
Experiences in Designing a Modular Resource Monitoring System

Augusto Ciuffoletti
Dipartimento di Informatica – Univ. di Pisa

Tiziana Ferrari
INFN/CNAF – Bologna

Abstract

Resource monitoring plays a vital role in the Grid.
One of its basic features is the capability to deal with
with the heterogeneous resources available in the Grid,
and, consequently, the possibility to support both new
and existing monitoring tools in a modular way. We
start from this observation to discuss what are the com-
ponents of a Grid Resource Monitoring System and the
requirements they need to satisfy. We then show, as a
case study, how the nws monitoring tool can be inte-
grated with a ldap-based directory service. We use the
results of this case study to outline a modular archi-
tecture for a generic Resource Monitoring System. A
proof of concept implementation is finally presented.

1 Introduction

The deployment of a distributed computing plat-
form requires the availability of a resource monitoring
service: both the middle-ware and user applications
should be able to query such service, and adapt their
behavior to resource availability.

We study an architecture that integrates various
monitoring tools whose observations are made uni-
formly available to a number of heterogeneous appli-
cations in a Grid environment.

As proposed in the GGF Working Document [1], the
architecture of a Grid Resource Monitoring System is
based on three main components:

• a consumer that uses resources availability ob-
servations,

• a producer that collects and provides resource
availability observations,

• a directory service which is in charge of grant-
ing access to producers selected according to

Figure 1. A monitoring architecture ([1])

the attributes specified by the consumer: con-
sumers credentials are checked during the data
search phase, and the address of the searched pro-
ducer – if any – is delivered in the response mes-
sage.

This architecture emphasizes the distinction be-
tween management of frequently changing observa-
tional data, in the producer, and of slowly changing
organizational data, in the directory service.

A Grid Resource Monitoring System should:

• provide a facility to supervise a complex set of re-
sources, and in particular to start, stop, and track
monitoring activities on remote sensors;

• exhibit fault tolerance properties, for instance to
survive after the partition of the system, or the
failure of a control node;

• minimize the impact of the monitoring activity on
the monitored resource;

• organize the outcome of the monitoring activities
in an organized and searchable structure, enforc-
ing the required security levels;

• provide users with significant statistics, not bare
measurements;

• allow seamless integration of heterogeneous moni-
toring tools;

1



• scale well with the extension of the monitored sys-
tem and with probe frequency;

nws [2] is a monitoring tool that already meets
many of the above features. We suggest an approach
aiming at strengthening scalability, fault tolerance and
security properties of nws, which is based on the in-
tegration with ldap. The proposed method integrates
the remote control and query capabilities of nws with
the expandibility and robustness typical of ldap-based
directory services like globus mds [3]. We illustrate
our idea through a “proof of concept” implementation.

The paper is organized as follows: Section 2 illus-
trates the most important characteristics of nws and
ldap, the two tools for our case study, and shows how a
collection of sub-systems can be used to reliably mon-
itor the Grid; in Section 3 we discuss the organization
of the ldap tree needed to represent such Resource
Monitoring System; Section 4 introduces an abstract
layout aiming at integrating heterogeneous tools; Sec-
tion 5 illustrates a proof of concept implementation for
our case study; Section 6 concludes the paper by sum-
marizing the lessons learned while implementing the
prototype, and the design characteristics of a general
software architecture for Resource Monitoring.

2 Complementary aspects of nws and
ldap

The nws resource monitoring tool [2] is designed to
supervise resource availability in a Grid environment.

A nws system consists of sensors, that produce re-
source availability observations, memories, that store
resource availability observations, and forecasters,
that process resource availability observations. Indi-
vidual components - that are implemented as a Unix
process - are distributed among nws system hosts.
Each nws system is supervised by a nameserver.

We have identified the following weaknesses in the
nws design:

• a single point of failure and a communication bot-
tleneck, namely the nameserver, that limits data
availability. In fact access to the resource availabil-
ity observations relies on the correct operation of
this component, that cannot be replicated;

• no support for an authentication mechanism that
controls the registration of a new nws compo-
nent: in particular, any host can register itself as
a source of resource availability observations.

• no support for authentications mechanism to pro-
tect resource availability observations: any user

can obtain such information using the appropriate
communication protocol from any host;

These points justify the conclusion that nws is not
fully scalable, and exhibits both fault tolerance and
security leaks.

