

Ciencia Ergo Sum

ISSN: 1405-0269

ciencia.ergosum@yahoo.com.mx

Universidad Autónoma del Estado de México

México

Marcial-Romero, José Raymundo; Hernández Servín, José Antonio; Montes-Venegas, Héctor

Alejandro

Comparing Implementations of a Calculator for Exact Real Number Computation

Ciencia Ergo Sum, vol. 19, núm. 2, 2012, pp. 162-171

Universidad Autónoma del Estado de México

Toluca, México

Available in: http://www.redalyc.org/articulo.oa?id=10422928007

 How to cite

 Complete issue

 More information about this article

 Journal's homepage in redalyc.org

Scientific Information System

Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal

Non-profit academic project, developed under the open access initiative

http://www.redalyc.org/revista.oa?id=104
http://www.redalyc.org/articulo.oa?id=10422928007
http://www.redalyc.org/comocitar.oa?id=10422928007
http://www.redalyc.org/fasciculo.oa?id=104&numero=22928
http://www.redalyc.org/articulo.oa?id=10422928007
http://www.redalyc.org/revista.oa?id=104
http://www.redalyc.org

162 CIENCIA ergo sum, Vol. 19-2, jul io-octubre 2012. Universidad Autónoma del Estado de México, Toluca, México. Pp. 162-171.

Recepción: 10 de agosto de 2011
Aceptación: 27 de mayo de 2012

Introduction

In the last two decades, several researches have presented dif-
ferent frameworks for a programming language for exact real
number computation (Potts et al., 1997; Escardó 1996; Boehm,
and Cartwright, 1990; Weihrauch, 2000). Particularly, Escardó
(1996) proposed a theoretical programming language for exact
real number computation, called Real pcf, with an abstract data
type (representation independent) but a parallel constructor
with a high computational cost both in time and storage, which
is needed even for basic operations like addition. A further
research project was to develop a theoretical programming lan-

Comparing Implementations of a
Calculator for Exact Real Number Computation

José Raymundo Marcial-Romero*, José Antonio Hernández Servín* y Héctor Alejandro Montes-Venegas*

* Facultad de Ingeniería, Universidad Autónoma del
Estado de México, México
Correo electrónico: rmarcial@fi.uaemex.mx;
xosehernandez@fi.uaemex.mx y
h.a.montes@fi.uaemex.mx

Comparando implementaciones de una
calculadora para la computación de
números reales exactos
Resumen. Al ser uno de los primeros lenguajes
de programación teóricos para el cómputo con
números reales, Real PCF demostró ser impráctico
debido a los constructores paralelos que necesita
para el cálculo de funciones básicas. Posteriormente,
se propuso LRT como una variante de Real PCF
el cual evita el uso de constructores paralelos
introduciendo un constructor no determinista
dentro del lenguaje. En este artículo se presenta la
implementación de una calculadora para el cómputo
con números reales exactos basada en LRT y se
compara su eficacia con una aplicación de números
reales estándar en un lenguaje de programación
imperativo. Finalmente, la implementación se
compara con una implementación estándar de
computación de números reales exactos, basada en
la representación de dígitos con signo, que a su vez
se basa sobre la computación de números reales
exactos.
Palabras clave: lenguajes de programación,
cómputo con números reales, programación
funcional.

Abstract. As one of the first theoretical
programming languages for exact real
number computation, Real PCF was shown
to be impractical due to the parallel construct
needed for even basic operations. Later,
LRT was proposed as a variant of Real
PCF avoiding the parallelism by introducing
a non-deterministic constructor into the
language. In this paper we present an
implementation of a calculator for exact
real number computation based on LRT
and compare its efficacy with an application
of the standard use of real numbers in an
imperative programming language. Finally,
our implementation is compared with a
standard implementation of exact real
number computation based on the sign digit
representation, which is also based on exact
real number computation.
Key words: programming languages, real
number computation, functional programming.

guage avoiding parallel constructors. Marcial-Romero (2004)
and Marcial-Romero and Escardó (2004) presented a sequen-
tial non-deterministic programming language for exact real
number computations called lrt. lrt can be seen as Real pcf
(pcf stands for Programmable Computable Functions) without
the parallel constructor and a non deterministic constructor
added. The non-determinism allows avoiding the parallelism;
a further explanation can be consulted in Marcial-Romero and
Escardó (2007). Additionally, the non-determinism not only
allows to define functions in ltr but also relations, therefore
Marcial-Romero and Moshier (2008a and b) established a
computational adequacy framework between lrt and Brattka

163CIENCIA ergo sum, Vol. 19-2, julio-octubre 2012.

Ciencias Exactas y Aplicadas

relational setting (Brattka, 1996). The relational setting of lrt,
implicitly defines computable first order functions, thus they
can be implemented in the language.

In his paper, Bauer and Kavkler (2008) refers to the fact
that a direction in constructive mathematics is “get closer
to the practice” without disconnecting the theory and the
practice. Even more, he stated:

[...] move practice closer to theory by making sure that practical
implementations follow formal specifications that are computed
directly from theoretical models (Bauer and Kavkler, 2008: 2).

