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Introduction

In the last two decades, several researches have presented dif-
ferent frameworks for a programming language for exact real 
number computation (Potts et al., 1997; Escardó 1996; Boehm, 
and Cartwright, 1990; Weihrauch, 2000). Particularly, Escardó 
(1996)  proposed a theoretical programming language for exact 
real number computation, called Real pcf, with an abstract data 
type (representation independent) but a parallel constructor 
with a high computational cost both in time and storage, which 
is needed even for basic operations like addition. A further 
research project was to develop a theoretical programming lan-
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Comparando implementaciones de una 
calculadora para la computación de 
números reales exactos
Resumen. Al ser uno de los primeros lenguajes 
de programación teóricos para el cómputo con 
números reales, Real PCF demostró ser impráctico 
debido a los constructores paralelos que necesita 
para el cálculo de funciones básicas. Posteriormente, 
se propuso LRT como una variante de Real PCF 
el cual evita el uso de constructores paralelos 
introduciendo un constructor no determinista 
dentro del lenguaje. En este artículo se presenta la 
implementación de una calculadora para el cómputo 
con números reales exactos basada en LRT y se 
compara su eficacia con una aplicación de números 
reales estándar en un lenguaje de programación 
imperativo. Finalmente, la implementación se 
compara con una implementación estándar de 
computación de números reales exactos, basada en 
la representación de dígitos con signo, que a su vez 
se basa sobre la computación de números reales 
exactos.  
Palabras clave: lenguajes de programación, 
cómputo con números reales, programación 
funcional.

Abstract. As one of  the first theoretical 
programming languages for exact real 
number computation, Real PCF was shown 
to be impractical due to the parallel construct 
needed for even basic operations. Later, 
LRT was proposed as a variant of  Real 
PCF avoiding the parallelism by introducing 
a non-deterministic constructor into the 
language. In this paper we present an 
implementation of  a calculator for exact 
real number computation based on LRT 
and compare its efficacy with an application 
of  the standard use of  real numbers in an 
imperative programming language. Finally, 
our implementation is compared with a 
standard implementation of  exact real 
number computation based on the sign digit 
representation, which is also based on exact 
real number computation.
Key words: programming languages, real 
number computation, functional programming.

guage avoiding parallel constructors. Marcial-Romero (2004) 
and Marcial-Romero and Escardó (2004) presented a sequen-
tial non-deterministic programming language for exact real 
number computations called lrt. lrt can be seen as Real pcf 
(pcf stands for Programmable Computable Functions) without 
the parallel constructor and a non deterministic constructor 
added. The non-determinism allows avoiding the parallelism; 
a further explanation can be consulted in Marcial-Romero and 
Escardó (2007). Additionally, the non-determinism not only 
allows to define functions in ltr but also relations, therefore 
Marcial-Romero and Moshier (2008a and b) established a 
computational adequacy framework between lrt and Brattka 
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relational setting (Brattka, 1996). The relational setting of  lrt, 
implicitly defines computable first order functions, thus they 
can be implemented in the language.

In his paper, Bauer and Kavkler (2008) refers to the fact 
that a direction in constructive mathematics is “get closer 
to the practice” without disconnecting the theory and the 
practice. Even more, he stated:

[...] move practice closer to theory by making sure that practical 
implementations follow formal specifications that are computed 
directly from theoretical models (Bauer and Kavkler, 2008: 2). 

In this paper we present an implementation of  the lrt 
operational semantics and, compare firstly its efficacy against 
an application on an imperative programming language; and 
secondly its efficiency on a basic calculator (addition, subtrac-
tion, multiplication and division) implemented in lrt against a 
standard implementation using sign digit representation. The 
main difference between both calculators is that the former has 
a formal theoretical model while the further does not. The base 
language used to implement lrt was Haskell, which include 
characteristics to easily implement languages like lrt. Among 
the main characteristics of  Haskell are the lazy evaluation and 
the natural use of  infinite lists. The algorithms implemented 
are based on Plume's thesis (Plume, 1998) that converges faster 
than the algorithms proposed in Marcial-Romero (2004). Our 
motivation comes from Bauer and Kavkler (2008) suggestion 
stated above and we believe that by using faster libraries as 
the other implementations do, we will improve our calculator. 

The paper is organized as follows: in Section 2 the language 
lrt is described. In Section 3 an example of  a program in the 
language is explained. In Section 4, the main implementation 
details are presented. In Section 5 the four basic programs of  
the calculator are presented. In Section 6 the comparison are 
presented. Finally the conclusions are established.