To address some of these problems, we propose to
split the monitoring domain into distinct nws sys-
tems: each subsystem is controlled by a nameserver,
and an ldap-based directory service integrates the ac-
cess to the nameservers. The integration is carried
out with an eye to the peculiar capabilities of the tools
of choice:

• ldap is appropriate to implement fault tolerance
and security of seldom updated information;

• nws is appropriate to provide access to continu-
ously changing data (through memories), to con-
trol the monitoring activity (through the name-
server), and to pre-process observations (through
the forecasters).

In detail, the ldap directory contains references to
available observations, which consist of a description
of the observed characteristic and of a pointer to the
location where the observation is stored.

The rationale behind this design strategy is to de-
couple data access issues from monitoring issues: moni-
toring activity is searched through the ldap directory,
but access to observations is through the monitoring
tool itself. Since data recorded in the ldap directory
are seldom updated, its adoption is well motivated. In
addition, introducing directory replicas improves the
robustness of the Resource Monitoring System.

This strategy especially fits the integration of com-
plex monitoring tools like nws, that offer a efficient ob-
servation retrieval interface (like the one provided by
the forecasters), but can also be adopted for less com-
plex tools: the advantage is that with a single directory
structure, observations from different monitoring tools
can be accessed.

Theproducer in Figure 1 corresponds to a nws
subsystem, which represents the monitoring activity
carried out by the nws components in the nws system.

Some of the components of a nws system have the
role of sensors. The execution of a number of mon-
itoring processes generates different kinds of resource
availability observations. Such observations are stored
by memory components, which may run on possibly
distinct hosts. In order to obtain these observations,
the consumer addresses its request to the nws name-
server, which transparently provides the client with
a binding to the appropriate memory. Finally, the

2



Figure 2. A hierarchy of NWS systems

memory returns the desired observations to the con-
sumer.

Distinct nws systems can be organized hierarchi-
cally to reduce the traffic produced by monitoring tools
and consequently increase scalability. In Figure 2 we
depict such case: peripheral nws systems (shaded re-
gions) have at least one sensor (black squares) in a
backbone system.

Sensors within the same nws system run a full mesh
of internal monitoring sessions; in particular, backbone
monitoring only involves sensors belonging to the back-
bone and to a peripheral system. The directory ser-
vice will route measurement requests from consumers
to the appropriate nameserver (circles in Figure 2).
This model can be further nested, as suggested in a
similar approach (although based on the r-gma [4]),
implemented in the framework of the DataGrid project
[5].

Such organization exhibits an acceptable level of
fault tolerance, as the single point of failure represented
by the nameserver is removed. In fact, instead of im-
plementing a single nws system, the set of sensors,
memories and forecasters is split into distinct nws
(sub)system. Seamless access to the information, in-
dependently provided by the nameservers, is achieved
through a directory service, which enforces security
policies. An authorized consumer is provided with a
reference to the nameserver that handles the access
to the resource availability observations. The ldap di-
rectory can be easily replicated, since its contents are
mostly static, while the failure of a nws nameserver
rules out the availability of the observations of the re-
lated sub-system.

3 ldap Directory Information Tree for
nws data access

The directory service in Figure 1 provides the ref-
erences needed to access resource availability observa-
tions stored in the nws system, and consists of a dis-

tributed ldap Directory Information Tree (DIT) that
is designed following the GGF guidelines specified in
[1]. The DIT contains a node for each nws system. The
corresponding objectclass is called NWSeventProducer,
and includes attributes that indicate the nameserver
transport address.

The eventInstance objectclass referenced in GGF
document roughly corresponds to an activity in
the nws architecture. We introduce a subclass
NWSeventInstance that extends this class. This
kind of node is an immediate subordinate of a
NWSeventProducer, and contains an attribute describ-
ing the name that nws associates to an activity. The
attributes of this kind of entry in the ldap tree should
be consistent with the corresponding registrations kept
by the nws nameserver.

Objectclass NWSeventInstance is intended as a sub-
class of objectclass eventInstance. This type of entry
does not contain volatile observations, but just a refer-
ence to the corresponding nws sensor. They are the
leaves of our DIT, since objectclass elementInstance,
as defined in Table 3 of [1], does not appear in our
architecture.