In this paper we present an implementation of the lrt
operational semantics and, compare firstly its efficacy against
an application on an imperative programming language; and
secondly its efficiency on a basic calculator (addition, subtrac-
tion, multiplication and division) implemented in lrt against a
standard implementation using sign digit representation. The
main difference between both calculators is that the former has
a formal theoretical model while the further does not. The base
language used to implement lrt was Haskell, which include
characteristics to easily implement languages like lrt. Among
the main characteristics of Haskell are the lazy evaluation and
the natural use of infinite lists. The algorithms implemented
are based on Plume's thesis (Plume, 1998) that converges faster
than the algorithms proposed in Marcial-Romero (2004). Our
motivation comes from Bauer and Kavkler (2008) suggestion
stated above and we believe that by using faster libraries as
the other implementations do, we will improve our calculator.

The paper is organized as follows: in Section 2 the language
lrt is described. In Section 3 an example of a program in the
language is explained. In Section 4, the main implementation
details are presented. In Section 5 the four basic programs of
the calculator are presented. In Section 6 the comparison are
presented. Finally the conclusions are established.

1. The lrt Language

lrt amounts to the language considered by Escardó (1996)
with the parallel conditional removed and a constant rtestl,r
added. This is a call-by-name language. Because exact
real-number computations are infinite, and there are no
canonical forms for partial real-number computations,
it is not clear what a call-by-value operational semantics
ought to be.

1.1 Syntax
The language lrt is an extension of pcf with a ground type
for real numbers and suitable primitive functions for real-
number computation. Its raw syntax is given by:

x ∈ Variable,
t ∷= nat | bool | I | t → t
P ∷= x | n | true | false | (+1)P | (-1)P |
 (= 0)P | if P then P else P | cons[a, a]P
 tail[a, a]P | rtestl,rP | λx: t.P | PP | YP

where Variable is a set of variables, t represents a set of
types, in this case the language has three ground types, the
natural numbers type (represented by nat), the booleans.1
The type t → t denotes higher order types. The constructs
of the language (represented by P) are the variables (rep-
resented by x), the constants for natural numbers and
Booleans (represented by n, true and false) the successor,
predecessor and equal test for zero operations for naturals
numbers ((+1),(-1) and (= 0)), the classical if operator of
almost any programming language; three operation for
exact real number computation cons, tail and rtest where
the subscripts of the constructs cons and tail are rational
intervals (sometime written as a or [a, a]) and those of rtest
are rational numbers. The last three constructors of the lan-
guages are those of the lambda calculus (λx: t.P | PP | YP)
where the first denotes abstraction, the second application
and the third recursion.

The mathematical objects which describe the cons, tail
and rtest constructors are presented below. The others are
the well known pcf constructors and can be consulted at
Gunter (1992) and Plotkin (1977).

Let D = [-1, 1], the function consa: D → D is the unique
increasing affine map with image the interval a, i.e.:

cons[a, a]([x, x]) = x + , x + a + a
2

a + a
2









That is, rescale and translate the interval [-1, 1] so that it
becomes [a, a], and define cons[a, a]([x, x]) to be the interval
which results from applying the same rescaling and transla-
tion to [x, x]. In order to keep the notation simple, when
the context permits x is used to represent [x, x], meaning
that the same operation is applied to both end points of
the interval obtained, for example the cons function can
be written as:

cons[a, a](x) = x + a + a
2

a + a
2









1.	 Represented by I which denotes the set of intervals in [-1, 1], as it was shown in Marcial-

Romero (2004) the complete real line can be easily represented in this language, even

more the implementation presented here considers the complete real line.

164 Marcial-Romero, J. R. et al., Comparing Implementations of a Calculator for Exact Real Number Computation

Ciencias Exactas y Aplicadas

The function tailaD → D is a left inverse, i.e.

taila(consa(x)) = x

More precisely, the following left inverse is taken, where
κa is a, a and τa is a, a

taila(consa(x)) = x

tail[a, a](x) = max
















This definition guarantees that the range of the tail
function is in the interval [-1, 1]. The details of why this
is a convenient definition can be consulted in Escardó
(1996). It is worthy to mention that an infinite shrinking
sequence of cons intervals represents a real number in the
interval [-1, 1], the operational semantics defined below
gives a rule for constructing a real number. The definition
of the function rtestl,r: D → {true, false}, where l<r are
rational numbers, can be formulated as:

		 true, if x ⊆ [-1, l]
rtestl,r(x) =





true or false, if x ⊆ (l, r)
		 false, if x ⊆ [r,1)

The function rtestl,r is operationally computable because,
for any argument x given intensionally as a shrinking se-
quence of intervals, the computational rules systematically
establish one of the semidecidable conditions l < x and x
< r where l, r are rational numbers.

1.2 Operational Semantics
A small-step style operational semantics for lrt is conside-
red. The one-step reduction relation → is defined to be the
least relation containing the one-step reduction rules for
evaluation of pcf (Plotkin, 1977) together with those given
below.

Firstly, some preliminaries are introduced. For intervals
a and b in [-1, 1], define

ab = consa(b)

Where cons is the function defined previously. This op-
eration is associative, and has the interval [-1, 1] (denoted
by ⊥) as its neutral element such that (Escardó, 1996):

(ab)c = a(bc), a⊥ = ⊥a = a.

In the interval domain literature Abramsky and Jung
(1994), a ⊑ b iff b ⊆ a. Moreover,

a ⊑ b ⇔ ∃c ∈ D, ac = b,

and this c is unique if a has non-zero length; in this case
c is denoted by b∖a.