1. The lrt Language

lrt amounts to the language considered by Escardó (1996) 
with the parallel conditional removed and a constant rtestl,r 
added. This is a call-by-name language. Because exact 
real-number computations are infinite, and there are no 
canonical forms for partial real-number computations, 
it is not clear what a call-by-value operational semantics 
ought to be. 

1.1 Syntax
The language lrt is an extension of  pcf with a ground type 
for real numbers and suitable primitive functions for real-
number computation. Its raw syntax is given by:

x ∈ Variable,
t ∷= nat | bool | I | t → t
P ∷= x | n | true | false | (+1)P | (-1)P |
     (= 0)P | if P then P else P | cons[a, a]P
      tail[a, a]P | rtestl,rP | λx: t.P | PP | YP 

where Variable is a set of  variables, t represents a set of  
types, in this case the language has three ground types, the 
natural numbers type (represented by nat), the booleans.1 
The type t → t denotes higher order types. The constructs 
of  the language (represented by P) are the variables (rep-
resented by x), the constants for natural numbers and 
Booleans (represented by n, true and false) the successor, 
predecessor and equal test for zero operations for naturals 
numbers ((+1),(-1) and (= 0) ), the classical if operator of  
almost any programming language; three operation for 
exact real number computation cons, tail and rtest where 
the subscripts of  the constructs cons and tail are rational 
intervals (sometime written as a or [a, a]) and those of  rtest 
are rational numbers. The last three constructors of  the lan-
guages are those of  the lambda calculus (λx: t.P | PP | YP) 
where the first denotes abstraction, the second application 
and the third recursion.

The mathematical objects which describe the cons, tail 
and rtest constructors are presented below. The others are 
the well known pcf constructors and can be consulted at 
Gunter (1992) and Plotkin (1977).

Let D = [-1, 1], the function consa: D → D is the unique 
increasing affine map with image the interval a, i.e.:

cons[a, a]([x, x])  = x +           ,           x +    a + a
2

a + a
2









That is, rescale and translate the interval [-1, 1] so that it 
becomes [a, a],  and define cons[a, a]([x, x]) to be the interval 
which results from applying the same rescaling and transla-
tion to [x, x]. In order to keep the notation simple, when 
the context permits x is used to represent [x, x], meaning 
that the same operation is applied to both end points of  
the interval obtained, for example the cons function can 
be written as:

cons[a, a](x) = x +    a + a
2

a + a
2









1.	 Represented by I which denotes the set of intervals in [-1, 1], as it was shown in Marcial-

Romero (2004) the complete real line can be easily represented in this language, even 

more the implementation presented here considers the complete real line.
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The function tailaD → D is a left inverse, i.e.

taila(consa(x)) = x

More precisely, the following left inverse is taken, where 
κa is a, a and τa is a, a

taila(consa(x)) = x

tail[a, a](x) = max















 

This definition guarantees that the range of  the tail 
function is in the interval [-1, 1]. The details of  why this 
is a convenient definition can be consulted in Escardó 
(1996). It is worthy to mention that an infinite shrinking 
sequence of  cons intervals represents a real number in the 
interval [-1, 1], the operational semantics defined below 
gives a rule for constructing a real number. The definition 
of  the function rtestl,r: D → {true, false}, where l<r are 
rational numbers, can be formulated as:

		       true,     if x ⊆ [-1, l ]
rtestl,r(x) = 





true or false,    if x ⊆ (l, r)
		       false,    if x ⊆ [r,1)

The function rtestl,r is operationally computable because, 
for any argument x given intensionally as a shrinking se-
quence of  intervals, the computational rules systematically 
establish one of  the semidecidable conditions l < x and x 
< r where l, r are rational numbers.

1.2 Operational Semantics
A small-step style operational semantics for lrt is conside-
red. The one-step reduction relation → is defined to be the 
least relation containing the one-step reduction rules for 
evaluation of  pcf (Plotkin, 1977) together with those given 
below.

Firstly, some preliminaries are introduced. For intervals 
a and b in [-1, 1], define

ab = consa(b)

Where cons is the function defined previously. This op-
eration is associative, and has the interval [-1, 1] (denoted 
by ⊥) as its neutral element such that (Escardó, 1996):

(ab)c = a(bc),   a⊥ = ⊥a = a.

In the interval domain literature Abramsky and Jung 
(1994), a ⊑ b iff  b ⊆ a. Moreover,

a ⊑ b ⇔ ∃c ∈ D, ac = b,

and this c is unique if  a has non-zero length; in this case 
c is denoted by b∖a.

For intervals a and b, define:

a ≤ b ⇔ a ≤ b

and

a↑b ⇔ ∃c.a ≤ c and b ≤ c.