In Figure 3 we show part of the DIT associated to
our experimental nws system. For each objectclass
only a few relevant attributes of the directory entry
are displayed.

As outlined above, the eventProducer objectclass
introduced in the GGF document should be comple-
mented with further attributes, in order to provide the
client with the information needed to reach the obser-
vations collected by nws: in Figure 3 there is an in-
stance of a NWSeventProducer entry. In the same fig-
ure we also show the content of a NWSeventInstance
entry: such attributes should be consistent with the
corresponding activity, whose registration is kept by
the nameserver.

Figure 4 shows the evolution of the standard GGF
architecture from Figure 1, when a nws-based resource
availability monitoring system is implemented by two
nws systems – nws system A, and nws system B.
Two distinct nameservers, one for each nws sys-
tem, keep record of the resource availability observa-
tions provided by that system, and a single ldap DIT
provides a homogeneous access to all observations.

Consumers produce two kinds of queries, depend-
ing on whether they interact with an ldap server or a
nws nameserver (see Figure 4):

• ldapsearch queries: they ask ldap for the identity
of the nameserver controlling the monitoring of
a given resource – freeMemory, a nws keyword, in
the example of Figure 4 – on a given host.

3



Figure 3. The Directory Information Tree of the Directory Service

In Figure 4 the ldapsearch command returns a
table with the nameserverIPaddress attributes of
the registration, presumably unique, that matches
the pattern given as first parameter of the com-
mand.

• nws extract queries: they ask the nws nameserver
whose IP address has been obtained from the pre-
vious step, using as parameters the sensor address
and the desired observation.

Commands in Figure 4 might be replaced by calls
to functions of an API library for ldap and nws, re-
spectively.

4 Monitoring software architecture

Figure 5 is a detailed view of the architecture from
Figure 1 that describes the proposed internal struc-
ture of consumers, producers, and of the directory ser-
vice. Note that such architecture does not target a
specific tool, but it can be integrated with any tool
that conforms to some standard interface. New mon-
itoring tools are treated as “plug-in” modules, which
offer a standardized API to both the consumers and
the directory service.

An application makes use of resource availability ob-
servations. The lookup and retrieval of the observa-
tions is obtained using the functions offered by an API.
The interface library front end implements the func-
tions offered by the API, that return a reference to a
running instance of a monitoring tool. The interface
library back end submits a query to the referenced tool
instance, using the protocol which is appropriate for
the tool.

Figure 4. Example of a monitoring architec-
ture consisting in a nws subsystems ac-
cessed through an ldap directory service

The monitoring tool controller coordinates monitor-
ing activities: in our case study this corresponds to a
nws system. The monitoring tool controller registers
itself into the ldap directory using a resource registra-
tion protocol.

We map the above architecture onto the one of
our case study: the data transfer session involves the
nameserver, which performs nws extract operations
that address a memory component and optionally a
forecaster. The monitoring interface library back end
is implemented by the commands that are offered as

4



Figure 5. The software architecture of a Grid
Resource Monitoring System integrating dif-
ferent Grid Resources Monitoring Tools

part of the nws. The monitoring interface library front
end is not described in our case study, since we consider
only one tool.

Now we can group together some of the modules and
identify three packages (indicated by different shades of
gray in Figure 5) that can be reasonably implemented
by distinct teams:

• application packages (shaded box), that contains
a unique module, the application;

• monitoring tool packages (black boxes), that
should contain both the monitoring tool controller
and the interface library back end;

• the directory service package (white boxes), that
should contain the ldap directory service and the
interface library front end.

One key role in the above architecture is played by
interfaces: they provide standard hooks to link applica-
tions and monitoring tools through a unique directory
service. The focus on module interfaces complies with
OGSA intents [6], since it lays the basis for interoper-
ability between heterogeneous platforms. In the next
section we summarize the content of the interfaces in-
troduced in Figure 5.

Interfaces

In Figure 5 we introduce three interfaces: their spec-
ifications has to be standardized to ensure the interop-

erability between packages.
The front end API of the interface library offers to

the application a uniform access to the resource avail-
ability observations collected by the monitoring tools.
This interface supports the retrieval of the observa-
tions, transparently from the monitoring tool that pro-
duced it. The interface provides a way to specify op-
tional features (like push/pull modes), as well as secu-
rity and reliability options. Observations are addressed
by referencing standard metrics and other relevant pa-
rameters, like the application of estimators to historical
data.