For intervals a and b, define:

a ≤ b ⇔ a ≤ b

and

a↑b ⇔ ∃c.a ≤ c and b ≤ c.

With this notation, the rules for Real pcf as defined in
Escardó (1996) are:

consa(consbM) → consabM	 (1)
consaM → consaM '	 If M → M ' (2)
taila(consbM) → Y cons[-1, 0]M	 If b ≤ a (3)
taila(consbM) → Y cons[0, 1]M	 If b ≥ a (4)
taila(consbM) → consb∖aM	 If a ⊑ b and a≠b (5)
tailaM → tailaM '	 If M → M ' (6)
if true M N → M	 (7)
if false M N → N (8)
if M N1 N2 → if M ' N1 N2	 If M → M ' (9)

For our langurtestge lrt, add:

rtestl,r(consaM) → true	 If a < r (10)
rtestl,r(consaM) → false	 If l < a (11)
rtestl,rM → rtestl,rM ' If M → M ' (12)

Remarks:
1. Rule (1) plays a crucial role and amounts to the associa-

tivity law. The idea is that both a and b give partial informa-
tion about a real number, and ab is the result of gluing the
partial information together in an incremental way.2

2. Rules (2),(6),(9) and (12) are applied whenever any of
the other rules are matched.

3. Rule (3) represents the fact that it is already known
that the rest of the real number being looking for is an
infinite sequence in the interval [-1, 0], i.e.:

Y cons[-1, 0] = cons[-1, 0](cons[-1, 0](⋯))2.	 See Escardó (1996) for a further discussion including a geometrical interpretation.

165CIENCIA ergo sum, Vol. 19-2, julio-octubre 2012.

Ciencias Exactas y Aplicadas

4. Rule (4) is similar to rule (3).
5. Rule (5) is applied when the partial information accumu-

lated at some point contains the interval of the next input.
6. Rules (7) and (8) are the classical conditional rules.
7. Notice that if the interval a is contained in the interval

[l, r], rules (11) and (12) can be applied.
8. Rules (10)-(12) cannot be made deterministic given

the particular computational adequacy formulation which
is proved in Marcial-Romero and Escardó (2007).

9. In practice, one would like to avoid divergent com-
putations by considering a strategy for application of the
rules. In Marcial-Romero and Escardó (2007) total cor-
rectness of basic algorithms and in Marcial-Romero and
Moshier (2008) total correctness of first order functions
are shown, hence any implementation of any strategy
will be correct.

For a deeper discussion of the relation between the
operational and denotational semantics of lrt, the reader
is referred to Marcial-Romero and Escardó 2007; Marcial-
Romero and Moshier (2008).

2. Running example

In order to motivate the use of the operational semantics
given in the previous section, an example showing how to
compute a real valued function is presented.

In the programming language considered in Escardó
(1996), the average operation (- ⊕ -): [0, 1] × [0, 1] → [0,
1] defined by:

x ⊕ y =
x + y

2

can be implemented as follows:

x ⊕ y = pif x < c
 then pif y < c
	 then consL (tailL(x) ⊕ tailL(y))
	 else consC (tailL(x) ⊕ tailR(y))
 then pif y < c
	 then consC (tailR(x) ⊕ tailL(y))
	 else consR (tailR(x) ⊕ tailR(y)).

Here

c =
1
2 , L = [0, c], C =









, 1
4

3
4 , R = [c, 1]

Because equality on real numbers is undecidable, the
relation x < c is undefined (or diverges, or denotes ⊥) if

x = c. In order to compensate for this, one uses a parallel
conditional such that

pif ⊥ then z else z = z

The intuition behind this program is the following. If both
x and y are in the interval L, then we know that x ⊕ y is in
the interval L, if both x and y are in the interval R, then we
know that x ⊕ y is in the interval R, and so on. The bound-
ary cases are taken care of by the parallel conditional. For
example, 1/2 is both in L and R, and an unfolding of the
program for x = y = 1/2 gives

1/2 ⊕ 1/2 = pif ⊥
	 then pif ⊥
	 	 then consL(1 ⊕ 1)
	 	 else consC (1 ⊕ 0)
	 then pif ⊥
	 	 then consC (0 ⊕ 1)
	 	 else consR (0 ⊕ 0).

All branches of the conditionals evaluate to 1/2, but in an
infinite number of steps. This can be seen as follows: a repeat
unfolding of 1 ⊕ 1 gives the infinite expression consR (consR
(consR⋯)). Denotationally speaking, the program computes
the unique fixed point of consR, which is 1. Operationally
speaking, the first unfolding says that the result of the com-
putation, whatever it is, lives in the interval R, because, by
definition, the image of consR is R; the second unfolding says
that the result is in the right half of the interval R, i.e. in the
interval [3

4 , 1] the third unfolding tells us that the result is in

the interval [7
8 , 1], and so on. Thus, the operational semantics

applied to 1 ⊕ 1 produces a shrinking sequence of intervals
converging to 1. The other cases are analogous.