With this notation, the rules for Real pcf as defined in 
Escardó (1996) are:

consa(consbM) → consabM	                                (1)
consaM → consaM '	              If  M → M '              (2)
taila(consbM) → Y cons[-1, 0]M	 If  b ≤ a                   (3)
taila(consbM) → Y cons[0, 1]M	 If  b ≥ a                    (4)
taila(consbM) → consb∖aM	 If  a ⊑ b and a≠b      (5)
tailaM → tailaM '	              If  M → M '              (6)
if true M N → M	                                                         (7)
if false M N → N                                                         (8)
if M N1 N2 → if M ' N1 N2	             If  M → M '              (9)

For our langurtestge lrt, add:

rtestl,r(consaM) → true	                   If  a  < r                        (10)
rtestl,r(consaM) → false	               If l < a                   (11)
rtestl,rM → rtestl,rM '                        If  M → M '              (12)

Remarks:
1. Rule (1) plays a crucial role and amounts to the associa-

tivity law. The idea is that both a and b give partial informa-
tion about a real number, and ab is the result of  gluing the 
partial information together in an incremental way.2

2. Rules (2),(6),(9) and (12) are applied whenever any of  
the other rules are matched.

3. Rule (3) represents the fact that it is already known 
that the rest of  the real number being looking for is an 
infinite sequence in the interval [-1, 0], i.e.: 

Y cons[-1, 0] = cons[-1, 0](cons[-1, 0](⋯))2.	 See Escardó (1996) for a further discussion including a geometrical interpretation.
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4. Rule (4) is similar to rule (3).
5. Rule (5) is applied when the partial information accumu-

lated at some point contains the interval of  the next input.
6. Rules (7) and (8) are the classical conditional rules.
7. Notice that if  the interval a is contained in the interval 

[l, r], rules (11) and (12) can be applied.
8. Rules (10)-(12) cannot be made deterministic given 

the particular computational adequacy formulation which 
is proved in Marcial-Romero and Escardó (2007).

9. In practice, one would like to avoid divergent com-
putations by considering a strategy for application of  the 
rules. In Marcial-Romero and Escardó (2007) total cor-
rectness of  basic algorithms and in Marcial-Romero and 
Moshier (2008) total correctness of  first order functions 
are shown, hence any implementation of  any strategy 
will be correct.

For a deeper discussion of  the relation between the 
operational and denotational semantics of  lrt, the reader 
is referred to Marcial-Romero and Escardó 2007; Marcial-
Romero and Moshier (2008).

2. Running example

In order to motivate the use of  the operational semantics 
given in the previous section, an example showing how to 
compute a real valued function is presented.

In the programming language considered in Escardó 
(1996), the average operation (- ⊕ -): [0, 1] × [0, 1] → [0, 
1] defined by:

x ⊕ y = 
x + y

2

can be implemented as follows:

x ⊕ y = pif x < c
           then pif y < c
	      then consL (tailL(x) ⊕ tailL(y))
	      else consC (tailL(x) ⊕ tailR(y))
           then pif y < c
	      then consC (tailR(x) ⊕ tailL(y))
	      else consR (tailR(x) ⊕ tailR(y)).

Here

c = 
1
2 , L = [0, c], C = 









, 1
4

3
4 , R = [c, 1] 

Because equality on real numbers is undecidable, the 
relation x < c is undefined (or diverges, or denotes ⊥) if 

x = c. In order to compensate for this, one uses a parallel 
conditional such that

pif ⊥ then z else z = z

The intuition behind this program is the following. If  both 
x and y are in the interval L, then we know that x ⊕ y is in 
the interval L, if  both x and y are in the interval R, then we 
know that x ⊕ y is in the interval R, and so on. The bound-
ary cases are taken care of  by the parallel conditional. For 
example, 1/2 is both in L and R, and an unfolding of  the 
program for x = y = 1/2 gives

1/2 ⊕ 1/2 = pif ⊥
	        then pif ⊥
	        	  then consL(1 ⊕ 1)
	        	  else consC (1 ⊕ 0)
	        then pif ⊥
	        	  then consC (0 ⊕ 1)
	        	  else consR (0 ⊕ 0).

All branches of  the conditionals evaluate to 1/2, but in an 
infinite number of  steps. This can be seen as follows: a repeat 
unfolding of  1 ⊕ 1 gives the infinite expression consR (consR 
(consR⋯)). Denotationally speaking, the program computes 
the unique fixed point of  consR, which is 1. Operationally 
speaking, the first unfolding says that the result of  the com-
putation, whatever it is, lives in the interval R, because, by 
definition, the image of  consR is R; the second unfolding says 
that the result is in the right half  of  the interval R, i.e. in the 
interval [ 3

4 , 1] the third unfolding tells us that the result is in 

the interval [ 7
8 , 1], and so on. Thus, the operational semantics 

applied to 1 ⊕ 1 produces a shrinking sequence of  intervals 
converging to 1. The other cases are analogous.