The back end API of the interface library is the spec-
ification of the interface offered by monitoring tools. It
contains the tool-dependent functions to interact with
the tool, and in particular to retrieve observations.

The registration protocol specifies the protocol that
a monitoring tool follows to register itself and its com-
ponents, as in the case of nws, into the DIT.

Note that all interfaces have on one side a compo-
nent of the directory service package: the interface li-
brary back end in the case of the APIs, and the direc-
tory service in the case of the registration protocol. The
same team that implements and maintains the direc-
tory service package should deliver the specifications
for these interfaces, in order to enforce interoperability
between applications and monitoring tools.

5 Prototype implementation

The prototype is based on nws and ldap. Since it
includes a single monitoring tool, the interface library
front end of Figure 5 is not dealt with, while the inter-
face library back end consists of the commands offered
by nws itself. We focus on the interface between nws
and the ldap directory service, the registration proto-
col in Figure 5.

This interface is implemented by a process, running
on the nws nameserver host, so that each update
in the registry kept by the nameserver triggers an
update in the ldap directory.

According to this concept, we envision two alterna-
tive implementations:

• updates on the nws internal registry, are mirrored
into the ldap directory, or

• a nws-oriented ldap back-end interacts with the
nws registrations file.

The latter solution is more complex to expand, since
each monitoring tool should correspond to a different
ldap back-end, that is statically linked to the ldap
server code at compile time. The modification of the

5



Figure 6. Implementation layout

code each time a new tool is integrated in the service,
can cause undesirable reliability problems, if such mod-
ification affects an extremely sensible component such
as the directory service. For this reason, we went for
the former alternative.

The code we developed for our implementation can
be split into two parts, as shown in Figure 6 1:

• a patch of the nws code, that mirrors each reg-
istry operation (insert or delete of an entry) in a
formatted message which is sent through a Unix
pipe;

• a simple proxy that takes the formatted mes-
sages from the pipe and performs the correspond-
ing function in the ldap directory, invoking the
appropriate commands.

Prototype code is available at
ftp://ftp.di.unipi.it/pub/Papers/ciuffoletti/nwspatch.tgz.

6 Conclusions

We describe the implementation of a Resource Mon-
itoring System that integrates a directory service with
applications and monitoring tools. The design is in-
spired by the monitoring architecture introduced by
the GGF, and aims at modularity and expandibility.

A proof of concept implementation based on nws
and ldap is described. Integrating nws into an ldap
tree improves nws scalability and falt-tolerance fea-
tures. The objectclasses needed to integrate nws in-
formation into the ldap tree are defined by borrowing
from the GGF standard monitoring schema definition.

We do not plan a real scale deployement of such
architecture, that was mainly used as a conceptual
testbed. However, the experience gathered during such
experiments provided valuable input to the GlueDo-
mains initiative.

References

[1] Warren Smith and Dan Gunter. Simple ldap
schemas for grid monitoring. Technical Report
GWD-Perf-13-1, Global grid forum - performance
working group, June 2001.

1Patches are possible since nws is open source.

[2] Rich Wolski. Dinamically forecasting network per-
formance using the network weather service. Tech-
nical Report TR-CS96-494, University of California
at San Diego, January 1998.

[3] I. Foster and C. Kesselman. Globus: A metacom-
puting infrastructure toolkit. The International
Journal of Supercomputer Applications and High
Performance Computing, 11(2):115–128, Summer
1997.

[4] Ian Foster, Carl Kesselman, and Steven Tuecke.
The anatomy of the Grid: Enabling scalable virtual
organizations. Lecture Notes in Computer Science,
2150:1–??, 2001.

[5] R. Harakaly, P. Primet, F. Bonnassieux, and
B. Gaidioz. Probes coordination protocol for net-
work performance measurement in grid computing
environment. to appear, Journal of Parallel and
Distributed Computing Practices, Special Issue on
Internet-based Computing, 2002.

[6] Ian Foster, Carl Kesselman, Jeffrey Nick, and
Steven Tuecke. The physiology of the grid: An
open grid services architecture for distributed sys-
tems integration, 2002.

6