Of course, a drawback of such a recursive definition is
that, during evaluation, the number of parallel processes is
exponential in the number of unfoldings. In order to over-
come this, we switch back to the usual sequential conditional,
and replace the partial less-than test by the multi-valued test
discussed in the previous section.

average(x, y) = if rtestl,r(x)
	 then if rtestl,r(y)
		 then consL (average (tailL(x), tailL(y))
		 else consC (average (tailL(x), tailR(y)))
 else if rtestl,r(y)
		 then consC (average (tailR(x), tailL(y)))
		 else consR (average (tailR (x), tailR (y)))

166 Marcial-Romero, J. R. et al., Comparing Implementations of a Calculator for Exact Real Number Computation

Ciencias Exactas y Aplicadas

The intuition behind this program is similar. What is
interesting is that, despite the use of the multi-valued
construction rtest, the overall result of the computation is
single valued. In other words, different computation paths
will give different shrinking sequences of intervals, but
all of them will shrink to the same number. A proof of
this fact and of correctness of the program is provided in
Marcial-Romero (2004).

3. The Implementation

In this section, the Haskell implementation of the operatio-
nal semantics described in the previous section is presented.
Also, the implementation of the algorithm for the average
function presented in Marcial-Romero and Escardó (2007)
and the rate of convergence of this algorithm compared
to the three digit representation algorithm implemented
by Plume (1998) is discussed.

The real numbers are represented in Haskell by the
datatype CREAL which consists of a pair of the form
(mantissa, exponent) where the mantissa is an infinite list of
rational intervals in [-1, 1] and the exponent is an integer.
This exponent allows representing real numbers outside
the unit interval. For example 3.17 can be represented by
0.79 × 4, which in our notation is represented by (0.79 4),
and 0.79 is represented by an infinite list. The datatype is
defined in Haskell in the following way:

data CoTa = Cons(Rational, Rational)
CREAL = ([CoTa], Integer)

Notice that we have not restricted the rational intervals
to be in the interval [-1, 1], however their use in the imple-
mentation does. The cons and tail operations are easily
implemented as follows:

cons ∷ (Rational, Rational) → (Rational, Rational) → (Rational,
Rational)
cons(a1, a2)(x1, x2) = ((y1× x1) + y2, (y1 × x2) + y2)
	 where {y1 = (a2 - a1)/2
 	 y2 = (a2 + a1)/2}
tail ∷ (Rational, Rational) → (Rational, Rational) → (Rational,
Rational)
tail(a1, a2)(x1, x2) =




max




min 2 × x2 + d

c







, 1




, (-1)




,

min



max 2 × x2 + d

c







, -1




, (1)





	 where { c = a2 - a1
	 	 d = -a - a1}

These implementations take two tuples of rational num-
bers, which represent the subsets on the interval [-1, 1] and
return a new tuple of rational numbers. The if operator is
the already predefined operator in Haskell.

Notice that the non-deterministic rtest operator can be
implemented in two ways as pointed out in the previous
section:

rtest ∷ (Rational, Rational) → [CoTa] → bool
	 rtest l r (cons(x1, x2): xs)
	 | x2 ≤ r = true
	 | x1 ≥ l = false	

rtest` ∷ (Rational, Rational) → [CoTa] → bool
	 rtest` l r (cons(x1, x2): xs)
	 | x1 ≥ l = false
	 | x2 ≤ r = true

However adequacy of the language as presented in
Marcial-Romero and Escardó (2007) ensures that any
of them is a correct and totally convergent implemen-
tation.

To approximate a real number, the first rule of the
operational semantics is applied to the elements on the
mantissa as many times as precision is required. This is
achieved by the first rule of the operational semantics
together with the other operational rules implemented
as follows:

evaluacion ∷ [CoTa] → [CoTa]		
evaluacion (cons(a, b): []) = [cons(a, b)]
evaluacion (cons(a, b): cons(c, d): xs) = cons(cons(a, b)(c, d)): xs
evaluacion (cons(a, b): xs) = evaluacion(cons(a, b): evaluacion xs)

evaluacion (tail(a, b): cons(c, d): xs) = if (b ≤ c)
			 then[cons(-1, 0), cons(-1, 0),⋯)]
		 if (a > d)
			 then[cons(0, 1), cons(0, 1),⋯)]
		 if ((a < c) &&(d < b)) || ((a ≤ c)
			 &&(d < b) || ((a < c) && (d ≤ b))
			 then cons(tail(a, b)(c, d)): xs
		 if (a < c) && (b < d)
			 then cons(tail(a, b)(c, b)):
			 (tail(tail(c, d)(c, b))): xs
		 if (c < a) && (d < b)
			 then cons(tail(a, b)(a, d)):
			 (tail(tail(c, d)(a, d))): xs
		 otherwise xs
evaluacion(tail(a, b): xs) = evaluacion(tail(a, b): evaluacion(xs))

167CIENCIA ergo sum, Vol. 19-2, julio-octubre 2012.

Ciencias Exactas y Aplicadas

It is worth to note that the implementation of the op-
erational semantics only works with real numbers in the
interval [-1, 1]. The final result to the desired precision is
calculated multiplying both rational numbers at the head of
the mantissa by 2 to the power of the exponent.

A real valued function f : (CREAL)n → (CREAL)m takes
as input n pairs of the type CREAL and returns m pairs of
the type CREAL.