Of  course, a drawback of  such a recursive definition is 
that, during evaluation, the number of  parallel processes is 
exponential in the number of  unfoldings. In order to over-
come this, we switch back to the usual sequential conditional, 
and replace the partial less-than test by the multi-valued test 
discussed in the previous section.

average(x, y) = if rtestl,r(x)
	            then if rtestl,r(y)
		      then consL (average (tailL(x), tailL(y))
		       else consC (average (tailL(x), tailR(y)))
                         else if rtestl,r(y)
		       then consC (average (tailR(x), tailL(y)))
		       else consR (average (tailR (x), tailR (y)))
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The intuition behind this program is similar. What is 
interesting is that, despite the use of  the multi-valued 
construction rtest, the overall result of  the computation is 
single valued. In other words, different computation paths 
will give different shrinking sequences of  intervals, but 
all of  them will shrink to the same number. A proof  of  
this fact and of  correctness of  the program is provided in 
Marcial-Romero (2004).

3. The Implementation

In this section, the Haskell implementation of  the operatio-
nal semantics described in the previous section is presented. 
Also, the implementation of  the algorithm for the average 
function presented in Marcial-Romero and Escardó (2007) 
and the rate of  convergence of  this algorithm compared 
to the three digit representation algorithm implemented 
by Plume (1998) is discussed.

The real numbers are represented in Haskell by the 
datatype CREAL which consists of  a pair of  the form 
(mantissa, exponent) where the mantissa is an infinite list of  
rational intervals in [-1, 1] and the exponent is an integer. 
This exponent allows representing real numbers outside 
the unit interval. For example 3.17 can be represented by 
0.79 × 4, which in our notation is represented by (0.79 4), 
and 0.79 is represented by an infinite list. The datatype is 
defined in Haskell in the following way:

data CoTa = Cons(Rational, Rational )
CREAL    = ([CoTa], Integer)

Notice that we have not restricted the rational intervals 
to be in the interval [-1, 1], however their use in the imple-
mentation does. The cons and tail operations are easily 
implemented as follows:

cons ∷ (Rational, Rational) → (Rational, Rational) → (Rational, 
Rational) 
cons(a1, a2 )(x1, x2) = ((y1× x1) + y2, (y1 × x2 ) + y2)
	  where {y1 = (a2 - a1)/2
         	              y2 = (a2  +  a1)/2}
tail ∷ (Rational, Rational) → (Rational, Rational) → (Rational, 
Rational)
tail(a1, a2)(x1, x2 ) = 




max




min 2 × x2 + d 

c







,  1




, (-1)




, 

min



max 2 × x2 + d 

c







, -1




, (1)




   

                                
	  where { c = a2 - a1
	  	 d = -a - a1}

These implementations take two tuples of  rational num-
bers, which represent the subsets on the interval [-1, 1] and 
return a new tuple of  rational numbers. The if operator is 
the already predefined operator in Haskell.

Notice that the non-deterministic rtest operator can be 
implemented in two ways as pointed out in the previous 
section:

rtest ∷ (Rational, Rational) → [CoTa] → bool
	 rtest l r (cons(x1, x2 ): xs) 
	 | x2 ≤ r = true
	 | x1 ≥ l = false	

rtest` ∷ (Rational, Rational) → [CoTa] → bool
	 rtest` l r (cons(x1, x2 ): xs) 
	 | x1 ≥ l = false
	 | x2 ≤ r = true

However adequacy of  the language as presented in 
Marcial-Romero and Escardó (2007) ensures that any 
of  them is a correct and totally convergent implemen-
tation.

