
must verify the user’s identity prior to signing any
documents. Our current version of the PSS uses a separate
authentication step to the user’s PDA to authenticate both
the request and verify the integrity of the document.

References
1 J. Zhou and D. Gollmann "A Fair Non-repudiation Protocol,"
IEEE Symposium on Research in Security and Privacy
2 K. Gerwig, “Will the Digital Signature Transform E-
Commerce?” Business: the 8th layer, Volume 4, Issue 3,
(September 2000) ACM netWorker.
3 http://www.gradkell.com/pks.htm
4 http://www.adobe.com/

5 W. Stallings "Network Security Essentials: Application
and Standards," 2000.
6 P. Blomgren “E-signatures with USB crypto-tokens”
[http://www.itworld.com/Sec/4039/NWW_2-12-01_signatures],
February 12, 2001.
7 B. Gelbord "Viewpoint: signing your 011001010,"
Communications of the ACM vol. 43, no. 12, pp. 27-28, 2000.
8 N. Asokan, G. Tsudik and M. Waidner "Server-Supported
Signatures," ESORICS pp. 131-143, 1996.
9 T. Sander and C.F. Tschudin "Protecting Mobile Agents
Against Malicious Hosts," Lecture Notes in Computer Science

vol. 1419, pp. 44-49, 1998.

Proceedings of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE’03)
1080-1383/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