For example an implementation of the average function
defined in section 3 is:

average(x, y) = if rtest 3
4

3
4

 (x)

then if rtest 3
4

3
4

 (y)

 then cons(3
4

)(average(tail(3
4

)(x), tail(3
4

)(y)))

 else cons(3
4

3
4

)(average(tail(3
4

)(x), tail(3
4

)(y)))

else if rtest 3
4

3
4

 (y)

 then cons(3
4

3
4

)(average(tail(3
4

)(x), tail(3
4

)(y)))

 else cons(3
4

)(average (tail(3
4

)(x), tail(3
4

)(y)))

It can be noticed that the rational numbers l and r where
substituted by –3/4 and 3/4 respectively. These numbers
can be arbitrarily fixed if the conditions -1 < l < r < 1 are
considered.3 However at the implementation level not always
the shortest algorithm guarantees a fast convergence to the
desired precision. In this case because the rate of convergence
of this program is (3/4)n, this program converges slower than
a program whose rate of convergence is (1/2)n. Consider-
ing the conditions stated previously, it can be easily shown
that for this particular program, there are no values of l and
r which improve or reach the rate of convergence (1/2)n in
all possible executions of the program.

Lemma 1 There are not values of l and r in [-1, 1] such
that -1 < l < r < 1 and every execution path of the aver-
age program converges at rate of convergence of (1/2)n
or faster.
Proof
To guarantee convergence at range of 1/2n or faster, the res-
caling fa constor of the cons[x, x]) equation should satisfy:

(([x, x])/2) ≤ (1/2)

by the rescaling factor of consL

((r + 1)/2) ≤ (1/2) ⇒ r ≤ 0

and the rescaling factor of consR








 ≤ (1/2) ⇒ l ≥ 0

Contradicting the assumption that l < r. ∎
The above lemma does not imply that there is not a pro-

gram which converges faster, in fact the above program was
presented in Marcial-Romero (2004) only as evidence that
basic operations like additions can be implemented in lrt.

If we consider the sign digit algorithm Plume (1998) for
the average function which guarantees a rate of conver-
gence of 1/2n and translate it to lrt, we have the following
program:

faverage ∷ CREAL → CREAL → CREAL
faverage(x, y) = if rtest 1

2 0 (x)
then
if rtest-1/2 0 (y)
 then cons(-1, 0)(faverage(tail(-1, 0)x, tail(-1, 0)y))
 else
 if rtest 0 1/2 (y)

 then cons







3
4

1
4





faverage


tail(-1, 0) x,tail









1
2

1
2 y









 else cons








1
2

1
2

(faverage(tail(-1, 0)x, tail(0, 1)y))
else
if rtest 0 1/2 (x)

 then if rtest 1

2 0 (y)

 then cons







3
4

1
4

 

faverage



tail









1
2

1
2 x, tail









1
2

1
2 y









 else if rtest 0
1
2 (y)

 then cons








1
2

1
2 


faverage 


tail









1
2

1
2 x, tail









1
2

1
2 y









 else cons








1
4

3
4




faverage




tail









1
2

1
2 x, tail(0, 1)y









 else if rtest 1
2 0 (y)

3.	 See Marcial-Romero and Escardó (2004) for a discussion.

168 Marcial-Romero, J. R. et al., Comparing Implementations of a Calculator for Exact Real Number Computation

Ciencias Exactas y Aplicadas

auxaverage ∷ CREAL → CREAL → CREAL
auxaverage (xs, i)(ys, j)	
| i > j = (faverage(xs, recorre(ys, logBase 2 i) - (logBase 2 j))), i)
| i < j = (faverage(recorre(xs,logBase 2 j) - (logBase 2 i))), ys)
| i = = j = (faverage(xs, ys), i)

In order to add two real numbers, firstly translate them

to the interval [-1, 1] using the mantissa-exponent datatype
presented in section 4. Once the translation is done, the
faverage operation is applied. Because the faverage op-
eration divides the sum of the two numbers by two, the
exponent of the result is multiply by two, to obtain the
required result.

4.2. The division implementation
An implementation of division of two real numbers is presen-
ted. Plume (1998) algorithm for defining the division is used.
To simplify discussion, Plume defines division on the intervals

division: [-1, 1] ×
1

4, 1







 → [-4, 4]

to keep the result in a bounded interval, because taking inputs
from the intervals [-1, 1] results on an output on the interval
(-∞, ∞). In that sense we give a definition for division(x, 4y)
to keep the result in [-1, 1]. For example division(1/4, 3/8)
should produce as a result (1/4)/(4 (3/8)) = (1/4)/(3/2) =
1/6. We multiply the exponent of the final result by four to
obtain the required result.

division ∷ CREAL → CREAL → CREAL
division(xs, a)(ys, b) = (fdiv(xs, ys), (a/b)*4)
fdiv(x: xs)(y: ys) = if (fst(aux1))
then
if (fst(aux2))
 then if (fst(aux3))
 then if (fst(aux4))
 then cons(-1, 0): (fdiv








tail









1
2

1
2 : aux10), (y: ys)









 else cons







3
4

1
4

: (fdiv ((tail








1
2

1
2

: aux4), (y: ys)))

 else if (fst(aux5))

 then cons







3
4

1
4

: (fdiv((tail








1
2

1
2

: aux5), (y: ys)))

 else cons







5
8

3
8

: (fdiv((tail








1
2

1
2 : aux13), (y: ys)))

 else cons








1
2

1
2 : (fdiv((tail









1
2

1
2 : aux2), (y: ys)))