To approximate a real number, the first rule of  the 
operational semantics is applied to the elements on the 
mantissa as many times as precision is required. This is 
achieved by the first rule of  the operational semantics 
together with the other operational rules implemented 
as follows:

evaluacion ∷ [CoTa] → [CoTa]		
evaluacion (cons(a, b): [ ]) = [cons(a, b)]
evaluacion (cons(a, b): cons(c, d): xs) = cons(cons(a, b)(c, d)): xs
evaluacion (cons(a, b): xs) = evaluacion(cons(a, b): evaluacion xs)

evaluacion (tail(a, b): cons(c, d ): xs) = if (b ≤ c)  
			      then[cons(-1, 0), cons(-1, 0),⋯)]
		             if (a > d ) 
			     then[cons(0, 1), cons(0, 1),⋯)]
		             if ((a < c) &&(d < b)) || ((a ≤ c)
			     &&(d < b) || ((a < c) && (d ≤ b))
			     then cons(tail(a, b)(c, d )): xs
		             if (a < c) && (b < d ) 
			     then cons(tail(a, b)(c, b)):
			     (tail(tail(c, d )(c, b))): xs
		             if (c < a) && (d < b) 
			     then cons(tail(a, b)(a, d )):
			     (tail(tail(c, d )(a, d ))): xs
		             otherwise xs
evaluacion(tail(a, b): xs) = evaluacion(tail(a, b): evaluacion(xs))
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It is worth to note that the implementation of  the op-
erational semantics only works with real numbers in the 
interval [-1, 1]. The final result to the desired precision is 
calculated multiplying both rational numbers at the head of  
the mantissa by 2 to the power of  the exponent.

A real valued function f : (CREAL)n → (CREAL)m takes 
as input n pairs of  the type CREAL and returns m pairs of  
the type CREAL.

For example an implementation of  the average function 
defined in section 3 is:

average(x, y) = if rtest 3
4

3
4

 (x)

then if  rtest 3
4

3
4

 (y)

    then cons( 3
4

)(average(tail( 3
4

)(x), tail( 3
4

)(y)))

    else cons( 3
4

3
4

)(average(tail( 3
4

)(x), tail( 3
4

)(y)))

else if rtest 3
4

3
4

 (y)

    then cons( 3
4

3
4

)(average(tail( 3
4

)(x), tail( 3
4

)(y)))

   else cons( 3
4

)(average (tail( 3
4

)(x), tail( 3
4

)(y)))

It can be noticed that the rational numbers l and r where 
substituted by –3/4 and 3/4 respectively. These numbers 
can be arbitrarily fixed if  the conditions -1 < l < r < 1 are 
considered.3 However at the implementation level not always 
the shortest algorithm guarantees a fast convergence to the 
desired precision. In this case because the rate of  convergence 
of  this program is (3/4)n, this program converges slower than 
a program whose rate of  convergence is (1/2)n. Consider-
ing the conditions stated previously, it can be easily shown 
that for this particular program, there are no values of l and 
r which improve or reach the rate of  convergence (1/2)n in 
all possible executions of  the program.

Lemma 1 There are not values of l and r in [-1, 1] such 
that -1 < l < r < 1 and every execution path of  the aver-
age program converges at rate of convergence of  (1/2)n 
or faster.
Proof
To guarantee convergence at range of  1/2n or faster, the res-
caling fa constor of  the cons[x, x]) equation should satisfy:

(([x, x])/2) ≤ (1/2)

by the rescaling factor of  consL

((r + 1)/2) ≤ (1/2) ⇒ r ≤ 0

and the rescaling factor of  consR








 ≤ (1/2) ⇒ l ≥ 0

Contradicting the assumption that l < r.                        ∎
The above lemma does not imply that there is not a pro-

gram which converges faster, in fact the above program was 
presented in Marcial-Romero (2004) only as evidence that 
basic operations like additions can be implemented in lrt.

If  we consider the sign digit algorithm Plume (1998) for 
the average function which guarantees a rate of  conver-
gence of  1/2n and translate it to lrt, we have the following 
program:

faverage ∷ CREAL → CREAL → CREAL 
faverage(x, y) = if rtest 1

2  0 (x)
then 
if rtest-1/2 0 (y)
  then cons(-1, 0)( faverage(tail(-1, 0)x, tail(-1, 0)y)) 
  else
  if rtest 0 1/2 (y)

      then cons







3
4

1
4





faverage


tail(-1, 0) x,tail









1
2

1
2 y









     else cons








1
2

1
2

( faverage(tail(-1, 0)x, tail(0, 1)y))
else
if rtest 0 1/2 (x)
  
  then if rtest 1

2  0 (y) 

     then cons







3
4

1
4

 

faverage



tail 









1
2

1
2 x, tail 









1
2

1
2  y









    else if rtest 0 
1
2  (y)

          then cons








1
2

1
2  


faverage 


tail 









1
2

1
2 x, tail 









1
2

1
2  y









      else cons








1
4

3
4




faverage




tail









1
2

1
2 x, tail(0, 1)y









  else if rtest 1
2  0 (y) 

3.	 See Marcial-Romero and Escardó (2004) for a discussion.
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auxaverage ∷ CREAL → CREAL → CREAL
auxaverage (xs, i)(ys, j)	
| i > j = (faverage(xs, recorre(ys, logBase 2 i) - (logBase 2 j))), i)
| i < j = (faverage(recorre(xs,logBase 2 j) - (logBase 2  i))), ys)
| i = = j = ( faverage(xs, ys), i)

 
In order to add two real numbers, firstly translate them 

to the interval [-1, 1] using the mantissa-exponent datatype 
presented in section 4. Once the translation is done, the 
faverage operation is applied. Because the faverage op-
eration divides the sum of  the two numbers by two, the 
exponent of  the result is multiply by two, to obtain the 
required result.