 then conss








1
2

1
2




faverage



tail (0, 1)x, tail(-1, 0)y









 else if rtest 0
1
2 (y)

 then cons








1
4

3
4




faverage



tail (0, 1)x, tail









1
2

1
2 y









 else cons(0, 1)(faverage(tail(0, 1)x, tail(0, 1)y








Program Average divides the interval [-1, 1] in two over-
lapping intervals (








3
4) and (








3
4) resulting in four

cases in the program. Program faverage divides the interval
[-1, 1] it three overlapping intervals ([-1, 0], [-1/2, 1/2] and
[0, 1]) resulting in nine cases in the program. Table 1 presents
the time reported by the Glasgow Haskell compiler doing n
different average operations in both programs at precision
1E - 11. For example, if ⊕ denotes any of the average func-
tions, the result of 1/11 ⊕ 2/13 ⊕ 3/15 ⊕ 2/13⋯21/51
is reported in the 20 operation`s row. Although program
average has less code lines than program faverage, the rate
of convergence in program faverage is better.

4. The Calculator

In this section we just present the implementations of addi-
tion and division in our calculator, the other basic operations
(subtraction and multiplication) are implemented similarly,
the reader can download the implementation from http://
fi.uaemex.mx/rmarcial/lrt. The domain and codomain of
the implementations are the whole real line, hence we use
the CREAL datatype defined in section 4.

	
4.1 The addition function
The addition function is defined from the faverage function
and a pair of auxiliary function.

addition ∷ CREAL → CREAL → CREAL
addition (xs, a)(ys, b) = (fst(aux), snd(aux * 2))
		 where aux = auxaverage (xs, a)(ys, b)

Table 1. Time reported by the Haskell Glasgow compiler at doing n average

operations in both programs with precision 1E – 11

Number of Operations Time Reported
Program Average Program faverage

20
30
40
50
100

47.50 sec
73.49 sec
99.56 sec

129.51 sec
289.49 sec

0.032 sec
0.112 sec
0.136 sec
0.144 sec
0.344 sec

169CIENCIA ergo sum, Vol. 19-2, julio-octubre 2012.

Ciencias Exactas y Aplicadas

else
if (fst(aux6))

 then cons









1
2

1
2 : (fdiv((tail









1
2

1
2 : aux2), (y: ys)))

 else if (fst(aux7))

 then if (fst(aux8))

 then cons







3
8

5
8

: (fdiv ((aux11),(y: ys)))

 else cons








1
4

3
4

: (fdiv tail








1
2

1
2 : aux8), (y: ys)

 else if (fst(aux9))

 then cons 1
4

4
4

: (fdiv tail








1
2

1
2 : aux9), (y: ys)

 else cons(0, 1): (fdiv tail








1
2

1
2 : aux12), (y: ys)

 where aux1 = rtest
1
2









1
2 (x: xs)

	 aux2 = rtest
1
2









1
4 (aux1)

	 aux3 = rtest
1
2









1
2 tail(farest(snd(aux2))(y: ys))

	 aux4 = rtest
1
2









1
4 (aux3)

	 aux5 = rtest








1
4









1
2 (aux3)

	 aux6 = rtest








1
4









1
2 (aux1)

	 aux7 = rtest
1
2









1
2 tail(farest(snd(aux6)) (y: ys))

	 aux8 = rtest
1
2









1
4 (aux7)

	 aux9 = rtest








1
4









1
2 (aux7)

	 aux10 = tail(faverage(snd(aux4))(y: ys))

	 aux11 = tail








1
2

1
2 : tail(farest(snd(aux6)), cons

	








1
2

1
2 (y: ys))

	 aux12 = tail(frest(snd(aux9))(y: ys))

	 aux13 = tail








1
2

1
2 : tail(faverage(snd(aux2)),

	 cons








1
2

1
2 (y: ys))

Trigonometric operations like sin, cosine, tangent among
others were also programmed in lrt using Plume's algorithms.
The reader can download either the text modules or the
graphical interface from http://fi.uaemex.mx/rmarcial/lrt.

5. Comparing our calculator

Two different comparisons are performed to test our
implementation. The first one compares the common use
of real numbers in the C programming language against
our exact real number implementation. The second one
compares a three digit bit implementation of exact real
numbers again our implementation. All the comparisons
were performed on a MacBook with processor of 2.4 GHz
Intel Core 2 Duo and memory of 2 GB.

	
5.1. The logistic Map
The logistic map is a function f : [0, 1] → [0, 1] defined by

f (x) = ax(1 - x)

for a given constant a. Devaney (Devaney, R. L. 1989) stated
that it was first considered as a model of population growth
by Pierre Verhulstby in 1845. For example, a value 0.5 may
represent 50% of the maximum population of cattle in a
given farm. The problem is, given an initial value x0, to
compute the orbit

x0, f (x0), f (f (x0)),⋯, fn(x0)

which collects the population value of successive generations.
The purpose is to compute an initial segment of the orbit for
a given initial population x0. It has been identified that choos-
ing a = 4 is a chaotic case. The main problem is that its value
is sensitive to small variations of its variables. The result of
computing orbits for the same initial value x0 = 0.671875, in
simple and double precision in the C programming language
is shown in table 2. Also, table 2 shows the exact result and
the value obtained using our calculator. As it can be noticed
the tables are equal up to n = 7. From row 8th up to 39th the
double, exact and lrt column report equal results. From row
40th the C double precision shows a small deviation from the
exact result and at the last 63rd row this deviation is evident
enough. It is worth to mention that every exact real number
computation implemented must produce the correct result
as is the case in our calculator. The main drawback is the
execution time that our implementation takes to compute the
orbits. However, in this first version of our implementation,
the goal is not to look for the most efficient algorithms for

170 Marcial-Romero, J. R. et al., Comparing Implementations of a Calculator for Exact Real Number Computation

Ciencias Exactas y Aplicadas

exact real number computation. Instead, we wanted to show
that it is possible to transit from the basic lrt theory to actual
practice in a smooth way.