4.2. The division implementation
An implementation of  division of  two real numbers is presen-
ted. Plume (1998) algorithm for defining the division is used. 
To simplify discussion, Plume defines division on the intervals 

division: [-1, 1] × 
1

4, 1







 → [-4, 4]

to keep the result in a bounded interval, because taking inputs 
from the intervals [-1, 1] results on an output on the interval 
(-∞, ∞). In that sense we give a definition for division(x, 4y) 
to keep the result in [-1, 1]. For example division(1/4, 3/8) 
should produce as a result (1/4)/(4 (3/8)) = (1/4)/(3/2) = 
1/6. We multiply the exponent of  the final result by four to 
obtain the required result.

division ∷ CREAL → CREAL → CREAL
division(xs, a)(ys, b) = ( fdiv(xs, ys), (a/b)*4)
fdiv(x: xs)(y: ys) = if ( fst(aux1))
then 
if (fst(aux2))
   then if ( fst(aux3))
      then if ( fst(aux4))
           then cons(-1, 0): ( fdiv 








tail









1
2

1
2 : aux10), (y: ys)









             else cons







3
4

1
4

: ( fdiv ((tail








1
2

1
2

: aux4), (y: ys)))

      else if ( fst(aux5))

           then cons







3
4

1
4

: ( fdiv((tail








1
2

1
2

: aux5), (y: ys)))

         else cons







5
8

3
8

: (fdiv((tail








1
2

1
2 : aux13), (y: ys)))

   else cons








1
2

1
2 : ( fdiv((tail









1
2

1
2 : aux2), (y: ys)))

     then conss








1
2

1
2




faverage



tail (0, 1)x, tail(-1, 0)y









     else if rtest 0 
1
2  (y)

            then cons








1
4

3
4




faverage



tail (0, 1)x, tail









1
2

1
2 y







 

         else cons(0, 1)( faverage(tail(0, 1)x, tail(0, 1)y








Program Average divides the interval [-1, 1] in two over-
lapping intervals ( 








3
4  ) and ( 








3
4  ) resulting in four 

cases in the program. Program faverage divides the interval 
[-1, 1] it three overlapping intervals ([-1, 0], [-1/2, 1/2] and 
[0, 1]) resulting in nine cases in the program. Table 1 presents 
the time reported by the Glasgow Haskell compiler doing n 
different average operations in both programs at precision 
1E - 11. For example, if  ⊕ denotes any of  the average func-
tions, the result of  1/11 ⊕ 2/13 ⊕ 3/15 ⊕ 2/13⋯21/51 
is reported in the 20 operation`s row. Although program 
average has less code lines than program faverage, the rate 
of  convergence in program faverage is better.

4. The Calculator

In this section we just present the implementations of  addi-
tion and division in our calculator, the other basic operations 
(subtraction and multiplication) are implemented similarly, 
the reader can download the implementation from http://
fi.uaemex.mx/rmarcial/lrt. The domain and codomain of  
the implementations are the whole real line, hence we use 
the CREAL datatype defined in section 4.

	
4.1 The addition function
The addition function is defined from the faverage function 
and a pair of  auxiliary function.

addition ∷ CREAL → CREAL → CREAL
addition (xs, a)(ys, b) = ( fst(aux), snd(aux * 2))
		              where aux = auxaverage (xs, a)(ys, b)