5.2. Comparing with the three digits representation
The three digit implementation used in our comparison was
developed by Plume (1998).4 We can say, however, that our im-
plementation is better at performing additions and subtractions
but is less good at multiplications and divisions. These results
affect in general the performance of trigonometric functions
and other operations as can be seen in table 3. However, our
implementation is based on a formal specification in which our
programs are shown to be correct. Therefore, we believe it is ea-
sier to develop new algorithms for our implementation than build
a theory for the three digit operational semantics representation.

6. Prospective Analysis

Several rounding off errors have occurred during the last years
due to floating point arithmetic. These errors have caused
disasters like the following.

During the Gulf War, an American Patriot Missile battery
in Dharan, Saudi Arabia, failed to intercept an incoming Iraqi
Scud missile. The Scud struck an American Army barracks
and killed 28 soldiers. It turns out that the cause was an inac-
curate calculation of the time since boot due to computer
arithmetic errors.

On June 4, 1996 an unmanned Ariane 5 rocket launched by
the European Space Agency exploded just forty seconds after
lift-off. The rocket was on its first voyage, after a decade of
development costing $7 billion. It turned out that the cause
of the failure was a software error in the inertial reference
system. Specifically a 64 bit floating point number relating
to the horizontal velocity of the rocket with respect to the
platform was converted to a 16 bit signed integer. The number
was larger than 32,768, the largest integer storeable in a 16 bit
signed integer, and thus the conversion failed.

The Germanas experienced a shattering computer error during
a election (5 April, 1992). The elections to the parliament for the
state of Schleswig-Holstein were affected. After midnight (and
after the election results were published) someone discovered that
the Greens actually only had 4,97% of the vote. The program that
prints out the percentages only uses one place after the decimal,
and had *rounded the count up* to 5%! This software had been
used for *years*, and no one had thought to turn off the round-
ing at this very critical (and IMHO very undemocratic) region.

Table 2. Results of computing the logistic map for simple and double
precision in the C programming language, and our implementation and the
exact result. From values n = 8 and n = 40 the simple and double precision
respectively deviate from the exact result.

n Simple
precision

Double
 precision

LTR
result

Exact
result

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
25
30
35
39
40
45
50
55
60
63

0.671875
0.881836
0.416805
0.972315
0.107676
0.384327
0.946479
0.202625
0.646272
0.914417
0.313033
0.860174
0.481098
0.998570
0.005708
0.022702
0.088747
0.323485
0.875370
0.436386
0.983813
0.652836
0.934926
0.848152
0.014638
0.057695
0.991612
0.042173
0.108415
0.934518
0.770667

0.671875
0.881836
0.416805
0.972315
0.107676
0.384327
0.946479
0.202625
0.646273
0.914416
0.313037
0.860179
0.481084
0.998569
0.005716
0.022735
0.088875
0.323907
0.875965
0.434601
0.982892
0.757549
0.481445
0.313159
0.006038
0.024007
0.930952
0.629401
0.749775
0.757153
0.690457

0.671875
0.881836
0.416805
0.972315
0.107676
0.384327
0.946479
0.202625
0.646273
0.914416
0.313037
0.860179
0.481084
0.998569
0.005716
0.022735
0.088875
0.323907
0.875965
0.434601
0.982892
0.757549
0.481445
0.313159
0.006038
0.024009
0.930881
0.625028
0.615752
0.315445
0.996571

0.671875
0.881836
0.416805
0.972315
0.107676
0.384327
0.946479
0.202625
0.646273
0.914416
0.313037
0.860179
0.481084
0.998569
0.005716
0.022735
0.088875
0.323907
0.875965
0.434601
0.982892
0.757549
0.481445
0.313159
0.006038
0.024009
0.930881
0.625028
0.615752
0.315445
0.996571

Table 3. Time reported by the Haskell Glasgow compiler. All operations were

calculated at precision 1E-11

Operation
Plume LRT
Time reported in seconds

 1.599987

 1.808238

 0.664056

 1.362235

 1583.99

 0.716

 1.048

 0.556

 0.564

 0.328326

 0.754179

 11.351002

 27.573404

 1786.81

 12.54

 9.27

 23.97

 27.109

j = 13
for i = 2 to 20
j = j div i

2i + 1

sin(1
3 + cos(7

9)) / cos(1
3 + sin(7

11))

e(tan(3/11)) - tan(2/13))

π*arctan(1/3) + (cos(2/3)*tan(13/15)

sin(3/11 + e(1/3))* sin(4/13 - e(2/3))

1
2i + 1

20

i = 1

i
3i + 1

50

i = 1

1
2i + 1

20

i = 1

i
2i + 1

50

i = 1

4.	 We will not discuss Plume's implementation in this paper; instead we refer the

interested reader to Plume (1998).