Table 1.      Time reported by the Haskell Glasgow compiler at doing n average 

operations in both programs with precision 1E – 11 

Number of Operations Time Reported
Program Average Program faverage

20
30
40
50
100

47.50 sec 
73.49 sec
99.56 sec

129.51 sec
289.49 sec

0.032 sec 
0.112 sec
0.136 sec
0.144 sec
0.344 sec
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else
if ( fst(aux6))
               
   then cons









1
2

1
2 : ( fdiv((tail









1
2

1
2 : aux2), (y: ys)))

   else if ( fst(aux7))

      then if ( fst(aux8))

         then cons







3
8

5
8

:  ( fdiv ((aux11),(y: ys)))

         else cons








1
4

3
4

:  ( fdiv tail








1
2

1
2 : aux8), (y: ys)

      else if ( fst(aux9))

         then cons 1
4

4
4

: ( fdiv tail








1
2

1
2 : aux9), (y: ys)

         else cons(0, 1): ( fdiv tail








1
2

1
2 : aux12), (y: ys)

   where aux1 = rtest
1
2









1
2 (x: xs)

	 aux2 = rtest
1
2









1
4 (aux1)

	 aux3 = rtest
1
2









1
2 tail( farest(snd(aux2))(y: ys))

	 aux4 = rtest
1
2









1
4 (aux3)

	 aux5 = rtest








1
4









1
2 (aux3)

	 aux6 = rtest








1
4









1
2 (aux1)

	 aux7 = rtest
1
2









1
2 tail( farest(snd(aux6)) (y: ys))

	 aux8 = rtest
1
2









1
4 (aux7)

	 aux9 = rtest








1
4









1
2 (aux7)

	 aux10 = tail( faverage(snd(aux4))(y: ys))

	 aux11 = tail








1
2

1
2 : tail( farest(snd(aux6)), cons

	








1
2

1
2 (y: ys))

	 aux12 = tail( frest(snd(aux9))(y: ys))

	 aux13 = tail








1
2

1
2 : tail( faverage(snd(aux2)),

	 cons








1
2

1
2 (y: ys))

Trigonometric operations like sin, cosine, tangent among 
others were also programmed in lrt using Plume's algorithms. 
The reader can download either the text modules or the 
graphical interface from http://fi.uaemex.mx/rmarcial/lrt.

5. Comparing our calculator

Two different comparisons are performed to test our 
implementation. The first one compares the common use 
of  real numbers in the C programming language against 
our exact real number implementation. The second one 
compares a three digit bit implementation of  exact real 
numbers again our implementation. All the comparisons 
were performed on a MacBook with processor of  2.4 GHz 
Intel Core 2 Duo and memory of  2 GB.

	
5.1. The logistic Map
The logistic map is a function f : [0, 1] → [0, 1] defined by

f (x) = ax(1 - x)

for a given constant a. Devaney (Devaney, R. L. 1989) stated 
that it was first considered as a model of  population growth 
by Pierre Verhulstby in 1845. For example, a value 0.5 may 
represent 50% of  the maximum population of  cattle in a 
given farm. The problem is, given an initial value x0, to 
compute the orbit

x0, f (x0), f ( f (x0)),⋯, fn(x0)

which collects the population value of  successive generations. 
The purpose is to compute an initial segment of  the orbit for 
a given initial population x0. It has been identified that choos-
ing a = 4 is a chaotic case. The main problem is that its value 
is sensitive to small variations of  its variables. The result of  
computing orbits for the same initial value x0 = 0.671875, in 
simple and double precision in the C programming language 
is shown in table 2. Also, table 2 shows the exact result and 
the value obtained using our calculator. As it can be noticed 
the tables are equal up to n = 7. From row 8th up to 39th the 
double, exact and lrt column report equal results. From row 
40th the C double precision shows a small deviation from the 
exact result and at the last 63rd row this deviation is evident 
enough. It is worth to mention that every exact real number 
computation implemented must produce the correct result 
as is the case in our calculator. The main drawback is the 
execution time that our implementation takes to compute the 
orbits. However, in this first version of  our implementation, 
the goal is not to look for the most efficient algorithms for 
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exact real number computation. Instead, we wanted to show 
that it is possible to transit from the basic lrt theory to actual 
practice in a smooth way.

5.2. Comparing with the three digits representation
The three digit implementation used in our comparison was 
developed by Plume (1998).4  We can say, however, that our im-
plementation is better at performing additions and subtractions 
but is less good at multiplications and divisions. These results 
affect in general the performance of  trigonometric functions 
and other operations as can be seen in table 3. However, our 
implementation is based on a formal specification in which our 
programs are shown to be correct. Therefore, we believe it is ea-
sier to develop new algorithms for our implementation than build 
a theory for the three digit operational semantics representation.

 
6. Prospective Analysis

Several rounding off  errors have occurred during the last years 
due to floating point arithmetic. These errors have caused 
disasters like the following. 

During the Gulf  War, an American Patriot Missile battery 
in Dharan, Saudi Arabia, failed to intercept an incoming Iraqi 
Scud missile. The Scud struck an American Army barracks 
and killed 28 soldiers. It turns out that the cause was an inac-
curate calculation of  the time since boot due to computer 
arithmetic errors.