171CIENCIA ergo sum, Vol. 19-2, julio-octubre 2012.

Ciencias Exactas y Aplicadas

Although it can be argued that the previous examples were
in the nineteen`s, the solutions taken to prevent them in the
coming years have not been soundly and correctly verified. So,
as soon as the precisions for the calculations reach a maximum
fixed value, the same errors will occur. If the implementa-
tion proposed in this paper ends in a faster library for exact
real number computation, then the development of accurate
software will be made and so none of the previous errors will
occurs. However, this is still the first step towards this goal.

Conclusion

We have described an implementation of lrt in the Glas-
gow Haskell compiler and a basic calculator using Plume's
algorithms. Although these algorithms have the same range
of convergence, our implementation is in most of the cases
slower as table 3 shows. We consider that the growth of the

Bibliografía

Abramsky, S. and A. Jung (1994). “Domain
Theory”, in S. Abramsky, D. M. Gabbay,
and T. S. E. Maibaum, (ed.). Handbook
of Logic in Computer Science. Volume
3, 1: 168. Clarendon Press.

Bauer, A. and I. Kavkler (2008). “Imple-
menting Real Numbers with Rz”, in
Proceedings of the Fourth International.
Conference on Computability and Com-
plexity in Analysis. entcs.

Boehm, H. J. and R. Cartwright (1990).
“Exact Real Arithmetic: Formulating
Real Numbers as Functions”, in Turner.
D. (ed.). Research Topics in Functional
Programming. Addison-Wesley.

Brattka, V. (1996). Recursive Characte-
rization of Computable Real-Valued
Functions and Relations. Theoretical
Computer Science, Vol. 162: 45-77.

Devaney R. L. An Introduction to Chaotical
Dynamical Systems. Addison-Wesley,
California, 2do edition, 1989.

Escardó, M. H. (1996). “pcf Extended with
Real Numbers”, Theoretical Computer
Science. Vol. 162, Núm. 1: 79-115,
August.

Hanrot, P. P. G. V. Lefévre and P. Zimmer-
mann (2007). The mpfr library. inria.

<http://mpfr.org> (julio de 2011)
gnu (2000). Multiple precision arithmetic

library. <http://gmplib.org> (julio de
2011).

Gunter, C. A. (1992). Semantics of Pro-
gramming Languages. The mit Press.

Lambov, B. (2001). The Reallib Project. brics,
University of Aarhus. <http://brics.
dk/~barnie/RealLib> (julio de 2011).

Marcial-Romero, J. R. (2004). Semantics
of a sequential language for exact
real-number computation. PhD thesis,
University of Birmingham.

Marcial-Romero, J. R. and M. H. Escardó
(2004). “Semantics of a Sequential
Language for Exact Real-Number Com-
putation”, in Ganzinger, H. (ed.). Pro-
ceedings of the Nineteenth Annual ieee
Symp. on Logic in Computer Science.
lics ieee Computer Society Press.

Marcial-Romero, J. R. and M. H. Escardó
(2007). “Semantics of a Sequential Lan-
guage for Exact Real-Number Compu-
tation”, Theoretical Computer Science,
Vol. 379, Núm. 1-2: 120-141.

Marcial-Romero, J. R. and A. Moshier
(2008a). “Sequential Real Number Com-
putation and Recursive Relations”, in

rational intervals during a calculation decreases the efficiency
of our implementation due to the number of operations re-
quired. Also the multiplication algorithm contributes to the
efficiency. We believe that a new algorithm for multiplication,
the use of dyadic rational (as used by other implementation
(GNU; Bauer and Kavkler, 2008; Hanrot, Lefévre and
Zimmermann; Lambov B.; Muller N.) and a faster library to
compute operation with the rational numbers will improve
the efficiency of our implementation.

Being the language representation independent, other
algorithms proposed for first order computable functions
can be programmed in lrt. A further work is to translate
the best of those algorithms to lrt. In this paper we do
not present any efficiency results of the implementation,
which similar to others, is still the main gap between what
is needed and what has been achieved in exact real number
computation.

Proceedings of the Fourth International
Conference on Computability and Com-
plexity in Analysis, cca. entcs.

Marcial-Romero, J. R. and A. Moshier
(2008b). “Sequential real number com-
putation and recursive relations”, Mathe-
matical Logic Quarterly, Vol. 54, Núm.
5: 492-507.

Muller, N. (1996). iRRAM - Exact Arithme-
tic in C++. Universit at Trier. <http://
www.informatik.unitrier.de/iRRAM>
(julio 2011).

Plotkin, G. D. (1977). “lcf considered as
a programming language”, Theoretical
Computer Science, Vol. 5 núm. 1: 223-
255.

Plume, D. (1998). A Calculator for Exact
Real Number Computation. 4th Year
Project Report, Department of Com-
puter Science and Artificial Intelligence,
University of Edinburgh.

Potts, P. J.; A. Edalat and M. Escardó (1997).
Semantics of exact real arithmetic.
Proceedings of the Twelveth Annual
ieee Symposium on Logic in Computer
Science. ieee Computer Society Press.

Weihrauch, K. (2000). Computable Analysis.
Springer.