On June 4, 1996 an unmanned Ariane 5 rocket launched by 
the European Space Agency exploded just forty seconds after 
lift-off. The rocket was on its first voyage, after a decade of  
development costing $7 billion. It turned out that the cause 
of  the failure was a software error in the inertial reference 
system. Specifically a 64 bit floating point number relating 
to the horizontal velocity of  the rocket with respect to the 
platform was converted to a 16 bit signed integer. The number 
was larger than 32,768, the largest integer storeable in a 16 bit 
signed integer, and thus the conversion failed.

The Germanas experienced a shattering computer error during 
a election (5 April, 1992). The elections to the parliament for the 
state of  Schleswig-Holstein were affected. After midnight (and 
after the election results were published) someone discovered that 
the Greens actually only had 4,97% of  the vote. The program that 
prints out the percentages only uses one place after the decimal, 
and had *rounded the count up* to 5%! This software had been 
used for *years*, and no one had thought to turn off  the round-
ing at this very critical (and IMHO very undemocratic) region.

Table 2.       Results of computing the logistic map for simple and double 
precision in the C programming language, and our implementation and the 
exact result. From values n = 8 and n = 40 the simple and double precision 
respectively deviate from the exact result.

n Simple 
precision

Double
 precision

LTR 
result

Exact 
result

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
25
30
35
39
40
45
50
55
60
63

0.671875
0.881836
0.416805
0.972315
0.107676
0.384327
0.946479
0.202625
0.646272
0.914417
0.313033
0.860174
0.481098
0.998570
0.005708
0.022702
0.088747
0.323485
0.875370
0.436386
0.983813
0.652836
0.934926
0.848152
0.014638
0.057695
0.991612
0.042173
0.108415
0.934518
0.770667

0.671875
0.881836
0.416805
0.972315
0.107676
0.384327
0.946479
0.202625
0.646273
0.914416
0.313037
0.860179
0.481084
0.998569
0.005716
0.022735
0.088875
0.323907
0.875965
0.434601
0.982892
0.757549
0.481445
0.313159
0.006038
0.024007
0.930952
0.629401
0.749775
0.757153
0.690457

0.671875
0.881836
0.416805
0.972315
0.107676
0.384327
0.946479
0.202625
0.646273
0.914416
0.313037
0.860179
0.481084
0.998569
0.005716
0.022735
0.088875
0.323907
0.875965
0.434601
0.982892
0.757549
0.481445
0.313159
0.006038
0.024009
0.930881
0.625028
0.615752
0.315445
0.996571

0.671875
0.881836
0.416805
0.972315
0.107676
0.384327
0.946479
0.202625
0.646273
0.914416
0.313037
0.860179
0.481084
0.998569
0.005716
0.022735
0.088875
0.323907
0.875965
0.434601
0.982892
0.757549
0.481445
0.313159
0.006038
0.024009
0.930881
0.625028
0.615752
0.315445
0.996571

Table 3.      Time reported by the Haskell Glasgow compiler. All operations were 

calculated at precision 1E-11

Operation
Plume LRT
Time reported in seconds

          1.599987

          1.808238

          0.664056

          1.362235

    1583.99              

          0.716

          1.048

          0.556

          0.564

          0.328326

          0.754179

        11.351002

        27.573404

    1786.81

        12.54

          9.27

        23.97

        27.109

j = 13 
for i = 2 to 20
j = j div i

2i + 1

sin(1
3 + cos(7

9)) / cos(1
3 + sin( 7

11))

e(tan(3/11)) - tan(2/13))

π*arctan(1/3) + (cos(2/3)*tan(13/15)

sin(3/11 + e(1/3))* sin(4/13 - e(2/3))

1
2i + 1

20

i = 1

i
3i + 1

50

i = 1

1
2i + 1

20

i = 1

i
2i + 1

50

i = 1

4.	 We will not discuss Plume's implementation in this paper; instead we refer the 

interested reader to Plume (1998).
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Although it can be argued that the previous examples were 
in the nineteen`s, the solutions taken to prevent them in the 
coming years have not been soundly and correctly verified. So, 
as soon as the precisions for the calculations reach a maximum 
fixed value, the same errors will occur. If  the implementa-
tion proposed in this paper ends in a faster library for exact 
real number computation, then the development of  accurate 
software will be made and so none of  the previous errors will 
occurs. However, this is still the first step towards this goal.

Conclusion

We have described an implementation of  lrt in the Glas-
gow Haskell compiler and a basic calculator using Plume's 
algorithms. Although these algorithms have the same range 
of  convergence, our implementation is in most of  the cases 
slower as table 3 shows. We consider that the growth of  the 
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